

Make(file) + (Work)flow = Makeflow

 damien.francois@uclouvain.be Calcul Intensif et Stockage de Masse

Joint PTC - EuroCC Belgium workshop on Workflows, February 2022

Goal of this session:
Get an overview of the capabilities

 of
 and of its usage.

http://ccl.cse.nd.edu/software/makeflow/

About

http://ccl.cse.nd.edu/software/

“Makeflow is a workflow system for parallel and distributed
computing that uses a language very similar to Make. Using
Makeflow, you can write simple scripts that easily execute on
hundreds or thousands of machines.“

Part of a larger ecosystem: cctools

About

http://ccl.cse.nd.edu/software/

Topics covered:
● Installation
● Syntax
● Run, monitoring, etc.
● Interaction with the scheduler

Installation

http://ccl.cse.nd.edu/software/downloadfiles.php

Installation

Download archive from the website, then the usual
$ wget http://ccl.cse.nd.edu/software/files/cctools-6.0.16-source.tar.gz

$ tar zxpvf cctools-6.0.16-source.tar.gz
$ cd cctools-6.0.16-source
$./configure --prefix $HOME/cctools
$ make
$ make install
$ cd ~

$ echo “export PATH=$PATH:$HOME/cctools/bin” >> .bashrc

http://ccl.cse.nd.edu/software/files/cctools-6.0.16-source.tar.gz

https://easybuild.io

Installation

Or use Easybuild
$ eb cctools-7.0.22-GCCcore-8.3.0.eb

$ ml use.own cctools

Syntax

Syntax

Syntax

Makeflow file : files dependencies
Simple makeflow file to build an archive

GZ=module load gzip ; gzip -k -f

archive.tar.b.gz: archive.tar
$(GZ) --best -S.b.gz archive.tar

archive.tar.f.gz: archive.tar
$(GZ) --fast -S.f.gz archive.tar

archive.tar: directory/file1.txt directory
tar cvf archive.tar directory

directory directory/file1.txt:
mkdir -p directory ; touch directory/file1.txt

Rule 1

Rule 2

Rule 3

Comment

Rule 4

Variable definition

Syntax

Anatomy of a rule:

- Commands must be on a single line (`;`-separated)
- Commands prefixed with `LOCAL` are not submitted to the scheduler
- Just plain rules (less powerful than regular Makefiles)

output file(s): input file(s) or directory
[LOCAL] command(s) to generate output(s) from input(s)

Variables
Variables are scoped:
SOME_VARIABLE=original_value

target_1: source_1
 command_1

target_2: source_2
SOME_VARIABLE=local_value_for_2
 command_2

Environment variables can be set:
export PATH=/opt/bin/:${PATH}

export USER

Graph

Dependency graph:
$ makeflow_viz -D dot build_archive.makeflow \|
 dot -Tpng > build_archive.png

- easy way to check the correctness
- easy way to communicate about it

Graph

Dependency graph:
$ makeflow_viz -D dot build_archive.makeflow \|
 sed ‘s/module/gz/’ \|
 dot -Tpng > build_archive.png

- some manual corrections could be needed

Syntax check

You can check the file before running it
$ makeflow_analyze -k build_archive.makeflow
build_archive.makeflow: Syntax OK.

$ makeflow_analyze -O build_archive.makeflow
archive.tar.best.gz
directory/file1.txt
directory
archive.tar.fast.gz
archive.tar

Syntax check

List outputs

Running, monitoring

Run workflow
$ makeflow build_archive.makeflow

parsing build_archive.makeflow…
local resources: 24.000 cores, 95346 MB memory
max running local jobs: 24

checking build_archive.makeflow for consistency…
build_archive.makeflow has 4 rules.

starting workflow....

submitting job: mkdir -p directory ; touch
directory/file1.txt
submitted job 153166
job 153166 completed

[…]

Rule 4

Prolog

Run workflow
[…]

submitting job: tar cvzf archive.tar directory
submitted job 153169
directory/file1.txt
job 153169 completed

submitting job: module load gzip ;
 gzip -k --fast -S.fast.gz archive.tar
submitted job 153171
submitting job: module load gzip ;
 gzip -k --best -S.best.gz archive.tar
submitted job 153172
job 153171 completed
job 153172 completed

nothing left to do.

Rule 3

Rules 1 and 2
running in
parallel

Run workflow

- Makeflow is blocking: you must keep connection to
 submission host or use terminal multiplexer.

- Second run does nothing (like GNU Make)
$ makeflow build_archive.makeflow
parsing build_archive.makeflow...

[…]

starting workflow.…
nothing left to do.

Run workflow

Cleaning:
$ makeflow build_archive.makeflow --clean

parsing build_archive.makeflow...

[…]

cleaning filesystem…
deleted archive.tar.best.gz
deleted directory/file1.txt
deleted directory
deleted archive.tar.fast.gz
deleted archive.tar

nothing left to do.

Scheduler interaction

3 modes of operation

1. Makeflow submits jobs

2. Makeflow runs inside an allocation

3. Work queues

Makeflow runs on the login node

Run workflow

Many compatible schedulers
$ makeflow --help |& grep -- -T,

 -T,--batch-type=<type> Select batch system: local, wq,
condor, sge, pbs, lsf, torque, moab, mpi, slurm, chirp,
amazon, amazon-batch, lambda, mesos, k8s, dryrun

and scheduler types (HPC, Cloud, etc.).
The default is `local`. `dryrun` explains what would be done but does
not actually do it.

Run workflow
$ makeflow -T slurm build_archive.makeflow

local resources: 24.000 cores, 95346 MB memory
running remote jobs: 100
max running local jobs: 24

checking build_archive.makeflow for consistency…
build_archive.makeflow has 4 rules.

starting workflow....

submitting job: mkdir -p directory ; touch
directory/file1.txt
submitted job 70383663
job 70383663 completed

[…]

Rule 4

Prolog

Run workflow
[…]

submitting job: tar cvzf archive.tar directory
submitted job 70383664
directory/file1.txt
job 70383664 completed

submitting job: module load gzip ;
 gzip -k --fast -S.fast.gz archive.tar
submitted job 70383665
submitting job: module load gzip ;
 gzip -k --best -S.best.gz archive.tar
submitted job 70383666
job 70383665 completed
job 70383666 completed

nothing left to do.

Rule 3

Rules 1 and 2
submitted in
parallel

Run workflow

$ sacct -X -o jobid,jobname,state,start,elapsed
 JobID JobName State Start Elapsed
------------ ---------- ---------- ------------------- ----------
70383663 makeflow0 COMPLETED 2022-01-28T14:40:43 00:00:01
70383664 makeflow1 COMPLETED 2022-01-28T14:41:13 00:00:02
70383665 makeflow2 COMPLETED 2022-01-28T14:41:44 00:00:01
70383666 makeflow3 COMPLETED 2022-01-28T14:41:44 00:00:01

Run workflow

Graphical timeline:
$ makeflow_graph_log build_archive.makeflow.makeflowlog |\
> timeline.png

Scheduler options

Generic options:
Simple makeflow file to build an archive

CORES=4
MEMORY=1024 # MB
WALLTIME=3600 # s

GZ=module load gzip ; gzip -k

archive.tar.b.gz: archive.tar
$(GZ) --best -S.b.gz archive.best.tar

archive.tar.f.gz: archive.tar
CORES=8

$(GZ) --fast -S.f.gz archive.fast.tar

Rule 1

Rule 2

Comment
Variable definition

Scheduler options

Scheduler-specific options:
Simple makeflow file to build an archive

BATCH_OPTIONS=-c 4 --mem 1G --partition debug

GZ=module load gzip ; gzip -k

archive.tar.b.gz: archive.tar
$(GZ) --best -S.b.gz archive.best.tar

archive.tar.f.gz: archive.tar
$(GZ) --fast -S.f.gz archive.fast.tar

[…]

Rule 1

Rule 2

Comment
Variable definition

Scheduler options

Can also be passed in the command line
$ makeflow -B “-c 4 --mem 1G –partition debug” \|
 build_archive.makeflow

Makeflow copies files between nodes by default, unless
$ makeflow --shared-fs /home --shared-fs /scratch \
 build_archive.makeflow

3 modes of operation

1. Makeflow submits jobs

2. Makeflow runs inside an allocation

3. Work queues

Makeflow runs on the compute node

Scheduler options

Simply submit a job starting Makeflow
#! /bin/bash

#SBATCH -c 4
#SBATCH --mem 1G
#SBATCH --partition debug

makeflow -j $SLURM_NPROCS build_archive.makeflow

3 modes of operation

1. Makeflow submits jobs

2. Makeflow runs inside an allocation

3. Work queues

Workqueue (pilot jobs)

Makeflow does not submit jobs.

Rather it waits and listens for worker registration

Workers are started manually

https://cctools.readthedocs.io/en/latest/makeflow/#using-work-queue

Makeflow runs on a (cloud) server

Run workflow, blocked
$ makeflow -T wq build_archive.makeflow

parsing build_archive.makeflow…
local resources: 24.000 cores, 95346 MB memory,
max running remote jobs: 1000
max running local jobs: 24
checking build_archive.makeflow for consistency…
build_archive.makeflow has 4 rules.

starting workflow....

listening for workers on port 9123.

submitting job: mkdir -p directory ; touch
directory/file1.txt

submitted job 1

Rule 4

Prolog

Wq mode

Waiting

Start “worker” jobs
$ slurm_submit_workers frontend.cluster.hpc 9123 2

Creating worker submit scripts in dfr-workers…
Submitted batch job 70384127 on cluster hpc1
Submitted batch job 70384128 on cluster hpc1

$ squeue --me
CLUSTER: hpc1
 JOBID NAME ST TIME NODELIST(REASON)
 70384127 wqWorker PD 0:00 (Resources)
 70384128 wqWorker PD 0:00 (Resources)

Start 2 jobs and
point them to
Makeflow
instance

Unblocked, workflow running
$ makeflow -T wq build_archive.makeflow

[…]

submitted job 1
job 1 completed

submitting job: tar cvf archive.tar directory
submitted job 2
directory/
directory/file1.txt
job 2 completed

submitting job: module load gzip ; gzip -k -f --fast
-S.fast.gz archive.tar

[…]

nothing left to do.

Appeared as
soon as one
submitted job
started

Resources for “worker” jobs
$ slurm_submit_workers -p “-p debug” \
 frontend.cluster.hpc 9123 2

Creating worker submit scripts in dfr-workers…
Submitted batch job 70384131 on cluster hpc1
Submitted batch job 70384132 on cluster hpc1

$ SBATCH_PARTITION=debug slurm_submit_workers \
 frontend.cluster.hpc 9123 2

Creating worker submit scripts in dfr-workers…
Submitted batch job 70384133 on cluster hpc1
Submitted batch job 70384134 on cluster hpc1

Specify
scheduler
options with -p

Or through env
variables

Starting workers manually
$ work_queue_worker frontend.cluster.hpc 9123

work_queue_worker: creating workspace /tmp/worker-3000003-
153350

work_queue_worker: using 24 cores, 95346 MB memory, 41139 MB
disk, 0 gpus

connected to manager frontend.cluster.hpc via local address
12.34.56.78:39604

disconnected from manager frontend.cluster.hpc:9123

Worker advertise
resources

Connects and is
disconnected
when workflow is
finished.
Eventually times
out.

Workqueue (pilot jobs)

Makeflow does not submit jobs.

Rather it waits and listens for worker registration

Workers are started manually

→ enable resource pooling from multiple clusters

https://cctools.readthedocs.io/en/latest/makeflow/#using-work-queue

Workqueue (pilot jobs)

Makeflow does not submit jobs.

Rather it waits and listens for worker registration

Workers are started manually

→ enable resource pooling from multiple clusters

But then need to manage infrastructure, beware of data
transfers, be cautious of security, etc.

Topics covered:
● Installation
● Syntax
● Run, monitoring, etc.
● Interaction with the scheduler

Topics covered:
● Installation
● Syntax(es)
● Run, monitoring, etc.
● Interaction with the scheduler
● Nested workflows
● Singularity integration

Syntax again

Alternative syntax based on JSON:
Simple makeflow file to build an archive
{
 "define": {
 "GZ": "module load gzip ; gzip -k -f "
 },
 "rules": [
 {
 "command": GZ+"--best -S.best.gz archive.tar",
 "inputs": ["archive.tar"],
 "outputs": ["archive.tar.best.gz"]
 },{
 "command": GZ+"--fast -S.fast.gz archive.tar",
[…]

Rule 1

Comment
Variable definition

Rule 2

https://cctools.readthedocs.io/en/latest/makeflow/#jx-language

Syntax 2: jx

Syntax 2: jx

Alternative syntax based on JSON:

 - use the `--jx` option

 - machine-friendly; JSON libraries available in virtually all
 languages (Python, R, C, Julia, Fortran, etc.)

 - can be generated from Makeflow file
$ makeflow_viz -D json build_archive.makeflow

$ makeflow --jx build_archive.jx

Syntax 2: jx

Alternative syntax based on JSON with extensions:
{
 "define": {
 "GZ": "module load gzip ; gzip -k ",
 "RANGE": [1,2,3]
 },

 "rules": [
 {
 "command": GZ + template("--{P} -S.{P}.gz archive.tar"),
 "inputs": ["archive.tar"],
 "outputs": ["archive.tar." + P + ".gz"]
 } for P in ["best", "fast"],

[…]

Syntax 2: jx

Alternative syntax based on JSON with extensions
{
 "define": {
 "GZ": "module load gzip ; gzip -k ",
 "RANGE": [1,2,3]
 },

 "rules": [
[…]
 {
 "command": template("mkdir -p directory; touch
 directory/file{N}.txt"),
 "inputs": [],
 "outputs": ["directory/file" + N + ".txt"]
 } for N in RANGE,

Syntax 2: jx

Alternative syntax based on JSON with extensions

Nested workflows

Makeflow inside makeflow

The MAKEFLOW keyword designates another makeflow:
Example of nested workflow

archive.tar.best.gz archive.tar.fast.gz: build_archive.makeflow
MAKEFLOW build_archive.makeflow

comparison.txt: archive.tar.best.gz archive.tar.fast.gz
ls -ls *gz > comparison.txt

Makeflow inside makeflow

Nested makeflows do not submit additional jobs:
$ makeflow nested_workflow.makeflow
[…]
starting workflow
submitting job: makeflow -T local build_archive.makeflow -l
 build_archive.makeflow.0.makeflowlog
submitted job 267777
parsing build_archive.makeflow…
[…]
nothing left to do.
job 267777 completed
submitting job: ls -ls *gz > comparison.txt
submitted job 267808
job 267808 completed
nothing left to do.

Nested
workflow

Makeflow inside makeflow

Cleaning works recursively:
$ makeflow nested_workflow.makeflow --clean
[…]
parsing nested_workflow.makeflow…
cleaning sub-workflow build_archive.makeflow
makeflow -T local build_archive.makeflow -l
 build_archive.makeflow.0.makeflowlog –clean
[…]
cleaning filesystem…
[…]
nothing left to do.
done cleaning sub-workflow build_archive.makeflow
deleted comparison.txt
nothing left to do.

Nested
workflow

Makeflow inside makeflow

Also for JX syntax:
[…]
"rules":
 [{
 "workflow":"build_archive.jx",
 "inputs": ["build_archive.jx"],
 "outputs": ["archive.tar.best.gz", "archive.tar.fast.gz"]
 },{
 "command":"ls -ls *gz > comparison.txt",
 "inputs": ["archive.tar.best.gz", "archive.tar.fast.gz"],
 "outputs": ["comparison.txt"]
 }]
[…]

Singularity integration

Singularity in a slide

- Containers for HPC (“cluster-friendly docker”)

- Easy way to pack and deploy software
 with all dependencies

 Renamed/forked as “Apptainer”

Singularity in a slide

https://www.admin-magazine.com/HPC/Articles/Singularity-A-Container-for-HPC

Singularity; an OS inside a file

On a CentOS cluster:

With an Ubuntu image (lolcow.sif):

The `head` command is run inside the image file

$ head -1 /etc/*release
CentOS Linux release 7.9.2009 (Core)

$ singularity exec lolcow.sif head -2 /etc/*release
NAME="Ubuntu"
VERSION="16.04.5 LTS (Xenial Xerus)"

Makeflow + Singularity

Example makeflow:

By default, the `/etc/` directories are taken from the
image, and the working directory (`/home`) from the
cluster filesystem.

comparison.txt: archive.tar.best.gz archive.tar.fast.gz
head -3 /etc/*release ; ls -ls *gz > comparison.txt

Makeflow + Singularity

Example run:
$ makeflow --singularity ~/lolcow.sif singularity_example.makeflow

parsing singularity_example.makeflow…
[…]
submitting job: ./singularity.wrapper.sh_A49uad
submitted job 186446
NAME="Ubuntu"
VERSION="16.04.5 LTS (Xenial Xerus)"
ID=ubuntu
job 186446 completed
deleted ./singularity.wrapper.sh_A49uad
nothing left to do.

Makeflow + Singularity

Example run:

The files were created out of the image from files
outside the image using software in the image.

$ ls *tar*

archive.tar.fast.gz archive.tar.best.gz archive.tar

Makeflow + Singularity

Idea:

- install all needed software in the Singularity image

- submit all jobs “inside” the Singularity image “on”
 the compute node (possible on multiple clusters)

- Makeflow carries the image and the data along

Goal of this session:
Get an overview of the capabilities

 of
 and of its usage.

http://ccl.cse.nd.edu/software/makeflow/

Topics covered:
● Installation
● Syntax(es)
● Run, monitoring, etc.
● Interaction with the scheduler

Wget, configure, make, make install
Or Easybuild

Topics covered:
● Installation
● Syntax(es)
● Run, monitoring, etc.
● Interaction with the scheduler

Makefile (simplified) or
JSON with extension
Variables

Topics covered:
● Installation
● Syntax(es)
● Run, monitoring, etc.
● Interaction with the scheduler

Make-like behavior (do not rebuild results
that are already computed)
Blocking run
Automatic graphical representation
Singularity integration

Topics covered:
● Installation
● Syntax(es)
● Run, monitoring, etc.
● Interaction with the scheduler

Three modes of operation
 -T slurm | -T local | -T wq
Multi-cluster with work queues
Nested workflows

Make(file) + (Work)flow = Makeflow

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

