Introduction to
Parallel Programming

in OpenMP

David Colignon, ULiege

CECI - Consortium des Equipements de Calcul Intensif

http://www.ceci-hpc.be

http://www.ceci-hpc.be

Slides and source code of examples
available on every CECI cluster In:

/CECI/proj/OpenMP/

Main References

“Parallel Programming with GCC”,
Diego Novillo, Red Hat

Red Hat Summit, Nashville, May 2006
http://www.airs.com/dnovillo/Papers/rhs2006.pdf

"An Overview of OpenMP",
Ruud van der Pas, Oracle
IWOMP 2010, Tsukuba, 14-16 June 2010

http://www.compunity.org/training/tutorials/3 Overview OpenMP.pdf
and http://openmp.org/wp/2010/07/iwomp-2010-material-available/

http://www.airs.com/dnovillo/Papers/rhs2006.pdf
http://www.airs.com/dnovillo/Papers/rhs2006.pdf
http://www.compunity.org/training/tutorials/3%20Overview_OpenMP.pdf
http://www.compunity.org/training/tutorials/3%20Overview_OpenMP.pdf
http://openmp.org/wp/2010/07/iwomp-2010-material-available/
http://openmp.org/wp/2010/07/iwomp-2010-material-available/

More References:

Specification
OpenMP, The OpenMP API specification for parallel programming

Articles

Wikipedia (good summary)

32 OpenMP traps for C++ developers

Common Mistakes in OpenMP and How To Avoid Them

IWOMP 2009, The 2009 International Workshop on OpenMP (Slides)
IWOMP 2010, The 2010 International Workshop on OpenMP (Slides)
Avoiding and Identifying False Sharing Among Threads

Tutorials

Parallel Programming with GCC, D. Novillo, Red Hat Summit, Nashville, May 2006
An Overview of OpenMP, IWOMP 2010, Ruud van der Pas, Oracle

A "Hands-on" Introduction to OpenMP, SC08, Mattsonand Meadows, Intel

Cours OpenMP (en frangais !) de I'IDRIS

Using OpenMP, SC09, Hartman-Baker R., ORNL, NCCS

OpenMP Tutorial, Barney B., LLNL

Books

Using OpenMP - Portable Shared Memory Parallel Programming, by Chapman et al.

(Download Book Examples and Discuss)

Parallel Programming in OpenMP, by Rohit Chandra et al.
(Google Preview)

http://openmp.ora/

http://en.wikipedia.org/wiki/Openmp
http://software.intel.com/en-us/articles/32-openmp-traps-for-c-developers/

http://www.michaelsuess.net/.../suess_leopold_common_mistakes_06.pdf

http://openmp.org/wp/2009/06/iwomp2009/
http://openmp.ora/wp/2010/07/iwomp-2010-material-available/

http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing

http://www.airs.com/dnovillo/Papers/rhs2006.pdf
http://www.compunity.org/training/tutorials/3 Overview_OpenMP.pdf

http://www.openmp.ora/mp-documents/omp-hands-on-SC08.pdf

http://www.idris.fr/data/cours/parallel/openmp/
http://www.greatlakesconsortium.org/events/scaling/files/openmp09.pdf

https://computing.linl.gov/tutorials/openMP/

https://mitpress.mit.edu/books/using-openmp
http://openmp.org/wp/2009/04/download-book-examples-and-discuss/

http://www.elsevier.com/wps/find/bookdescription.cws_home/677929/description

http://books.google.be/books?id=18CmnglhbhUC

http://openmp.org
http://openmp.org
http://en.wikipedia.org/wiki/Openmp
http://en.wikipedia.org/wiki/Openmp
http://software.intel.com/en-us/articles/32-openmp-traps-for-c-developers/
http://software.intel.com/en-us/articles/32-openmp-traps-for-c-developers/
http://www.michaelsuess.net/michaelsuess/publications/suess_leopold_common_mistakes_06.pdf
http://www.michaelsuess.net/michaelsuess/publications/suess_leopold_common_mistakes_06.pdf
http://openmp.org/wp/2009/06/iwomp2009/
http://openmp.org/wp/2009/06/iwomp2009/
http://openmp.org/wp/2010/07/iwomp-2010-material-available/
http://openmp.org/wp/2010/07/iwomp-2010-material-available/
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+ISNMain+%2528Intel+Software+Network+Main+Feed%2529
http://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+ISNMain+%2528Intel+Software+Network+Main+Feed%2529
http://www.airs.com/dnovillo/Papers/rhs2006.pdf
http://www.airs.com/dnovillo/Papers/rhs2006.pdf
http://www.compunity.org/training/tutorials/3%20Overview_OpenMP.pdf
http://www.compunity.org/training/tutorials/3%20Overview_OpenMP.pdf
http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://www.openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://www.idris.fr/data/cours/parallel/openmp/
http://www.idris.fr/data/cours/parallel/openmp/
http://www.greatlakesconsortium.org/events/scaling/files/openmp09.pdf
http://www.greatlakesconsortium.org/events/scaling/files/openmp09.pdf
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/
https://mitpress.mit.edu/books/using-openmp
https://mitpress.mit.edu/books/using-openmp
http://openmp.org/wp/2009/04/download-book-examples-and-discuss/
http://openmp.org/wp/2009/04/download-book-examples-and-discuss/
http://www.elsevier.com/wps/find/bookdescription.cws_home/677929/description
http://www.elsevier.com/wps/find/bookdescription.cws_home/677929/description
http://books.google.be/books?id=18CmnqIhbhUC
http://books.google.be/books?id=18CmnqIhbhUC

Outline

* Introduction to parallel computing

» Parallel programming models
- Shared memory
- Message passing

* OpenMP
- Guided tour

- In depth overview

Parallel Computing

* Use hardware concurrency for increased

- Performance
- Problem size

e Two main models

- Shared memory
— Distributed memory

* Nature of problem dictates

— Computation/communication ratio
— Hardware requirements

Distributed Memory

Interconnect

|
Memory Memory Memory Memory Memory Memory

* Each processor has its own private memory

* Explicit communication

* EXplicit synchronization
* Difficult to program but no/few hidden side-effects

Shared Memory

Memory

Interconnect

- - - -

* Processors share common memory

* Implicit communication

* Explicit synchronization
* Simple to program but hidden side-effects

Programming Models

* Shared/Distributed memory often combined

- Networks of multi-core nodes
— Parallelism available at various levels

* Additional requirements over sequential

— Task creation
— Communication
— Synchronization

* How do we program these systems?

Explicit Parallelism

 User controls: Tasks, communication and
synchronization

* |Increased programming complexity
— Often require different algorithms
* Many different approaches

— Parallel languages or language extensions: HPF,
Occam, Java

— Compiler annotations: OpenMP
— Libraries: Pthreads, MPI

Parallelism in GCC

GCC supports four concurrency models

Easy —_— Hard

IL{ Vectorization Oper<P MEI\
v automatic v automatic v manual v manual
v no user control v compiler option - compiler directives ~ special libraries
v not intrusive v not intrusive v somewhat intrusive v very intrusive

Ease of use not necessarily related to speedups!

Message Passing

* Completely library based
* No special compiler support required

* The "assembly language” of parallel
programming
- Ultimate control
- Ultimate pain when things go wrong
— Computation/communication ratio must be high

* Message Passing Interface (MPI) most
popular model

Message Passing

» Separate address spaces

- It may also be used on a shared memory
machine

* Heavy weight processes

 Communication explicit via network
messages

— User responsible for marshalling, sending and
receiving

OpenMP - Introduction

* Language extensions for shared memory
concurrency

* Supports C, C++ and Fortran

* Embedded directives specify

- Parallelism
- Data sharing semantics
- Work sharing semantics

* Standard and increasingly popular

OpenMP — Programming Model

* Based on fork/join semantics

- Master thread spawns teams of children threads
— All threads share common memory

* Allows sequential and parallel execution

Master
thread

fork join

Parallel region

OpenMP - Programming Model

* Compiler directives via pragmas (C, C++) or
comments (Fortran).

* Compiler replaces directives with calls to
runtime library (1ibgomp)

* Runtime controls available via library API
and environment variables

* Environment variables control parallelism

OMP NUM THREADS OMP SCHEDULE
OMP DYNAMIC OMP NESTED

OpenMP — Programming Model

* Explicit sharing and synchronization

* Threads interact via shared variables

— Several ways for specifying shared data
- Sharing always at the variable level

* Programmer responsible for synchronization

- Unintended sharing leads to “data races”
— Use synchronization directives and library API
- Synchronization is expensive

IWOMP
J2

nnnnnnnn

1

An Overview of OpenMP

Ruud van der Pas

Ny Senior Staff Engineer
IWOMP Oracle Solaris Studio <@>
W Oracle

Menlo Park, CA, USA

IWOMP 2010
CCS, University of Tsukuba

Tsukuba, Japan
June 14-16, 2010

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

nnnnnnnn

Getting Started with OpenMP

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

nnnnnnnn

OpenMP

http:/ www.openmp.org

OMP

http://www.compunity.org

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshoo

RN &)

OpenMP.org

| 4| » || + @ hup:/jopenmp.org/wp/ = ¢ J(Qr Google)
(11 %2 Chinavy OpenMP¥ Nomadicv

-1 OpenMP.org l

P

OpenM

N

Subscribe to the News Feed

nn OpenMP Specifications
»About OpenMP
»Compilers

rResources

»Discussion Forum

Events
»WOMP 2010 - 6th
International Workshop on
OpenMP, June 14-16, 2010,
Tsukuba, Japan

Input Register

Alert the OpenMP.org
webmaster about new
products, events, or updates
and we'll post it here.
swebmaster@openmp.org

Search OpenMP.org

Search

Archives

May 2010
April 2010
June 2009
April 2009
March 2008

(-]

4 o o0 O

OpenMP News

*»SPEC Looking For A Few Good Applications

SPEC, the Standard Performance Evaluation Corporation, is looking for
realistic OpenMP applications to include in the next version of the SPEC CPU
and SPEC OMP benchmark suites.

spec

SPEC is sponsoring a search program, and for each step of the process thata
submission passes, SPEC will compensate the Program Submitter (in
recognition of the Submitter's effort and skill). A submission that passes all of the
steps and is included in the next SPFEC CPU benchmark suite will recelve $5000
US overall and a license for the new benchmark suite when released. Details
on the Benchmark Search Program at: hitp:/'www.spec.org/cpuvé/.

Posted on May 20, 2010

»IWOMP 2010: International Workshop on OpenMP

6th International Workshop on OpenMP, June 14-16,

2010, Tsukuba, Japan

‘Beyond Loop Level Parallelism in OpenMP:
Accelerators, Tasking and More”

The International Workshop on OpenMP is an annual series of workshops dedicated to the
promotion and advancement of all aspects focusing on parallel programming with OpenMP.
OpenMP is now a major programming model for shared memory systems from multi-core machines
to large scale servers. Recently, new ideas and challenges are proposed to extend OpenMP
framework for adopting accelerators and also exploiting parallelism beyond loop levels. The
workshop serves as a forum to present the latest research ideas and results related to this shared
memaory programming model. It also offers the opportunity to interact with OpenMP users,
developers and the people working on the next release of the standard. The 2010 International
Workshop on OpenMP IWOMP 2010 will be held in the high-tech city of Tsukuba, Japan.

The workshop IWOMP 2010 will be a three-day event. In the first day, tutorials are provided for
focusing on topics of interest to current and prospective OpenMP developers, suitable for both

http://www.openmp.org

. THe OpenMP API SPECIFICATION FOR PARALLEL PROGRAMMING

The OpenMP API

Supports multi-platform shared-
memory parallel programming
in C/C++ and Fortran. OpenMP
is a portable, scalable model
with a simple and flexible
interface for developing
parallel applications on
platforms from the desktop to
the supercomputer.

» Read about OpenMP.org

Get
»0OpenMP specs

Use
»0OpenMP Compillers

Learn

FEATKIL SHANES WIMORT WARALLLT PREGEI MG

»Using OpenMP — the book
» llsing OneanlMP _ #he avamnlas

RvdP/V1

An Overview of OpenMP

Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. Intwp

Shameless Plug - “Using OpenMP” =

6

“Using OpenMP” = N
Portable Shared Memory e
Parallel Programming e e =

-—'--u-li

Chapman, Jost, van der Pas

MIT Press, 2008

PORTABLE SHARED MEMORY PARALLEL PROGRAMMING

ISBN-10: 0-262-53302-2
ISBN-13: 978-0-262-53302-7

| H:‘fjgﬁ .‘_‘-'_é‘-.;_:-.
o = b

: “‘-__—;_ e __'. . e
BARBARA CHAPMAN,

. . GABRIELE J0ST, DAVID 1. KUCK
List price. 35 $US AND RUUD VAN DER PAS

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. What is OpenMP? g

8

Q De-facto standard Application Programming Interface
(API) to write shared memory parallel applications in
C, C++, and Fortran

Q Consists of:

e Compiler directives
e Run time routines
e Environment variables

Q Specif cation maintained by the OpenMP
Architecture Review Board (http:/www.openmp.org)

Q Version 3.0 has been released May 2008

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

http://www.openmp.org/

. Intwp
5 IWOMP
. When to consider OpenMP? e

Q Using an automatically parallelizing compiler:

e It can not F nd the parallelism

v The data dependence analysis is not able to
determine whether it is safe to parallelize or not

e The granularity is not high enough

v The compiler lacks information to parallelize at the
highest possible level

Q Not using an automatically parallelizing compiler:
e No choice than doing it yourself

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. Intwp
IWOMP
. Advantages of OpenMP e

Q Good performance and scalability

e If you do it right
Q De-facto and mature standard

Q An OpenMP program is portable

e Supported by a large number of compilers
Q Requires little programming effort

Q Allows the program to be parallelized incrementally

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

OpenMP and Multicore S

11

OpenMP is ideally suited for multicore

architectures

Memory and threading model map naturally
Lightweight

Mature

Widely available and used

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

= IWOMP
" The OpenMP Execution Model o\
Fork and Join Model
Master
Thread

Parallel region { { * * * %cr)gla(grs
Worker
Parallel region * { * * { Threads

ORACLE

AvdPIVT An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Process

A process is created by the operating system, and requires a fair amount of
"overhead".

Processes contain information about program resources and program execution
state, including:

- Process ID, process group ID, user ID, and group ID
- Environment

- Working directory.

- Program instructions

- Registers

- Stack

- Heap

- File descriptors

- Signal actions

- Shared libraries

- Inter-process communication tools (such as message queues, pipes,
semaphores, or shared memory).

A thread is defined as an independent stream of instructions that can be scheduled to run as
such by the operating system.

Threads use and exist within the processresources
- are able to be scheduled by the operating system
- run as independent entities
- they duplicate only the bare essential resources that enable them to exist as
executable code.

This independent flow of control is accomplished because a thread maintains its own:
- Stack pointer
- Registers
- Scheduling properties (such as policy or priority)
- Set of pending and blocked signals
- Thread specific data.

Threads may share the process resources with other threads that act equally independently (and
dependently)

Reading and writing to the same memorylocations is possible, and therefore requires
explicit synchronization by the programmer.

Thread die if the parent process dies

Thread lis "lightweight" because mostof the overhead has already beenaccomplished through the
creation of its process.

International Workshop

The OpenMP Memory Model o

12

v All threads have access to the
same, globally shared, memory

v Data can be shared or private

v Shared data is accessible by all
threads

v Private data can only be
accessed by the thread that
owns it

v Data transfer is transparent to
the programmer

v Synchronization takes place,
but it is mostly implicit

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

= - IWOMP
' Data-sharing Attributes N2

a In an OpenMP program, data needs to be “labeled”
Q Essentially there are two basic types:

e Shared - There is only one instance of the data

v All threads can read and write the data simultaneously,
unless protected through a specif ¢ OpenMP construct

v All changes made are visible to all threads
¢ But not necessarily immediately, unless enforced
e Private - Each thread has a copy of the data
v No other thread can access this data
v Changes only visible to the thread owning the data

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

- IWOMP
s The private and shared clauses RNZ

private (list)

v No storage association with original object
v All references are to the local object
v Values are undef ned on entry and exit

shared (list)

v Data is accessible by all threads in the team
v All threads access the same address space

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

What is a Data Race? N2

Q Two different threads in a multi-threaded shared
memory program

Q Access the same (=shared) memory location
e Asynchronously and
e Without holding any common exclusive locks and
e At least one of the accesses is a write/store

ORACLE

RvdP/V1 Basic Concepts in Parallelization Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Example of a data race 2

50

#pragma omp parallel shared(n)

{n = omp_get_thread num();}

Shared
Memory

ORACLE

RvdP/V1 Basic Concepts in Parallelization Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Another example S

51

#pragma omp parallel shared(x)

{x =x + 1;}

Shared
Memory

ORACLE

AvdPVT Basic Concepts in Parallelization Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

About Data Races N2

Q Loosely described, a data race means that the update
of a shared variable is not well protected

Q A data race tends to show up in a nasty way:

e Numerical results are (somewhat) different from run
fo run

e Especially with Floating-Point data diff cult to
distinguish from a numerical side-effect

e Changing the number of threads can cause the
problem to seemingly (dis)appear

v May also depend on the load on the system
e May only show up using many threads

ORACLE

RvdP/V1 Basic Concepts in Parallelization Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. A parallel loop ke

for (1=0; i<8; iry) | fveryleratoninnie
afi] = a[1] + b[1]; the other iterations

Thread 1 : Thread 2
a[0]1=a[0]+b[0] E a[4]=a[4]+b[4]
a[l]=a[l]+b[1] E a[5]=a[5]+b[5]
a[2]=a[2]+b[2] ' a[6]=a[6]+b[6]
a[3]=a[3]+b[3] E a[7]=a[7]1+b[7] Time

ORACLE

RvdP/V1 Basic Concepts in Parallelization Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Not a parallel loo A
- otap p Z
for (i=0; i<8; i++) The result is not

deterministic when

a[i] = a[i+l] + b[1]; run in parallel !

Thread 1 : Thread 2
a[0]=a[l]+b][O0] E a[4]=a[5]+b[4]
a[l]=a[2]+b[1] : a[5]=a[6]+b[5]

a[2]=a[3]+b[2] a[6]=a[7]+b[6]

Time

a[3]=al[4]+b[3] a[7]=a[8]+b[7]

ORACLE

RvdP/V1 Basic Concepts in Parallelization Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

About the experiment S

55
Q We manually parallelized the previous loop

e The compiler detects the data dependence and does
not parallelize the loop

Q Vectors a and b are of type integer

O We use the checksum of a as a measure for
correctness:

e checksum +=ali] fori=0,1,2,...., n-2

Q The correct, sequential, checksum result is computed
as a reference

Q We ran the program using 1, 2, 4, 32 and 48 threads
e Each of these experiments was repeated 4 times

ORACLE

RvdP/V1 Basic Concepts in Parallelization Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Numerical results

International Workshop

IWOMP
J2

on OpenMP

threads:
threads:
threads:
threads:

threads:
threads:
threads:
threads:

threads:
threads:
threads:
threads:

threads:
threads:
threads:
threads:

threads:
threads:
threads:
threads:

NNNN HRERR

=

32
32
32
32

48
48
48
48

checksum
checksum
checksum
checksum

checksum
checksum
checksum
checksum

checksum
checksum
checksum
checksum

checksum
checksum
checksum
checksum

checksum
checksum
checksum
checksum

1953
1953
1953
1953

1953
1953
1953
1953

1905
1905
1953
1937

1525
1473
1489
1513

936
1007
887
822

correct
correct
correct
correct

correct
correct
correct
correct

correct
correct
correct
correct

correct
correct
correct
correct

correct
correct
correct
correct

value
value
value
value

value
value
value
value

value
value
value
value

value
value
value
value

value
value
value
value

1953
1953
1953
1953

Data Race
In Action !

1953
1953
1953
1953

1953
1953
1953
1953

1953
1953
1953
1953

1953
1953
1953
1953

ORACLE

RvdP/V1

Basic Concepts in Parallelization

Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

IWOMP
J2

An OpenMP example

16

For-loop with independent For-loop parallelized using
iterations an OpenMP pragma

#pragma omp parallel for
for (int i=0; i<n; i++)
c[i] = a[i] + b[i];

for (int i=0; i<n; i++)
c[i] = a[i] + b[i];

S cc -xopenmp source.cC
$ export OMP NUM THREADS=5
S ./a.out

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

17

Example Parallel Execution

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4
i=0-199 —200 399 —400 599 —600 799 -800-999
a[i] | a[i] | a[i] afi] | a[i]

+ + + + +
b[i] | b[1] | b[1] b[i] | b[1]
c[i] | c[1] | c[1i] c[i] | c[1]

nnnnnnnn

ORACLE

An Overview of OpenMP

RvdP/V1

Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Def ning Parallelism in OpenMP k=

18
a OpenMP Team := Master + Workers

Q A Parallel Region is a block of code executed by all
threads simultaneously

« The master thread always has thread ID 0

« Thread adjustment (if enabled) is only done before entering a
parallel region

« Parallel regions can be nested, but support for this is
implementation dependent

« An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed serially

Q0 A work-sharing construct divides the execution of the
enclosed code region among the members of the team;
in other words: they split the work

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP
., components of OpenMP e
Directives Runtime Environment
environment variables
¢ Parallel region ¢ Number of threads ¢ Number of threads
& Worksharing ¢ Thread ID ¢ Scheduling type
constructs]
o LYIELE 2T ¢ Dynamic thread
. adjustment .
¢ Tasking] adjustment
o ¢ Nested parallelism]
¢ Synchronization o Schedule ¢ Nested parallelism
¢ Data-sharing & Active levels ¢ Stacksize
attributes .,
¢ Thread limit ¢ Idle threads
¢ Nesting level ¢ Active levels
¢ Ancestor thread
] ¢ Thread limit
¢ Team size
¢ Wallclock timer
¢ Locking

ORACLE

RvdP/V1

An Overview of OpenMP

Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Directive format ENZS

19

Q C: directives are case sensitive

e Syntax: #pragma omp directive [clause [clause] ...]
Q Continuation: use \in pragma

Q Conditional compilation: _OPENMP macro is set

Q Fortran: directives are case insensitive

e Syntax: sentinel directive [clause [[,] clause]...]
e The sentinel is one of the following:

v ISOMP or C$OMP or *$OMP (f xed format)
v ISOMP (free format)

Q Continuation: follows the language syntax

Q Conditional compilation: !$ or C$ -> 2 spaces

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

OpenMP clauses Sk

Q Many OpenMP directives support clauses

20

e These clauses are used to provide additional
information with the directive

Q For example, private(a) is a clause to the “for” directive:
e #pragma omp for private(a)

Q The specif c clause(s) that can be used, depend on the
directive

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

,. Example 2 - Matrix times vector =
#pragma omp parallel for default(none) \
private (i, j,sum) shared(m,n,a,b,c)
for (i=0; i<m; i++) >
{
sum = 0.0; H
for (3J=0; j<n; j++) = — 5 %
sum += b[i] [J]*c[]]’
af[i] = sum; :
i
}
TID=0 TID =1
for (i=0,1,2,3,4) for (i=5,6,7,8,9)
i=0 i=25
sum = b[i=0][j]1*c[]] sum = b[i=5][]]1*c[]]
a[0] = sum a[5] = sum
i=1 i=26
sum = b[i=1][]]1*c[]] sum = b[i=6][]]1*c[]]
a[l] = sum a[6] = sum
... efc ...

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

OpenMP Performance Example -

22

2500
-~ 1 Thread
=¥ 2 Threads
=+ 4 Threads
2000 / \
1500

Matrix too

- small * J"ﬂ“\ \
LN \h g
///// (et 2

0
1 10 100 1000 10000 100000 1000000

Memory Footprint (KByte)

Performance (Mf op/s)

*) With the IF-clause in OpenMP this performance degradation can be avoided

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

The if clause N2

23

If (scalar expression)

v Only execute in parallel if expression evaluates to true
v Otherwise, execute serially

#pragma omp parallel if (n > some threshold) \
shared(n,x,y) private(i)
{

#pragma omp for
for (i=0; i<n; i++)
x[1] += y[i];
} /*-- End of parallel region --%*/

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Barrier/1 aNZ

Suppose we run each of these two loops in parallel over i:

24

for (i=0; i < N; i++)
af[i] = b[1] + c[1];

for (i=0; i < N; i++)
d[i] = a[i] + b[i]~

This may give us a wrong answer (one day)

Why ?

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Barrier/2 aNZ

We need to have updated all of af] f rst, before using af | *

for (i=0; i < N; i++)

oy, ",
R

sa[i] "= b[i] + c[i];

M
barrier
for (1=0; 1 < N; i++)

i o,

d[i] =3sa[i]"+ b[i];

T

All threads wait at the barrier point and only continue
when all threads have reached the barrier point

*) If there is the guarantee that the mapping of iterations onto threads
is identical for both loops, there will not be a data race in this case

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Barrier/3 S\

26

Barrier Region

time

Barrier syntax in OpenMP:

#pragma omp barrier !Somp barrier

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. IWOMP
»» When to use barriers ? B
Q If data is updated asynchronously and data integrity is
at risk
Q Examples:

e Between parts in the code that read and write the
same section of memory

e After one timestep/iteration in a solver

Q Unfortunately, barriers tend to be expensive and also
may not scale to a large number of processors

Q Therefore, use them with care

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The nowait clause N2

Q To minimize synchronization, some OpenMP
directives/pragmas support the optional nowait clause

Q If present, threads do not synchronize/wait at the end
of that particular construct

Q In Fortran the nowait clause is appended at the closing
part of the construct

Q In C, it is one of the clauses on the pragma

#pragma omp for nowait !'Somp do

{

} 'Somp end do nowait

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

A more elaborate example et

#pragma omp parallel if (n>limit) default (none) \
shared(n,a,b,c,x,y,z) private(f,i,scale) =

{

f =1.0: . Statement is executed
! by all threads

#pragma omp for nowait -

parallel loop

for (i=0; i<n; i++) (work is distributed)

z[i] = x[1] + y[i]; S
-~ S
#pragma omp for nowait -4 ‘_‘1
for (i=0; i<n; i++) parallel loop Q
a[i] = b[i] + c[i]; (work is distributed) g
-
#pragma omp barrier <¢— Synchronization

Statement is executed
scale = sum(a,0,n) + sum(z,0,n) + £; <" yailthreads

} /*-- End of parallel region --%*/ -

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP
., components of OpenMP e
Directives Runtime Environment
environment variables
¢ Parallel region ¢ Number of threads ¢ Number of threads
& Worksharing ¢ Thread ID ¢ Scheduling type
constructs]
o LYIELE 2T ¢ Dynamic thread
. adjustment .
¢ Tasking] adjustment
o ¢ Nested parallelism]
¢ Synchronization o Schedule ¢ Nested parallelism
¢ Data-sharing & Active levels ¢ Stacksize
attributes .,
¢ Thread limit ¢ Idle threads
¢ Nesting level ¢ Active levels
¢ Ancestor thread
] ¢ Thread limit
¢ Team size
¢ Wallclock timer
¢ Locking

ORACLE

RvdP/V1

An Overview of OpenMP

Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The Parallel Region N

31

A parallel region is a block of code executed by
multiple threads simultaneously

#pragma omp parallel [clause[[,] clause] ...]
{

"this code is executed in parallel"

} (implied barrier)

!Somp parallel [clause[[,] clause] ...]
"this code is executed in parallel"

'Somp end parallel (implied barrier)

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

OpenMP

" | Parallel Region - An Example/1 w

on OpenMP

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {

printf ("Hello World\n") ;

return (0) ;

V1

RvdP An Overview of OpenMP QP enMP

International Workshop

OpenMP

"% | Parallel Region - An Example/2 w

on OpenMP

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
#pragma omp parallel
{ printf ("Hello World\n");
} // End of parallel region

return (0) ;

V1

RvdP An Overview of OpenMP QP enMP

OpenMP
Overview

27

Parallel Region - An Example/3

International Workshop

IWOMP
QP

on OpenMP

V1

S ./a.

S ./a.
Hello
Hello
Hello
Hello

$

out

Hello World
Hello World
S export OMP NUM THREADS=4

out

World
World
World
World

$ cc -xopenmp -fast hello.c
$ export OMP NUM THREADS=2

RvdP

An Overview of OpenMP

OpenMP

Works!

IWOMP

The Worksharing Constructs N

32
The OpenMP worksharing constructs

#pragma omp for | #pragma omp sections | #pragma omp single
{ { {

} } }

'SOMP DO !SOMP SECTIONS 'SOMP SINGLE
1$SOMP END DO !SOMP END SECTIONS 'SOMP END SINGLE
s The work is distributed over the threads
 Must be enclosed in a parallel region
= Must be encountered by all threads in the team, or none at all
€

No implied barrier on entry; implied barrier on exit (unless
nowait is specif ed)

A work-sharing construct does not launch any new threads

2

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The Workshare construct NS

33

Fortran has a fourth worksharing construct:

! SOMP WORKSHARE

<array syntax>

1SOMP END WORKSHARE [NOWAIT]

Example:

| SOMP WORKSHARE
A(l:M) = A(1:M) + B(1:M)
!SOMP END WORKSHARE NOWAIT

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The omp for directive - Example o

#pragma omp parallel default(none)\
shared(n,a,b,c,d) private (i)

{

#pragma omp for nowait

for (i=0; i<n-1; i++)
b[i] = (a[i] + a[i+l1])/2;

#pragma omp for nowait

for (i=0; i<n; 1i++)
d[i] = 1.0/c[i];

} /*-- End of parallel region —--%*/
(implied barrier)

v

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The sections directive - Example e

#pragma omp parallel default (none)\
shared(n,a,b,c,d) private (i)

{

#pragma omp sections nowait

{

#pragma omp section

for (i=0; i<n-1; i++)
b[i] = (a[i] + a[i+l1l])/2;

#pragma omp section
for (1=0; i<n; i++)
d[i] = 1.0/c[i];

} /*-- End of sections --*/

} /*-- End of parallel region --*/

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

- IWOMP
.. overlap /O and Processing/1 S

Input Thread Processing Thread(s) Output Thread

Time
o s W =0

o WN=O

ORACLE

APV An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

Overlap I/0 and Processing/2 ks

#pragma omp parallel sections

{

#pragma omp section

{
for (int i=0; i<N; i++) {
(void) read input(i);
(void) signal read (i) ; InPUt Thread
}
}
#pragma omp section
{
for (int i=0; i<N; i++) {
(void) wait read(i); Processing Thread(s)
(void) process data(i);
(void) signal processed(i);
}
}

#pragma omp section

{
for (int i=0; i<N; i++) {
(void) wait processed(i) ;
(void) write output(i); OUtPUt Thread
}
}

} /*-- End of parallel sections --*/

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. ' - o
. Single processor region/1 1

This construct is ideally suited for I/O or initializations

Original Code

"declare A to be be shared”

#pragma omp parallel

May have to insert a /

barrier here

Parallel Version

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Single processor region/2 e

41
single processor
region
e
I
) time
. >
Threads wait
in the barrier
ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

IWOMP

The Single Directive 2

42

Only one thread in the team executes the code enclosed
#pragma omp single [private] [firstprivate] \
[copyprivate] [nowait]

{
<code-block>

}

'Somp single [private] [firstprivate]
<code-block>

'Somp end single [copyprivate] [nowait]

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Combined work-sharing constructs -+

43
#pragma omp parallel
#pragma omp parallel for

#pragma omp for for (....)

LG P Single PARALLEL loop
1Somp parallel
! Somp do !Somp parallel do
! Somp ena.ao !Somp end parallel do
1Somp end parallel
!Somp parallel Single WORKSHARE loop

!Somp workshare 1Somp parallel workshare

!$Somp end workshare !Somp end parallel workshare

#pragma omp parallel
#pragma omp sections

{ ...}

1Somp parallel
Somp sections

#pragma omp parallel sections

{ ...}
Single PARALLEL sections

J’L

!Somp parallel sections

,’

!Somp end sections !Somp end parallel sections

ISomp end parallel

ORACLE

An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

RvdP/V1

International Workshop

IWOMP

Orphaning e
. _ orphaned
fpragma omp parallel ‘{mld dowork () WOJ::.;SC*;?VZHQ
: 1 K
(void) dowork(); 'HLATE oM K0T e

{
}

}

+ The OpenMP specif cation does not restrict worksharing
and synchronization directives (omp for, omp single,
critical, barrier, etc.) to be within the lexical extent of a
parallel region. These directives can be orphaned

+ That is, they can appear outside the lexical extent of a
parallel region

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

More on orphaning S

void dowork ()

(void) dowork(); !'- Sequential FOR {
#pragma omp for
#pragma omp parallel for (i=0;....)
{ {
(void) dowork(); !'- Parallel FOR

} }

+ When an orphaned worksharing or synchronization directive is
encountered in the sequential part of the program (outside the
dynamic extent of any parallel region), it is executed by the
master thread only. In effect, the directive will be ignored

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

nnnnnnnn

OpenMP Runtime Routines

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

- - IWOMP
o OpenMP Runtime Functions/1 R

Name Functionality

omp_set_num_threads Set number of threads

omp_get num_threads Number of threads in team
omp_get_max_threads Max num of threads for parallel region
omp_get _thread num Get thread ID

omp_get _num_procs Maximum number of processors

omp_in_parallel Check whether in parallel region
omp_set_dynamic Activate dynamic thread adjustment
(but implementation is free to ignore this)
omp_get _dynamic Check for dynamic thread adjustment
omp_set _nested Activate nested parallelism
(but implementation is free to ignore this)
omp_get_nested Check for nested parallelism
omp_get wtime Returns wall clock time
omp_get _wtick Number of seconds between clock ticks

C/C++ : Needto include f le <omp.h>
Fortran : Add “use omp_lib” or include f le “omp_lib.h”

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. . IWOMP
., OpenMP Runtime Functions/2 b
Name Functionality
omp_set_schedule Set schedule (if “runtime” is used)
omp_get_schedule Returns the schedule in use
omp_get thread_limit Max number of threads for program

omp_set_max_active_levels Set number of active parallel regions
omp_get_max_active_levels Number of active parallel regions
omp_get _level Number of nested parallel regions
omp_get_active_level Number of nested active par. regions
omp_get_ancestor_thread _num Thread id of ancestor thread
omp_get _team_size (level) Size of the thread team at this level

C/C++ : Need to include file <omp.h>
Fortran : Add “use omp_lib” or include file “omp_lib.h”

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

IWOMP
J2

nnnnnnnn

57

OpenMP Environment Variables

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

. openMP Environment Variables e

OpenMP environment variable Default for Oracle Solaris Studio

OMP_NUM_THREADS n 1

OMP_SCHEDULE “schedule,[chunk]” static, “N/P”

OMP_DYNAMIC { TRUE | FALSE } TRUE

OMP_NESTED { TRUE | FALSE } FALSE

OMP_STACKSIZE size [B|K|M|G] 4 MB (32 bit) / 8 MB (64-bit)

OMP_WAIT_POLICY [ACTIVE | PASSIVE] PASSIVE

OMP_MAX_ACTIVE_LEVELS 4

OMP_THREAD_LIMIT 1024

Note:
The names are in uppercase, the values are case insensitive

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

on OpenMP

Using OpenMP

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Using OpenMP S

QO We have already seen many features of OpenMP

Q We will now cover

e Additional language constructs

e Features that may be useful or needed when running
an OpenMP application

Q The tasking concept is covered in separate section

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

About storage association o

Q Private variables are undef ned on entry and exit of the
parallel region

Q A private variable within a parallel region has no
storage association with the same variable outside of
the region

Q Use the f rst/last private clause to override this
behavior

Q We illustrate these concepts with an example

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

IWOMP

. I Mgt
- Example private variables

main ()

{
A = 10;

#pragma omp parallel

{
#pragma omp for private(i) firstprivate(A) lastprivate(B)...
for (i=0; i<n; i++)

{
é.;.A + i /*-- A undefined, unless declared
firstprivate --*/
}
C =B /*-- B undefined, unless declared

lastprivate --*/

} /*-- End of OpenMP parallel region --*/
}

Disclaimer: This code fragment is not very meaningful and only serves to
demonstrate the clauses

ORACLE

An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

RvdP/V1

- IWOMP
s The T rst/last private clauses 2

f rstprivate (list)

v All variables in the list are initialized with the
value the original object had before entering
the parallel construct

lastprivate (list)

v The thread that executes the sequentially last
iteration or section updates the value of the
objects in the list

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The default clause ENZS

69

default (none | shared | private | threadprivate) Fortran
default (none | shared) C/C++

none

v No implicit defaults; have to scope all variables explicitly
shared
v All variables are shared

v The default in absence of an explicit "default” clause
private
v All variables are private to the thread

v Includes common block data, unless THREADPRIVATE
f rstprivate

v All variables are private to the thread; pre-initialized

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

o The reduction clause - Example Bl
sum = 0.0
!Somp parallel de none) &
!Somp shared(n,x) private Variable SUM is a

!Somp do reduction (+:sum)
do 1 =1, n
sum = sum + x(1i)
end do
!Somp end do
!Somp end parallel
print *,sum

shared variable

« Care needs to be taken when updating shared variable SUM

« With the reduction clause, the OpenMP compiler generates
code such that a race condition is avoided

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. Intwp
. IWOMP
.. The reduction clause e
reduction ([operator | intrinsic]) : list) Fortran
reduction (operator : list) C/C++
v Reduction variable(s) must be shared variables
v A reduction is def ned as:
Ch;zck th _cllocs
Fortran C/C++ ordears
X = x operator expr X = x operator expr
X = expr operator x X = expr operator x
X = intrinsic (x, expr list) x++, ++x, x--, --x

X intrinsic (expr list, xX) x <binop> = expr

v Note that the value of a reduction variable is undef ned
from the moment the f rst thread reaches the clause till
the operation has completed

v The reduction can be hidden in a function call

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Fortran - Allocatable Arrays e

Q Fortran allocatable arrays whose status is
“currently allocated” are allowed to be specif ed as
private, lastprivate, f rstprivate, reduction, or copyprivate

integer, allocatable,dimension (:) :: A
integer i

allocate (A(n)) -

!Somp parallel private (A)
do 1 =1, n
A(i) = 1
end do

!Somp end parallel

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The schedule clause/1 aNZ

73

schedule (static | dynamic | guided | auto [, chunk])
schedule (runtime)

static [, chunk]

v Distribute iterations in blocks of size "chunk"” over the
threads in a round-robin fashion

v In absence of "chunk", each thread executes approx. N/P
chunks for a loop of length N and P threads

e Details are implementation def ned

v Under certain conditions, the assignment of iterations to
threads is the same across multiple loops in the same
parallel region

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The schedule clause/2 aNZ

74

Example static schedule
Loop of length 16, 4 threads:

Thread 0 1 2 3

no chunk* | 1-4 5-8 9-12 13-16

chunk = 2| 1-2 3-4 5-6 7-8
9-10 11-12 13-14 15-16

*) The precise distribution is implementation def ned

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The schedule clause/3 S\

dynamic [, chunk]

v Fixed portions of work; size is controlled by the value of
chunk

v When a thread F nishes, it starts on the next portion of
work

guided [, chunk]

v Same dynamic behavior as "dynamic", but size of the
portion of work decreases exponentially

auto

v The compiler (or runtime system) decides what is best
to use; choice could be implementation dependent

runtime

v Iteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

- The Experiment B
) T 500 iterations using 4 threads
2 guided, 5 IE—_G—H
1 I BEH

O R A
s —A++H++HHHHH—
o H—4++— 4+
o 4HH—HHH
HH—++—4—
— dynamic, 5 AR
[N
_static
(AR AR

0 50 100 150 200 250 300 350 400 450 500

lteration Number

ORACLE

RvdP/V1

Threa

o = N W O

An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

.. Nested Parallelism S
Master
Thread
3-way parallel * * Outer parallel region
9-way parallel * { { * * + { * Nested parallel region
3-way parallel
ypP { * Outer parallel region
Note: nesting level can
be arbitrarily deep

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Loop Collapse e

nnnnnnnn

0 Allows parallelization of perfectly nested loops without
using nested parallelism

Q collapse clause on for/do loop indicates how many loops
should be collapsed

O Compiler forms a single loop and then parallelizes this

!Somp parallel do collapse(2)
do i = il, iu, is
do j = jl. ju. js
do k = k1, ku, ks

end do
!Somp end parallel do

ORACLE

RvdP/V1

An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Works

IWOMP

Additional Directives/1 2

81

#pragma omp master
{<code-block>}

!Somp master
<code-block>
!Somp end master

#pragma omp critical [(name)]
{<code-block>}

1Somp critical [(name)]
<code-block>
!Somp end critical [(name)]

#pragma omp atomic

!Somp atomic

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Additional Directives/2 2

82

#pragma omp ordered
{<code-block>}

!Somp ordered
<code-block>
!Somp end ordered

#pragma omp flush [(list)]

1Somp flush [(list)]

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

. . IWOMP
.. 1he Master Directive B
Only the master thread executes the code block:
#pragma omp master
{<code-block>} There is no implied
barrier on entry or
| Somp master exit !

<code-block>
!Somp end master

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Critical Region/1 g

If sum is a shared variable, this loop can not run in parallel

84

for (i=0; i < n; i++){

We can use a critical region for this:

for (i=0; i < n; i++) {
,,,,, one at a time can proceed

sum += a[1i];

..... next in line, please
}

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Intwp

Critical Region/2 g

Q Useful to avoid a race condition, or to perform I/O (but
that still has random order)

Q Be aware that there is a cost associated with a critical
region

time

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

IWOMP

Critical and Atomic constructs e

Critical: All threads execute the code, but only one at a time:

86

#pragma omp critical [(name)]
{<code-block>}

There is no implied

'Somp critical [(name)] barrier on e,ntry or
<code-block> h
ISomp end critical [(name)]
Atomic: only the loads and store are atomic
#pragma omp atomic 'Somp atomic
<statement> <statement>
This is a Iightweight, SpGCial #prag-ma omp atomic
form of a critical section alindx[i]] += b[i];

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

More synchronization constructs =

The enclosed block of code is executed in the order in
which iterations would be executed sequentially:

#pragma omp ordered May introduce
{<code-block>} serialization
(could be expensive)

!Somp ordered
<code-block>

!Somp end ordered

Ensure that all threads in a team have a consistent view
of certain objects in memory:

#ipragma omp flush [(list)] In the absence of a
list, all visible
variables are f ushed

1Somp flush [(list)]

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

IWOMP
u] 0%
.. Implied f ush regions m

Q During a barrier region
Q At exit from worksharing regions, unless a nowait is present

Q At entry to and exit from parallel, critical, ordered and parallel
worksharing regions

Q During omp_set_lock and omp_unset_lock regions

Q During omp_test _lock, omp_set _nest lock, omp_unset
_hnest _lock and omp_test _nest _lock regions, if the region
causes the lock to be set or unset

Q Immediately before and after every task scheduling point

Q At entry to and exit from atomic regions, where the list
contains only the variable updated in the atomic construct

Q A fush region is not implied at the following locations:

e At entry to a worksharing region
e At entry to or exit from a master region

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Summary OpenMP S

161

a OpenMP provides for a small, but yet powerful,
programming model

Q It can be used on a shared memory system of any size

e This includes a single socket multicore system
a Compilers with OpenMP support are widely available

Q The tasking concept opens up opportunities to
parallelize a wider range of applications

Q Oracle Solaris Studio has extensive support for OpenMP
developers

ORACLE

RvdP/V1 An Overview of OpenMP Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Example: Serial Pl Program

static long num_steps = 100000;
double step;

void main ()

{ Inti; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
X = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

32

Example: A simple Parallel pi program

#include <omp.h> Promote scalar to an

static long num_steps = 100000; double step; array dimensioned by
#define NUM_THREADS 2 number of threads to

void main () avoid race condition.

{ int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
int i, id,nthrds; Only one thread should copy
double x: the number of threads to the
L ’ _ ' global value to make sure
id = omp_get_thread_num(); multiple threads writing to the
nthrds = omp_get_num_threads(); same address don’t conflict.
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) { ———

— (i+ * : is is a common
x=(i+0.5)'step; \ trick in SPMD
sum(id] += 4.0/(1.0+x™x); programs to create

} a cyclic distribution
} of loop iterations

for(i=0, pi=0.0;i<nthreads;i++)pi += sum([i] * step;

33

SPMD: Single Program Mulitple Data

* Run the same program on P processing elements where P
can be arbitrarily large.

» Use the rank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI| programs almost always use this pattern ... it is
probably the most commonly used pattern in the history of
parallel programming.

34

Results*

 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h>

static long num_steps = 100000, double step;
#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS]: threads 1st

TP N Sy e vy gt

step = 1.0/(double) num_steps; SPMD

omp_s=t num_threads(NUM_THREADS);
#pragma omp paraliel 1.86
1.03

i
1.08
0.97

inti, id.nthrds;

double x;

id =omp_get thread num();

nthrds = omp get num_threads();

i (id —0) nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
¥ = (i+0.5)"step;
sum[id] +=4.0/(1.0+x™x);

AW IN| -~

ki

for(i=0, pi=0.0;i<nthreads;i++)pi += sumli] * step;

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 35

Why such poor scaling? False sharing

* If independent data elements happen to sit on the same cache line, each
update will cause the cache lines to “slosh back and forth” between threads
... This is called “false sharing”.

HW thrd. O HW thrd. 1 HW thrd. 2 HW thrd. 3
1

L1 $ lines |

1

Core 0

| j |
| |
sum[1] | Sum[2] | Sum[3] LLLL Sum[0] | Sum[1] | Sum[3]

W

Shared last level cache and connection to I/0 and DRAM

* If you promote scalars to an array to support creation of an SPMD program,
the array elements are contiguous in memory and hence share cache lines
... Results in poor scalability.

» Solution: Pad arrays so elements you use are on distinct cache lines.

36

Example: eliminate False sharing by padding the sum array

#include <omp.h>
static long num_steps = 100000; double step;

#define PAD 8 /[assume 64 byte L1 cache line size

#define NUM_THREADS 2
void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS][PAD};

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ int 1, id,nthrds;
double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum(i][0] * step;

N

Pad the array
SO each sum
value is in a
different
cache line

37

Results*: pi program padded accumulator
 Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Exam ple: eliminate False sharing by padding the sum array

#include <omp.h=

static long num_steps = 100000; double step;

#idefine PAD 8 fl assume 64 byte L1 cache line size
#define NUM_THREADS 2

void main)
{ int i, nthreads; double pi, sum[NUM_THREADS]PAD}; threads 1 st 1 st

E R R et

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS); SPMD | SPMD

#pragma omp parallel padded

“{ 1.86 1.86

inti, id.nthrds:

T et oo oo oo o

double x;
id=omp_qget thread numi);

1.03 1.01

nthrds = omp_get _num_threads);
if (id ==0) nthreads = nthrds;

1.08 0.69

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
¥ = (i+0.5)"step;

AN -

0.97 0.53

sum [id][0] += 4.0/(1.0+x*%);
1

for(i=0, pi=0.0;i<nthreads:i++)pi += sum[i][0] * step;

h

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

38

nnnnnnnn

Getting OpenMP Up To Speed

Ruud van der Pas

Ny Senior Staff Engineer
IWOMP Oracle Solaris Studio <@>
W Oracle

Menlo Park, CA, USA

IWOMP 2010
CCS, University of Tsukuba

Tsukuba, Japan
June 14-16, 2010

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Outline e

Q The Myth
Q Deep Trouble
Q Get Real
Q The Wrapping

2

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

File Edit View History Bookmarks Tools Help

«- ¢ “A myth, in popular use, is something

Getting Started |

z-n-momn thaAt Is widely believed but false.” ,

*Phoeni¥x Mvyth
* Myth Nighclub

« Golf Myth
« Atlantis Myth

The Beauty

these academic fields, a Myth b
g the origins of the world or

Myth may refer to:

Mythology, mythography, or folkloristics.
myth (mythos) is a sacred story concerryg
how the world and the creatures in it JAme to have their present
form. The active beings in myths argfjenerally gods and heroes. _)
Myths often are said to take placedfefore recorded history begins. In # Indicates premium
saying that a myth is a sacred ative, what is meant is that a myth content, which is

is believed to be true by peopl o attach religious or spiritual available only to
significance to it. Use of the term by scholars does not imply that the subscribers.

\\R\%\r‘ﬁﬂm{ﬁ“mm|I|lﬂa|n|t||1ulelllul|l"flﬂl%'ﬁ""QH-.'H"!;ll't’Hn"l'ﬂ'dj@Hlullulnldlltlalmmmunnmmuumm
Qe R

%} iy A myth, in popular use, is something that is widely believed but false. " \<(<
””'ITITmn which is often pejorative, arose from labelin iy
storiee My e
spread to cover non-religious beliefs as well. Because of this usage,
many people take offense when the religious narratives they believe

to be true are called myths (see Religion and mythology for more
information). This usage is frequently confused with fiction, legend,
fairy tale, folklore, fable, and urbai

distinct meaning in academia. (SOUfCE.' WWW.reference. COM) .'.

Getting OUpenMF Up 10 Speed Tutonial IWOMP 2070 — CCS Un. of Isukuba, June 14, 2010

International Workshop

nnnnnnnn

The Myth
“OpenMP Does Not Scale”

ORACLE
— Un. of Tsukuba, June 14, 2010

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS f

International Workshop

nnnnnnnn

Hmmm What Does That
Really Mean ?

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Some Questions | Could Ask N

“Do you mean you wrote a parallel program, using OpenMP
and it doesn't perform?”

“l see. Did you make sure the program was fairly well
optimized in sequential mode?”

“Oh. You didn't. By the way, why do you expect the program
to scale?”

“Oh. You just think it should and you used all the cores.
Have you estimated the speed up using Amdahl's Law?”

“No, this law is not a new EU environmental regulation. It is
something else.”

“l understand. You can't know everything. Have you at least
used a tool to identify the most time consuming parts in
your program?”

ORACLE

RvdP/V1

Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Intwp

Some More Questions | Could Ask =&

“Oh. You didn't. You just parallelized all loops in the

program. Did you try to avoid parallelizing innermost loops
in a loop nest?”

“Oh. You didn't. Did you minimize the number of parallel
regions then?”

“Oh. You didn't. It just worked fine the way it was.

“Did you at least use the nowait clause to minimize the use
of barriers?”

“Oh. You've never heard of a barrier. Might be worth to read
up on.”

“Do all processors roughly perform the same amount of
work?”

“You don't know, but think it is okay. | hope you're right.”

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. Intwp

. 1 Don't Give Up That Easily 2
“Did you make optimal use of private data, or did you share
most of it?”

“Oh. You didn't. Sharing is just easier. | see.

“You seem to be using a cc-NUMA system. Did you take that
into account?”

“You've never heard of that either. How unfortunate. Could
there perhaps be any false sharing affecting performance?”

“Oh. Never heard of that either. May come handy to learn a
little more about both.”

“So, what did you do next to address the performance ?”

“Switched to MPI. Does that perform any better then?”
“Oh. You don't know. You're still debugging the code.”

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. Intwp
5 . IWOMP
, Going Into Pedantic Mode o

“While you're waiting for your MPI debug run to finish (are
you sure it doesn’t hang by the way), please allow me to talk
a little more about OpenMP and Performance.”

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

on OpenMP

Deep Trouble

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

OpenMP and Performance g

11
Q The transparency of OpenMP is a mixed blessing
e Makes things pretty easy

e May mask performance bottlenecks

Q In the ideal world, an OpenMP application just performs
well

Q Unfortunately, this is not the case

Q Two of the more obscure effects that can negatively
impact performance are cc-NUMA behavior and False
Sharing

Q Neither of these are restricted to OpenMP, but they are
important enough to cover in some detail here

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

on OpenMP

False Sharing

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

False Sharing e

13

A store into a shared cache line invalidates the other
copies of that line:

CPUs Caches Memory The system is not able to
distinguish between changes
within one individual line

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

False Sharing Red Flags s

14

¢ Be alert, when all of these three conditions are met:

e Shared data is modif ed by multiple processors

e Multiple threads operate on the same cache line(s)

e Update occurs simultaneously and very frequently
¢ Use local data where possible

¢ Shared read-only data does not lead to false sharing

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

nnnnnnnn

Considerations for cc-NUMA

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Processor

Local Access

(fast) Cache Coherent <«— Remote Access
(slower)

Interconnect

Main Issue: How To Distribute The Data ?

ORACLE

RvdPIV Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

About Data Distribution N2

Q Important aspect on a cc-NUMA system

17

e If not optimal - longer access times, memory hotspots
a OpenMP does not provide support for cc-NUMA
Q Placement comes from the Operating System

e This is therefore Operating System dependent

Q Solaris, Linux and Windows use “First Touch” to place
daita

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

About “First Touch” placement/1 e

18

a[o]

Processor Processor

a[§9]

Cache Coherent
Interconnect

for (1i=0; i<100; i++)
a[i] = 0;

First Touch
All array elements are in the memory of
the processor executing this thread

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/’2 =

a[o0]

Processor Processor

a[iQ]

Cache Coherent
Interconnect

#pragma omp parallel for num threads(2)

for (i=0; i<100; i++)
a[i] = 0;

First Touch
Both memories each have “their half” of
the array

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

on OpenMP

Get Real

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

on OpenMP

Block Matrix Update

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

. IWOMP
,, A 3D matrix update ke
do k = 2, n
do j =2, n
ISomp parallel do default(shared) private(i) &
!Somp schedule (static)
doi=1, m
x(i,j,k) = x(1i,j,k-1) + x(i,j-1,k) *scale
end do
!Somp end parallel do
end do
end do
0 The loops are correctly nested for K1 Data Dependency Graph
serial performance
Q Due to a data dependency on J and o e ?":
K, only the inner loop can be k-1 @
parallelized [N
Q This will cause the barrier to be L
executed (N-1) ? times ! 2

I j-1 3

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

The performance S

350 Scaling is very poor

Inner loop over | has (as to be expected)
been parallelized

300

250

200

150

100

Performance (Mf op/s)

50

0 10 20 30 40 50 60

Number of threads

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Performance Analyzer data S

Name . Excl. User Incl. Excl.
Using 10 threads CPU User CPU Wall
sec. % sec. sec.
<Total> 10.590 100.0 10.590 1.550
__mt EndOfTask_Barrier 5.740 54.2 5.740 0.240
__mt WaitForWork —> 3.860 36.4 3.860 0.
__mt MasterFunction_ 0.480 4.5 0.680 0.480
MAIN —~ 0.230 2.2 1.200 0.470
block 3d -- MP doall from line 14 [_$d1A14 == 3] 0.170 1.6 5.910 0.17 %=
block_3d L - T 0.040 0.4 6.460 0.040 »
memset Q * 0.030 0.3 0.030 0.080 ©
c © 0
. o2 3
Name Us’ng 20 threads T ® Excl. User Incl. Excl. "
Q CPU User CPU Wall o
) sec. % sec. sec. 5
<Total> 47.120 100.0 47.120 2.900 D
__mt EndOfTask Barrier 5 25.700 54.5 25.700 0.980 §
__mt WaitForWork 19.880 42.2 19.880 0. >
__mt MasterFunction_ 1.100 2.3 1.320 1.100 P_)..
MAIN 0.190 0.4 2.520 0.470
block 3d_ -- MP doall from line 14 [_$d1A14.block_3d_] 0.100 0.2 25.800 0.100 @
__mt _setup doJob_int 0.080 0.2 0.080 0.080
__mt_setup_ job 0.020 0.0 0.020 0.020
block_3d 0.010 0.0 27.020 0.010

Question: Why is __mt_WaitForWork so high in the prof le ?

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

The Analyzer Timeline overview B

25

File Yiew Timeline Selected FunctionflLoad-Object: mt EnddfTask_Barrier Help

@ Find | Text: E

< || 03 2 : E @l El Data for Current Timeline Selection
zac 4.0 - 4.5 5.0 55 Event Type: |filing Data
Ex 1 I ' : ' I ' : ' : ' : ' I ' : ' I ' : ' I ' : ' : . Leaf Function: | mt EndOofT
i I S D | rcceiems ece: e
1 LWP: |2
(B Thread: =z

CPU: | unknowmn)

Duration (m=2ec.). [10.000

Micro State: Usexr CFU

Call Stack for Selected Event

_ mt_EndfTask_Earrier_
block_2d_ -- MP doall from line 14 [_
_ mt_SlawveFunction_

_Iwp_start

__mt _EndOfTask Barrier

(4]

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

This is False Sharing at work ! =

26

!Somp parallel do default(shared) private(i) &
!Somp schedule(static)
doi=1, m
x(i,j,k) = x(i,3,k-1) + x(i,j-1,k)*scale
end do
!Somp end parallel do

P=1 P=2 P=4 P=8

A

False sharing increases as
< WVE increase the number of
threads

no sharing
n

-+
-+ > <+
I i

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Sanity Check: Setting M=75000* e

File Yiew Timeline Selected FunctionflLoad-Object: 14 [515mf doall0_F3Fblock_3d §l4fomp block _3d w15 _1 Help

@ Find | Text: E

40(0% || T E =Y | pata for Current Timeline Selection
zac 44? 44 5 44 G o 44 .8 g | Event Type: [filing Data

Ex 1 e — e —~ Leaf Function: | mt EndOfT
EE F : Timestamp (88c.). 44.825408

N THHHRTHEHRTHE R HHIRE LwP: 2
S i
= '

CPU: {unknown)

Duration (maec.): 10.000

(Bllllllllllllll I R IR R RN RN RN
Micro State: Uzexr CFU

Call Stack for Selected Event

_ mt_EndfTask_Earrigr_
block_2d_ - MP deall from line 14 [_:
_mt_SlaveFunction_

_bwp_start

[«]

4]

Only a very few barrier calls now

*) Increasing the length of the loop should decrease false sharing

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

28

Performance comparison =

Performance (Mf op/s)

700

600

500

400

300

200

100 :dﬁ,

0

10

20 30 40 50 60

Number of threads

For a higher value of M, the
program scales better

RvdP/V1

ORACLE

Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

- IWOMP
, Observation B
K 4 Q No data dependency on 'I
Q Therefore we can split the 3D
---------- o> @ matrix in larger blocks and
4 process these in parallel
__________ ,*’ __".
I i
............ :___.., :
1 . I
I : : PJ
I | |
' |
do k = 2, n
do Jj =2, n
do 1 =1, m
x(i,3,k) = x(1,3,k-1) + x(i,3-1,k) *scale
end do
end do
end do

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The Idea

nnnnnnnn

K O We need to distribute the M
iterations over the number
of processors

Q We do this by controlling
the start (IS) and end (IE)
value of the inner loop

J 9 Each thread will calculate
these values for it's portion
of the work

= 2, n
J =2, n
do 1 = 1is,
x(i,j,k
end do
end do
end do

ie
= x(i,j,k-1) + x(i,j-1,k) *scale

ORACLE

RvdP/V1

Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

The T rst implementation 2

use omp lib

nrem = mod (m,nthreads)
nchunk = (m-nrem)/nthreads

'Somp parallel default (none)é&

subroutine kernel (is,ie,m,n,x,scale)

do i = is, 1ie
x(i,j,k)=x(i,j,k-1)+x(i,j-1,k) *scale
end do
end do
end do

'Somp private (P,is,ie)

&

!Somp shared

(nrem,nchunk,m,n,x,scale)

P = omp get thread num()

if (P < nrem) then
is = 1 + P*(nchunk + 1)
ie = is + nchunk
else
is = 1 + P*nchunk+ nrem
ie = is + nchunk -1
end if

call kernel(is,ie,m,n,x,scale)

'Somp end parallel

RvdP/V1

Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Another Idea: Use OpenMP ! s

use omp lib

32

implicit none

integer :: is, ie, m, n
real (kind=8):: x(m,n,n), scale
integer 01, 3, k

ISomp parallel default(none) &
!Somp private(i,j,k) shared(m,n,scale,x)
do k =2, n
do j =2, n
ISomp do schedule(static)
doi=1, m
x(1i,j,k) = x(i,3,k-1) + x(i,j-1,k)*scale
end do
ISomp end do nowait
end do
end do
ISomp end parallel

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

” How this works on 2 threads B
Thread 0 Executes: Thread 1 Executes:
k=2 parallel region k=2
j=2 j=2
do i =1,m/2 . do i = m/2+1,m

x(i,2,2) = ... work sharing x(i,2,2) = ...
end do end do
k=2 parallel region k=2
j=3 j=3
do i =1,m/2 . do i = m/2+1,m
x(i,3,2) = ... work sharing x(i,3,2) = ...
end do end do

. «dbhis splits the operation in a way that is
similar to our manual implementation

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Performance N2

O We have set M=7500 N=20

e This problem size does not scale at all when we
explicitly parallelized the inner loop over 'I'

Q We have have tested 4 versions of this program

e Inner Loop Over 'I' - Our F rst OpenMP version

e AutoPar - The automatically parallelized version of
'kernel’

e OMP_Chunks - The manually parallelized version
with our explicit calculation of the chunks

e OMP_DO - The version with the OpenMP parallel
region and work-sharing DO

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

The performance (M=7,500) o

o OMP Chunks
@ |am OMP DO
s Ve
§__ 1500
3 }/ The auto-parallelizing
S | 1000 compiler does really well !
5 Ve
| .
QQ: 500 l%\ Innerl oop

0 =
0 10 20 30 40 50 60
Number of threads

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

ORACLE

Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

RvdP/V1

International Workshop

IWOMP

on OpenMP

Matrix Times Vector

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

The Sequential Source 2

37

for (i=0; i<m; i++) > |

{

a[i] = 0.0; —
for (j=0; j<n; J++)
a[i] += b[il[jl*c[j]1; |

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

. The OpenMP Source e

38

#pragma omp parallel for default(none) \
private(i,]j) shared(m,n,a,b,c)
for (i=0; i<m; i++) >

{

]
_> *

a[i] = 0.0; -
for (3j=0; j<n; jJ++) V-
al[i] += b[1][J]l*c[]]~ :

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

Performance - 2 Socket Nehalem R

35000
% 1 Thread
30000 == 2 Threads

V-4 Threads

=2~ 8 Threads
-~ 2
o 5000 %= 16 Threads
S
ke
< 20000
)
(&)
S 15000
= .
S Speed-up is ~1.6x
&, 10000 only

N
5000 \e® o
S s ‘
4
0 - ¢ agn®
0.1 1 10 100 1000 10000 100000 1000000
Memory Footprint (KByte)

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

A Two Socket Nehalem System S

Processor Number

0
8
> o 1
5 1§ e eS|
g - 2 2
= © 10
3
11
4
12
- o 5
-
ML g I
e - 3 6
3] o
2 |5 R st~ e
7
15

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Data Initialization N2

41

#pragma omp parallel default(none) \
shared(m,n,a,b,c) private(i, j)
{
#pragma omp for
for (j=0; j<n; Jj++)
c[j] = 1.0;

> |

#pragma omp for
for (i=0; i<m; i++) v
{ i
a[i] = -1957.0;
for (jJ=0; j<n; jJ++)
b[i[]]J] = 1;
} /*-- End of omp for --*/

} /*-- End of parallel region --*/

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

A WOME
., EXploit First Touch
35000
1 Thread
30000 -2 Threads
25000 V"4 Threads
2 -8 Threads
o
= 20000 =16 Threads
(]
(&)
S 15000
£
o
E’ 10000
5000
0 ams"®
0.1 1 10 100 1000 10000 100000 1000000
Memory Footprint (KByte)

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Summary Case Studies 2

Q There are several important basic aspects to consider
when it comes to writing an eff cient OpenMP program

Q Moreover, there are also obscure additional aspects:

e cc-NUMA
e False Sharing

Q Key problem is that most developers are not aware of
these rules and blaming OpenMP is all that easy

e In some cases it is a trade-off between ease of use
and performance

e OpenMP typically goes for the former, but

v With some extra effort can be made to scale well in
many cases

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

on OpenMP

The Wrapping

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

Wrapping Things Up 4

“While we're still waiting for your MPI debug run to finish, |
want to ask you whether you found my information useful.”

“Yes, it is overwhelming. | know.”

45

“And OpenMP is somewhat obscure in certain areas. | know

that as well.”
“l understand. You're not a Computer Scientist and just

need to get your scientific research done.”

“I agree this is not a good situation, but it is all about
Darwin, you know. I'm sorry, it is a tough world out there.”

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

IWOMP

It Never Ends N2

46

“Oh, your MPI job just finished! Great.”

“Your program does not write a file called ‘core’ and it
wasn't there when you started the program?”

“You wonder where such a file comes from? Let's get a big
and strong coffee first.”

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial INOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

International Workshop

nnnnnnnn

That's It
Thank You and Stay Tuned !

Ruud van der Pas
ruud.vanderpas @sun.com

ORACLE

RvdP/V1 Getting OpenMP Up To Speed Tutorial IWOMP 2010 — CCS Un. of Tsukuba, June 14, 2010

	OpenMP_Tutorial_IWOMP_2010_1_Welcome.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	OpenMP_Tutorial_IWOMP_2010_2_Basic_Concepts_Parallelization
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

	OpenMP_Tutorial_IWOMP_2010_3_Overview_OpenMP
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161

	OpenMP_Tutorial_IWOMP_2010_4_OpenMP_and_Performance
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

