
Introduction to high-performance

computing

Frédéric Wautelet

CÉCI HPC training 2022

Outline

Accelerators Python

SLURM

OpenMP MPI

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Julia

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

How to use HPC infrastructure

Part I
1. Introduction to high-performance computing

2. Connecting with SSH from Windows and Linux on CECI clusters

3. Introduction to Linux and the command line

Part II
4. Choosing and activating software with system modules on CECI

clusters

5. Writing and editing text files with Vim

6. Preparing, submitting and managing jobs with Slurm

7. Using a Checkpoint/restart program to overcome time limits

How to use HPC infrastructure

Part I
1. Introduction to high-performance computing

2. Connecting with SSH from Windows and Linux on CECI clusters

3. Introduction to Linux and the command line

Part II
4. Choosing and activating software with system modules on CECI

clusters

5. Writing and editing text files with Vim

6. Preparing, submitting and managing jobs with Slurm

7. Using a Checkpoint/restart program to overcome time limits

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

How to program on HPC cluster

Part I: Introduction

1. Introduction to scientific software development and
deployment

2. Introduction to scripting and interpreted languages (Python, R,
Octave)

3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

4. Introduction to C programming language

5. Introduction to JULIA

6. Introduction to structured programming with Fortran

How to program on HPC cluster

Part I: Introduction

1. Introduction to scientific software development and
deployment

2. Introduction to scripting and interpreted languages (Python, R,
Octave)

3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

4. Introduction to C programming language

5. Introduction to JULIA

6. Introduction to structured programming with Fortran

How to program on HPC cluster

Part III: Python

7. Introduction to Python

8. Python as an Object Oriented Language

9. Efficient use of Python on the cluster

Part IV: Tools

10. Introduction to code versioning

11. Debugging and profiling scientific code, and commercial

optimized libraries

How to program on HPC cluster

Part III: Python

7. Introduction to Python

8. Python as an Object Oriented Language

9. Efficient use of Python on the cluster

Part IV: Tools

10. Introduction to code versioning

11. Debugging and profiling scientific code, and commercial

optimized libraries

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

Session 3

Part I

1. Introduction to parallel computing

2. Parallel programming with MPI

Part II

4. Parallel programming with OpenMP

5. Directive Based Parallel programming on GPU (OpenACC)

6. Parallel programming on GPU with CUDA

Session 3

Part I

1. Introduction to parallel computing

2. Parallel programming with MPI

Part II

4. Parallel programming with OpenMP

5. Directive Based Parallel programming on GPU (OpenACC)

6. Parallel programming on GPU with CUDA

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

Data Management

1. Introduction to data storage and access

2. Efficient data storage on CECI clusters

3. Open Science and Open Research Data / Data

Management Plan

4. Data versioning

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science (TBC)

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Introduction to HPC

High Performance Computing

 High-performance

computing (HPC)

uses

supercomputers and

computer clusters to

solve advanced

computation

problems.

Cray-1a (1977)

250 MFlops

Cluster

• A computer cluster is a group of linked
computers, working together closely so that in
many respects they form a single computer.

MareNostrum 4 (2017)

13.7 PFlops

Nodes and Cores

 Compute node

• Part of a cluster

• Equivalent to a high-end
workstation

 Core

• A processor (CPU)

• Multiple cores per
socket

AMD Ryzen 7000 Series 8-core “chiplet”

Dell PowerEdge R6415

Measure supercomputer power

 FLOPS

 floating-point operations per second

GigaFLOPS = one billion (109) floating-point operations per second

TeraFLOPS = one trillion (1012) floating-point operations per second

PetaFLOPS = one quadrillion (1015) floating-point operations per second

ExaFLOPS = one quintillion (1018) floating-point operations per second

TOP500

 Frontier

• Oak Ridge National Laboratory, Tennessee, USA

• TOP500 #1 (June 2022)

• 8,700,000 cores

• First Exascale supercomputer: 1.1 Eflop/s

• 21 MW

• US$600M

Exascale in Europe

• First European pre-Exascale system: Lumi

• CSC, Kajaani, Finland

• 1,100,000 cores, 150 Pflop/s, 120 PB storage

• #3 Top 500

• Belgian researchers eligible to apply for LUMI

resources

The European HPC ecosystem

National/regional centers

Local centers

Desktop computing

Number of systems

C
a
p
a
b
il
it
y

Tier-0

Tier-1

Tier-2

“Super-supercomputer”

PRACE

• Partnership for Advanced Computing in
Europe

 28 supercomputers in
26 countries

 Call for Proposals for
Project Access

Tier-0

• JUWELS Booster Module

• Forschungszentrum Juelich, Germany

• TOP500 #11 (June 2022)

• ~450,000 cores

• 44 Pflop/s

• 2 MW

Tier-1

• Tier-1

• National and/or regional supercomputers

• Allows the build-up of the necessary expertise and
knowledge required to use a tier-0 supercomputer

HPC in Belgium

 Vlaamse Gemeenschap/Vlaams Gewest

• Vlaams Supercomputer Centrum (VSC)

 Fédération Wallonie-Bruxelles

• Consortium des Équipements de Calcul Intensif (CÉCI)

Vlaamse Gemeenschap
Vlaams Gewest

 Tier-1: BrENIAC

• KU Leuven

• 27,000 cores

• 1 Pflop/s

• 400 kW

 Tier-2

• Clusters available in UA, VUB, UGent, KU Leuven and
UHasselt

Fédération Wallonie-Bruxelles

 Tier-1: Zenobe

• CENAERO

• 14,000 cores

• 300 Tflop/s

• 300 kW

• 5.5 M€

 Tier-2: CÉCI

• UCLouvain

• ULB

• ULiège

• UMONS

• UNamur

• 100+ Tflop/s

CÉCI

 Consortium des Équipements de Calcul Intensif

 Five universities

 Tier-2 HPC clusters

8776 cores total

Lemaitre 3
1984 cores

Skylake
Haswell

95 GB RAM

100Gb/s OPA

Q2 2018

NIC5
4672 cores

Epyc

1 TB RAM

100Gb/s IB

Q4 2020

Vega
2112 cores

Bulldozer

256 GB RAM

10Gb/s IB

Not available

Hercules 2
1528 cores
Sandybridge

Epyc

2 TB RAM

10 GbE

Q3 2019

Dragon 2
592 cores

Skylake
Tesla V100

384 GB RAM

10 GbE

Q1 2019

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

C
É

C
I

c
o
m

m
o
n
 s

to
ra

g
e

The CÉCI upgrade

Hmem

Lemaitre 2

Dragon 1

Hercules

Vega

NIC4

Zenobe

Lemaitre 3

Dragon 2

Hercules 2

NIC5

Lyra

Users

• 400+ CÉCI actives users

Fields of applications - CÉCI survey 2022

CÉCI distributed storage

UCLouvain ULiège ULB UNamur UMons

Gateways

Compute
nodes

Local
storage

 Distributed storage

solution

 Visible from all the

frontends and compute
nodes of all CÉCI clusters

 400 TB net

CÉCI distributed storage

• Common storage directories for all CÉCI clusters

• No need to transfer data between clusters with scp

• Common software repository

• Almost all software installed on any cluster are

available on all clusters

A cluster in a nutshell

Login node

• Submit jobs to batch system

• Manage your files

• Interactive work at small scale

• CÉCI login nodes

• hercules2.ptci.unamur.be

• dragon2.umons.ac.be

• lemaitre3.cism.ucl.ac.be

• nic5segi.ulg.ac.be

Operating system

 All CÉCI cluster are
running GNU/Linux

 Linux CentOS 7

• Red Hat Entreprise
Linux (RHEL)
compatible

Hercules 2 @ UNamur

 High memory jobs

• up to 2 TB

 Long duration jobs

• 15 days

 GPU

• 16 GPUs total

 No multi-node jobs

HPC @ UNamur

• Local support :

• Plateforme Technologique en Calcul Intensif (PTCI)

• Juan CABRERA

• Frédéric WAUTELET

• ptci-support@unamur.be

• Other HPC resources

• Hyades 2

• 288 cores total

• Up to 92 GB RAM per node

mailto:ptci-support@unamur.be

Dragon 2 @ UMons

 High performance

SMP nodes

 Long duration job

• 21 days

 GPU

• 4x NVIDIA Volta V100

 No multi-node jobs

HPC @ UMons

 Local support

• Sebastien.KOZLOWSKYJ@umons.ac.be

 Other HPC resources

• Biovia Materials Studio cluster

• 144 cores total

• 192 GB RAM per node

• HTC cluster

• 512 cores total

• Up to 256 GB RAM per node

mailto:Sebastien.KOZLOWSKYJ@umons.ac.be

Lemaitre 3 @ UCLouvain

 Massively parallel
jobs

• MPI

 I/O intensive jobs

 Short duration job

• 2 days

 Fast parallel
filesystem

• $GLOBALSCRATCH

HPC @ UCLouvain

• Local support

• Institut de Calcul Intensif et de Stockage
de Masse (egs-cism@listes.uclouvain.be)

Thomas Keutgen

(Head)

Damien François Olivier Mattelaer Bernard Van

Renterghem

Patrick Vranckx

CISM

mailto:egs-cism@listes.uclouvain.be

HPC @ UCLouvain

 Other resources

• Manneback HPC cluster

• Heterogeneous hardware

• +5700 cores

• 82 Tflop/s

• Mass storage

• 317 TB storage total

NIC5 @ ULiège

 Massively parallel
jobs

• MPI

 I/O intensive jobs

 Short duration jobs

• 2 days

 Fast parallel
filesystem

• $GLOBALSCRATCH

HPC @ ULiège

 Local support

• David.Colignon@uliege.be

 More info

• http://www.ulg.ac.be/nic4

mailto:David.Colignon@uliege.be
http://www.ulg.ac.be/nic4

Zenobe

• Massively parallel jobs

• MPI

• I/O intensive jobs

• Very short duration job

• 1 day

How to get a CÉCI account?

Go to http://www.ceci-hpc.be

Create/Manage Account

I want to… create an account

That’s it

 Click on the link sent to you by email.

 Fill-in the form and hit the “Submit” button

 Get your SSH private key from your email

 Configure your SSH client

 Connect and profit!

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Introduction to Linux and the
command line

SSH tools

 Windows

• PuTTY

• MobaXterm

• X-Win32

• OpenSSH on Windows (Windows 10)

 Linux/MacOS

• ssh

• scp

MobaXterm

 Easy to use

 No installation needed

 Command line interface

 Allow use of graphical application remotely

 Files transfer

Bash

 Shell is the interface between the user and the

Linux system

 Interprets and run commands

 For Linux, “Bash” is the default

 Shell scripts

Modules

 Modify user's environment

 Allow use of application with different versions

 Commands:

• $ module load/unload

• $ module list

• $ module available

• $ module spider

module available

How to use HPC infrastructure

Part I
1. Introduction to high-performance computing

2. Connecting with SSH from Windows and Linux on CECI clusters

3. Introduction to Linux and the command line

Part II
4. Choosing and activating software with system modules on CECI

clusters

5. Writing and editing text files with Vim

6. Preparing, submitting and managing jobs with Slurm

7. Using a Checkpoint/restart program to overcome time limits

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Batch jobs

Interactive or batch

 Interactive

• Short tasks

• Tasks that require frequent user interaction

• Graphically intensive tasks

 Batch

• Longer running processes

• Parallel processes

• Running large numbers of short jobs simultaneously

• Submitted to a job scheduler

Job scheduler

 Dispatch the batch jobs on compute nodes

 Parameters

• Memory

• Processor type

• Execution time

• Number of processors

• Software license tokens

 Slurm workload manager

Submit a batch job

 Connect to a login node

$ ssh hercules.ptci.unamur.be

Your

pc

Login

nodes
SSH connection

Job scripts

• Define resources to be reserved for your job:

• CPU time

• memory

• platform

• number of CPUs

• List instructions to be executed

• Bash shell script

Job scripts

• run.sh

#!/bin/bash

#SBATCH --job-name=hello

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=1

#SBATCH --ntasks-per-node=1

#SBATCH --time=1:00:00

#SBATCH --mem-per-cpu=1000

echo "Hello World!"

Submitting jobs

• Submit the job script

• Return the job id

• Job is running

• Job is finished

$ sbatch run.sh

Submitted batch job 3513668

$ squeue –u $USER

JOBID PARTITION NAME USER ST TIME NODES NODELIST

3513667 cpu hello fwautele R 0:12 1 n065

$ squeue –u $USER

$

Batch jobs

• Check output file

• Hello world!

$ ls –altr

…

-rw-rw-r-- 1 fwautele fwautele 13 Feb 26 11:16 slurm-3513668.out

$ cat slurm-3513668.out

Hello World!

Safeguards

• Slurm will automatically cancel jobs:

• When the memory reserved is exceeded

• When time is over

• Slurm constraint job in the number of core

requested

Delete a job

• scancel

• You can only delete your own jobs... (hopefully)

$ scancel 2243523

Monitoring jobs

• squeue

$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

2619747 cpu PYV3_FBI jquertin R 16:15:37 1 n076

2619745 cpu PYV3_DHB jquertin R 4-14:36:35 1 n020

2620638 cpu PYV3_FA_ jquertin R 43:33 1 n025

2618213 cpu PYV3_SDP jquertin R 9-19:40:43 1 n054

2620635 cpu PYV3-CC2 jquertin R 56:59 1 n020

2620632 cpu PYV3-CC2 jquertin R 59:22 1 n014

2620633 cpu PYV3-CC2 jquertin R 59:22 1 n014

2620630 cpu PYV3-CC2 jquertin R 59:52 1 n054

2620631 cpu PYV3-CC2 jquertin R 59:52 1 n064

2620627 cpu PYV3-CC2 jquertin R 1:01:24 1 n064

2620628 cpu PYV3-CC2 jquertin R 1:01:24 1 n064

2620622 cpu PYV3-CC2 jquertin R 1:18:17 1 n076

scriptgen

• Slurm Script Generation Wizard

http://www.ceci-hpc.be/scriptgen.html

http://www.ceci-hpc.be/scriptgen.html

Array jobs

• Run several instances of the same program with

different inputs

• Same allocation options

• Memory size

• Time limit

• …

--array options

SBATCH --array=0-31

SBATCH --array=1,3,5,7

SBATCH –array=1-7:2

SBATCH --array=1-15%4

Example

$ sbatch --array=0-3 run.sh

Submitted batch job 3512681

$ squeue -u fwautele

JOBID PARTITION NAME USER ST TIME NODES NODELIS

3512681_0 cpu run.sh fwautele R 0:12 1 n064

3512681_1 cpu run.sh fwautele R 0:12 1 n077

3512681_2 cpu run.sh fwautele R 0:12 1 n047

3512681_3 cpu run.sh fwautele R 0:12 1 n047

Job Dependencies

• A job can be dependent upon other job(s) status

• Dependency type:

• after

• after the specified jobs have started

• afterany

• after the specified jobs have terminated

• afternotok

• after the specified jobs have failed

• afterok

• after the specified jobs have terminated successfully

Checkpointing

• To overcome job time limitation

• Allow rollback-recovery for long-running

applications

• Enable job migration

Checkpoint

Application execution

Application restart from checkpoint

Failure

How to use HPC infrastructure

Part I
1. Introduction to high-performance computing

2. Connecting with SSH from Windows and Linux on CECI clusters

3. Introduction to Linux and the command line

Part II
4. Choosing and activating software with system modules on CECI

clusters

5. Writing and editing text files with Vim

6. Preparing, submitting and managing jobs with Slurm

7. Using a Checkpoint/restart program to overcome time limits

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Compilers and libraries

Objectives

 Building from source is preferred in an HPC

environment

 Allow users to install applications

• Link with numerical libraries

• Built with optimized compiler

 Special case

• Python

• R

• Perl

Compilers available

• GNU Compiler Collection (GCC)

• Intel Parallel Studio XE Cluster Edition

• The Portland Group PGI Accelerator CDK

GNU Compiler Collection (GCC)

• Open Source (GPL)

• Pretty good performance

• Compiler suite

• gcc: C compiler

• g++: C++ compiler

• gfortran: Fortran compiler

• module load foss

Intel Parallel Studio XE Cluster
Edition
• Commercial

• High performance compiler

• Compiler suite

• icc: C compiler

• icpc: C++ compiler

• ifort: Fortran compiler

• module load intel

PGI

• The Portland Group PGI Accelerator CDK

• Commercial (NVIDIA)

• Offloading on GPU

• Compiler suite
• pgcc: C compiler

• pgCC: C++ compiler

• pgf77: Fortran 77 compiler

• pgf90: Fortran 90 compiler

• module load PGI

Optimized libraries

• Do not reinvent the wheel

• Use multicore-tuned libraries.

• Use optimized libraries

• Boost

• FFTW

• GMP

• GSL

• HDF5

• …

Compiler Toolchains

 Compiler toolchain =

• Compiler

• + MPI library

• + BLAS/LAPACK library

• linear algebra routines

• + FFT library

• Fast Fourier Transforms

 Examples

• foss/2021b

• intel/2021b

Compiler Toolchains

 Open Source compiler toolchain

• foss/2021b

• GCC 11.2.0

• OpenMPI 4.1.1

• OpenBLAS 0.3.18 (including LAPACK)

• FlexiBLAS 3.0.4

• ScaLAPACK 2.1.0

• FFTW 3.3.10

Compiler Toolchains

 Intel Parallel Studio XE Cluster Edition 2021

• A toochain: intel/2021b

• icc 2021.4.0 (C compiler)

• icpc 2021.4.0 (C++ compiler)

• ifort 2021.4.0 (Fortran compiler)

• impi 2021.4.0 (Intel MPI)

• MKL 2021.4.0 (Math Kernel Library)

How to program on HPC cluster

Part I: Introduction

1. Introduction to scientific software development and
deployment

2. Introduction to scripting and interpreted languages (Python, R,
Octave)

3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

4. Introduction to C programming language

5. Introduction to JULIA

6. Introduction to structured programming with Fortran

Scripting languages

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Python

• Python 2 (deprecated)

• Python/2.7.16-GCCcore-8.3.0

• Python/2.7.18-GCCcore-9.3.0

• Python/2.7.18-GCCcore-10.2.0

• Python 3

• Python/3.8.6-GCCcore-10.2.0

• Python/3.9.5-GCCcore-10.3.0

• Python/3.9.6-GCCcore-11.2.0

Installing languages extensions

• Install with PIP

• PIP is the easiest and recommended way to install

Python packages

• Install from source

• If package not available on PIP

• Steps:

• Download the source and unpack it

• Change to the source directory

• python setup.py install --prefix=$HOME/.local

$ pip install --user example

$ python setup.py install --prefix=$HOME/.local

R

• Available versions

• R/4.0.0-foss-2020a

• R/4.0.3-foss-2020b

• R/4.1.0-foss-2021a

• Already bundle with a set of libraries
• Type “installed.packages()” to list them

• Additional libraries

• R-bundle-Bioconductor/3.11-foss-2020a-R-4.0.0

• R-bundle-Bioconductor/3.12-foss-2020b-R-4.0.3

• R-bundle-Bioconductor/3.13-foss-2021a-R-4.1.0.eb

Octave

• Interactive programming language

• Suited for numerical calculations

• Alternative to MATLAB

• Available version(s)

• Octave/5.1.0-foss-2019b

Julia

• General-purpose and high-level as Python

• Interactive as R

• But fast as C

• Available versions

• Julia/1.5.1-linux-x86_64

• Julia/1.6.7-linux-x86_64

• Julia/1.8.2-linux-x86_64

How to program on HPC cluster

Part I: Introduction

1. Introduction to scientific software development and
deployment

2. Introduction to scripting and interpreted languages (Python, R,
Octave)

3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

4. Introduction to C programming language

5. Introduction to JULIA

6. Introduction to structured programming with Fortran

How to program on HPC cluster

Learning How to program on HPC cluster (cont’d)

Part III: Python

7. Introduction to Python

8. Python as an Object Oriented Language

9. Efficient use of Python on the cluster

Part IV: Tools

10. Introduction to code versioning

11. Debugging and profiling scientific code, and commercial
optimized libraries

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Debugging and profiling

Profiling = finding hotspots

 Hotspot = Where in an application or system there

is a significant amount of activity

• Where: address in memory  line of source code

• Significant: activity that occurs infrequently probably does

not have much impact on system performance

• Activity: time spent or other internal processor event

Intel Vtune™ Amplifier

 What is the VTune™ Performance Analyzer?

• Helps you identify and characterize performance issues

by:

• Collecting performance data

• Organizing and displaying the data from system-wide down to

source code or processor instruction

• Identifying potential performance issues and suggesting

improvements

• Able to analyse serial, OpenMP and MPI application

$ ml load VTune

How to program on HPC cluster

Part III: Python

7. Introduction to Python

8. Python as an Object Oriented Language

9. Efficient use of Python on the cluster

Part IV: Tools

10. Introduction to code versioning

11. Debugging and profiling scientific code, and commercial

optimized libraries

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Checkpointing

Debugging and profiling

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Parallel computing

Job type

 Sequential job

• A single core on one node

 Threaded jobs

• Several cores on one node

• OpenMP

 MPI jobs

• Several cores on several nodes

• OpenMPI, MPICH, …

Going Parallel

Part I

1. Introduction to parallel computing

2. Parallel programming with MPI

Part II

4. Parallel programming with OpenMP

5. Directive Based Parallel programming on GPU (OpenACC)

6. Parallel programming on GPU with CUDA

Julia Accelerators/Co-processors Python for HPC

Slurm workload manager

Share memory (OpenMP) Message passing (MPI)

Compilers and libraries

Introduction to GNU/Linux and the command line

Introduction to HPC

Accelerators

Debugging and profiling

Checkpointing

Accelerators

• Hardware component with a specialized

microprocessor

• Mostly General Purpose Graphical Processing

Units (GPGPUs)

• Offer excellent floating point performance per

Watt

• Parts of computation “offloaded” to accelerator

GPGPUs resources at CÉCI

Cluster Model Cores Memory

Float

performance

(FP32)

Double

performance

(FP64)

Dragon2
4 x NVIDIA Tesla

V100
5120 16 GB 14 TFLOPS 7 TFLOPS

Hercules2

4 x NVIDIA RTX

A6000
10752 48 GB 40 TFLOPS 1 TFLOPS

8 x NVIDIA Tesla

A40
10752 48 GB 38 TFLOPS 600 GFLOPS

Going Parallel

Part I

1. Introduction to parallel computing

2. Parallel programming with MPI

Part II

4. Parallel programming with OpenMP

5. Directive Based Parallel programming on GPU (OpenACC)

6. Parallel programming on GPU with CUDA

Four levels of storage

 $CECIHOME

• 400 TB

• CÉCI distributed storage

 $HOME

• Programs and scripts

 $WORKDIR

• Input and output data

 $LOCALSCRATCH or
$GLOBALSCRATCH

• Job temporary data

S
p

e
e
d S

iz
e

Data storage

Scientific data: text or binary?

Scientific data

 What is scientific data?

• N‐dimensional arrays + metadata:

• Measurements at specific time, location, condition

• Physics: temperature, pressure

• Chemistry: reaction speed

• Biology: type (species, cell types, nucleotides)

• Economics: price

• …

Example

 Problem:

 Example:

• A data crushing software written in Fortran generate

results

• A post-processing application written in Python read this

results

Step 1 Step 2Input Output?

Solution 1: Text file

 Pro:

• Human readable

• Easy to write

• Platform independent (Endianness)

• Very flexible

• Easy to add a variable

 Cons:

• Sometime hard to parse

• No accuracy

• Performance problem

• Data size

Solution 2: NetCDF

 NetCDF (Network Common Data Form)

 For array oriented scientific data

 Available in many programming and scripting

languages

• C++, Java, Fortran, Perl, Python, R, …

 Emphasizes simplicity over power (unlike HDF5)

Solution 3: HDF5

 Open file format

 Can represent very complex data objects

• Like a files hierarchy

 No limit on the number or size of data objects

 Allow access time and storage space optimizations

 Many tools available

HDFView

https://www.hdfgroup.org/downloads/hdfview/

And also…

Data versioning Open Science

Data Management

1. Introduction to data storage and access

2. Efficient data storage on CECI clusters

3. Open Science and Open Research Data / Data

Management Plan

4. Data versioning

Green HPC

• Green500

• Rank supercomputers in terms of energy efficiency

• Performance per Watt (GFLOPS/W)

• https://www.top500.org/lists/green500

Frontier, Oak Ridge National Laboratory, USA

A green supercomputer: LUMI

• 200,000 cores

• Negative carbon footprint

• 100% renewable energy

• Wasted heat can be used by 20% of the houses

of the surrounding city

Carbon footprint of your computation

• http://www.green-algorithms.org

Thanks you for your attention
and happy computing

