

Introduction to high-performance computing

Frédéric Wautelet CÉCI HPC training 2022

Outline

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

2022 CÉCI training

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

How to use HPC infrastructure

Part I

- 1. Introduction to high-performance computing
- 2. Connecting with SSH from Windows and Linux on CECI clusters
- 3. Introduction to Linux and the command line

Part II

- 4. Choosing and activating software with system modules on CECI clusters
- 5. Writing and editing text files with Vim
- 6. Preparing, submitting and managing jobs with Slurm
- 7. Using a Checkpoint/restart program to overcome time limits

How to use HPC infrastructure

Part I

- 1. Introduction to high-performance computing
- 2. Connecting with SSH from Windows and Linux on CECI clusters
- 3. Introduction to Linux and the command line

Part II

- 4. Choosing and activating software with system modules on CECI clusters
- 5. Writing and editing text files with Vim
- 6. Preparing, submitting and managing jobs with Slurm
- 7. Using a Checkpoint/restart program to overcome time limits

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

Part I: Introduction

- 1. Introduction to scientific software development and deployment
- 2. Introduction to scripting and interpreted languages (Python, R, Octave)
- 3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

- 4. Introduction to C programming language
- 5. Introduction to JULIA
- 6. Introduction to structured programming with Fortran

Part I: Introduction

- 1. Introduction to scientific software development and deployment
- 2. Introduction to scripting and interpreted languages (Python, R, Octave)
- 3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

- 4. Introduction to C programming language
- 5. Introduction to JULIA
- 6. Introduction to structured programming with Fortran

Part III: Python

- 7. Introduction to Python
- 8. Python as an Object Oriented Language
- 9. Efficient use of Python on the cluster

Part IV: Tools

- 10. Introduction to code versioning
- 11. Debugging and profiling scientific code, and commercial optimized libraries

Part III: Python

- 7. Introduction to Python
- 8. Python as an Object Oriented Language
- 9. Efficient use of Python on the cluster

Part IV: Tools

- 10. Introduction to code versioning
- 11. Debugging and profiling scientific code, and commercial optimized libraries

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

Session 3

Part I

- 1. Introduction to parallel computing
- 2. Parallel programming with MPI

Part II

- 4. Parallel programming with OpenMP
- 5. Directive Based Parallel programming on GPU (OpenACC)
- 6. Parallel programming on GPU with CUDA

Session 3

Part I

- 1. Introduction to parallel computing
- 2. Parallel programming with MPI

Part II

- 4. Parallel programming with OpenMP
- 5. Directive Based Parallel programming on GPU (OpenACC)
- 6. Parallel programming on GPU with CUDA

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science

Data Management

- 1. Introduction to data storage and access
- 2. Efficient data storage on CECI clusters
- 3. Open Science and Open Research Data / Data Management Plan
- 4. Data versioning

2022 CÉCI training

Learning How to use HPC infrastructure

Learning How to program on HPC cluster

Going Parallel

Data Management

Data Science (TBC)

Introduction to HPC

High Performance Computing

 High-performance computing (HPC) uses supercomputers and computer clusters to solve advanced computation problems.

Cray-1a (1977) 250 MFlops

Cluster

 A computer cluster is a group of linked computers, working together closely so that in many respects they form a single computer.

MareNostrum 4 (2017) 13.7 PFlops

Nodes and Cores

- Compute node
 - Part of a cluster
 - Equivalent to a high-end workstation

Dell PowerEdge R6415

- Core
 - A processor (CPU)
 - Multiple cores per socket

AMD Ryzen 7000 Series 8-core "chiplet"

Measure supercomputer power

- FLOPS
- <u>floating-point</u> <u>operations</u> <u>per</u> <u>second</u>

GigaFLOPS = one billion (10^9) floating-point operations per second

TeraFLOPS = one trillion (10^{12}) floating-point operations per second

PetaFLOPS = one quadrillion (10^{15}) floating-point operations per second

ExaFLOPS = one quintillion (10^{18}) floating-point operations per second

TOP500

- Frontier
 - Oak Ridge National Laboratory, Tennessee, USA
 - TOP500 #1 (June 2022)
 - 8,700,000 cores
 - First Exascale supercomputer: 1.1 Eflop/s
 - 21 MW
 - US\$600M

Exascale in Europe

- First European pre-Exascale system: Lumi
 - CSC, Kajaani, Finland
 - 1,100,000 cores, 150 Pflop/s, 120 PB storage
 - #3 Top 500
- Belgian researchers eligible to apply for LUMI resources

The European HPC ecosystem

PRACE

 Partnership for Advanced Computing in Europe

 28 supercomputers in 26 countries

 Call for Proposals for Project Access

Tier-0

- JUWELS Booster Module
 - Forschungszentrum Juelich, Germany
 - TOP500 #11 (June 2022)
 - ~450,000 cores
 - 44 Pflop/s
 - 2 MW

Tier-1

- · Tier-1
 - National and/or regional supercomputers
 - Allows the build-up of the necessary expertise and knowledge required to use a tier-0 supercomputer

HPC in Belgium

- Vlaamse Gemeenschap/Vlaams Gewest
 - Vlaams Supercomputer Centrum (VSC)

- Fédération Wallonie-Bruxelles
 - Consortium des Équipements de Calcul Intensif (CÉCI)

Vlaamse Gemeenschap Vlaams Gewest

- Tier-1: BrENIAC
 - KU Leuven
 - 27,000 cores
 - 1 Pflop/s
 - 400 kW

- Tier-2
 - Clusters available in UA, VUB, UGent, KU Leuven and UHasselt

Fédération Wallonie-Bruxelles

- Tier-1: Zenobe
 - CENAERO
 - 14,000 cores
 - 300 Tflop/s
 - 300 kW
 - 5.5 M€
- Tier-2: CÉCI
 - UCLouvain
 - ULB
 - ULiège
 - UMONS
 - UNamur
 - 100+ Tflop/s

CÉCI

Consortium des Équipements de Calcul Intensif

Lemaitre 3 1984 cores Skylake Haswell	<u>NIC5</u> 4672 cores Epyc	<u>Vega</u> 2112 cores Bulldozer	Hercules 2 1528 cores Sandybridge Epyc	<u>Dragon 2</u> 592 cores Skylake Tesla V100
95 GB RAM	1 TB RAM	256 GB RAM	2 TB RAM	384 GB RAM
100Gb/s OPA	100Gb/s IB	10Gb/s IB	10 GbE	10 GbE
Q2 2018	Q4 2020	Not available	Q3 2019	Q1 2019

8776 cores total

The CÉCI upgrade

2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
								Hme	m			
								-				
						L	emaitre	2				
					ð						Drad	ion 1
					Ŋ							
					ō		Herc	ules				
					St		_		_	Vega		
					<u> </u>					vega		
					0					NIC4		
					5						70	nobo
					Ξ						Ze	nobe
					O						Lemai	itre 3
								_			_	
					U U						Drag	jon 2
					١Ш						Hercu	iles 2
					U U							
												NIC5
												Lyra

F

Users

Fields of applications - CÉCI survey 2022

CÉCI distributed storage

- Visible from all the frontends and compute nodes of all CÉCI clusters
- 400 TB net

CÉCI distributed storage CEC.E.C.I

- Common storage directories for all CÉCI clusters
- No need to transfer data between clusters with scp
- Common software repository
- Almost all software installed on any cluster are available on all clusters

A cluster in a nutshell

Login node

- Submit jobs to batch system
- Manage your files
- Interactive work at small scale
- CÉCI login nodes
 - hercules2.ptci.unamur.be
 - dragon2.umons.ac.be
 - lemaitre3.cism.ucl.ac.be
 - nic5segi.ulg.ac.be

Operating system

All CÉCI cluster are running GNU/Linux

- Linux CentOS 7
 - Red Hat Entreprise Linux (RHEL) compatible

Clusters at CÉCI

The aim of the Consortium is to provide researchers with access to powerful computing equipment (clusters). Clusters are installed and managed locally at the different sites of the universities taking part in the Consortium, but they are accessible by all researchers from the member universities. A single login/passphrase is used to access all clusters through SSH.

All of them run Linux, and use Slurm as the job manager. Basic parallel computing libraries (OpenMP, MPI, etc) are installed, as well as the optimized computing subroutines (e.g. BLAS, LAPACK, etc.). Common interpreters such as R, Octave, Python, etc. are also installed. See each cluster's FAQ for more details.

Cluster	Host	CPU type	CPU count*	RAM/node	Network	Filesystem**	Accelerator	Max time	Preferred jobs***
NIC5	ULiège	Rome 2.9 GHz	4672 (73 x 64)	256 GB1 TB	HDR Ib	BeeGFS 520 TB	None	2 days	III MPI
Hercules2	UNamur	Naples 2 GHz SandyBridge 2.20 GHz	1024 (30 x 32 + 2 x 64) 512 (32 x 16)	64 GB2 TB	10 GbE	NFS 20 TB	None	15 days	Iserial / ≡ SMP
Dragon2	UMons	SkyLake 2.60 GHz	592 (17 x 32 + 2 x 24)	192384 GB	10 GbE	RAID0 3.3 TB	4x Volta V100	21 days	Iserial / ≡ SMP
Lemaitre3	UCL	SkyLake 2.3 GHz Haswell 2.6 GHz	1872 (78 x 24) 112 (4 x 28)	95 GB 64 GB	Omnipath	BeeGFS 440 TB	None	2 days 6 hours	III MPI
Dragon1	UMons	SandyBridge 2.60 GHz	416 (26 x 16) 32 (2x16)	128 GB	GbE	RAID0 1.1 TB	4x <mark>Tesla</mark> C2075, 4x Tesla Kepler K20m	41 days	Iserial / ≡ SMP
NIC4*	ULiège	SandyBridge 2.0 GHz IvyBridge 2.0 GHz	2048 (120 x 16 + 8 x 16)	64 GB	QDR Ib	FHGFS 144 TB	None	3 days	III MPI
Vega*	ULB	Bulldozer 2.1 GHz	896 (14 x 64)	256 GB	QDR Ib	GPFS 70 TB	None	14 days	I serial / ≡ SMP / III MPI
Hercules*	UNamur	SandyBridge 2.20 GHz	512 (32 x 16)	64128 GB	GbE	NFS 20 TB	None	63 days	Iserial / ≡ SMP
Lemaitre2*	UCL	Westmere 2.53 GHz	1380 (115 x 12)	48 GB	QDR lb	Lustre 120 TB	3x Quadro Q4000	3 days	III MPI
Hmem*	UCL	MagnyCours 2.2 GHz	816 (17 x 48)	128512 GB	QDR lb	FHGFS 30 TB	None	15 days	≡ SMP

Hercules 2 @ UNamur

• High memory jobs

• up to 2 TB

- Long duration jobs
 - 15 days
- GPU
 - 16 GPUs total
- No multi-node jobs

HPC @ UNamur

- Local support :
 - Plateforme Technologique en Calcul Intensif (PTCI)
 - Juan CABRERA
 - Frédéric WAUTELET
 - ptci-support@unamur.be
- Other HPC resources
 - Hyades 2
 - 288 cores total
 - Up to 92 GB RAM per node

Dragon 2 @ UMons

- High performance
 SMP nodes
- Long duration job
 - 21 days
- GPU
 - 4x 🚳 nvidia. Volta V100
- No multi-node jobs

HPC @ UMons

- Local support
 - <u>Sebastien.KOZLOWSKYJ@umons.ac.be</u>
- Other HPC resources
 - Biovia Materials Studio cluster
 - 144 cores total
 - 192 GB RAM per node
 - HTC cluster
 - 512 cores total
 - Up to 256 GB RAM per node

Lemaitre 3 @ UCLouvain

- Massively parallel jobs
 - MPI
- I/O intensive jobs
- Short duration job
 - 2 days
- Fast parallel filesystem
 - \$GLOBALSCRATCH

HPC @ UCLouvain

CISM · Local support

 Institut de Calcul Intensif et de Stockage de Masse (<u>egs-cism@listes.uclouvain.be</u>)

Thomas Keutgen (Head)

Damien François

Olivier Mattelaer

Bernard Van Renterghem

Patrick Vranckx

HPC @ UCLouvain

- Other resources
 - Manneback HPC cluster
 - Heterogeneous hardware
 - +5700 cores
 - 82 Tflop/s
 - Mass storage
 - 317 TB storage total

NIC5 @ ULiège

- Massively parallel jobs
 - MPI
- I/O intensive jobs
- Short duration jobs
 - 2 days
- Fast parallel filesystem
 - \$GLOBALSCRATCH

HPC @ ULiège

- Local support
 - David.Colignon@uliege.be
- More info
 - http://www.ulg.ac.be/nic4

Zenobe

- Massively parallel jobs
 - MPI
- I/O intensive jobs
- Very short duration job
 - 1 day

How to get a CÉCI account?

About

fnrs

UMONS

UCLouveir

Quick links

· Sturm lutorial and quick start

Quick search

Photo Gallery

Search site with Google.

· Connecting from a Windows computer Connecting from a UNIX/Linux or MacOS computer

 Sium Frequently Asked Questions · Tier-1 Zenobe quickstart

Submission Script Generation Wizard

Go to http://www.ceci-hpc.be

I.D.J.

LIÈGE

CÉCI is the 'Consortium das Équipements de Calcul Intensif'; a consortium of high-performance computing centers of UCLouvain, ULB, ULiège, UMons, and UNamur. The CÉCI is

supported by the F.R.S-FNRS and the Walloon Region. Read

เก

E*COULD

Consortium des Équipements de Calcul Intensif

Save the date!

The next CÉCI scientific day will take place on Thursday April 25th in Brussels More Information soon!

Latest News

MONDAY, 04 JUNE 2018

LEMAITRE3 installed at UCL

Lemaitre3 is now operational and replaces Lemaitre2, which will be decommissioned this Summer. It has 80 nodes (SkyLake 2.3 GHz, 24CPUs, 96GB RAM) interconnected with the Intel OmniPath Architecture and more than half a petabyte of scratch space.

TUESDAY, DE MAY 2018

THURSDAY, 03 MAY 2018

Dragon1 cluster featured in a Belnet article

The Dragon1 CÉCI cluster is highlighted in an interview from Betnet to Chantal Poiret, professor in Information and Communication Technology at the University of Mons.

Follow this link to read the complete note

Survey on Big Data and Machine Learning needs

We are conducting a survey about current and future High Performance Data Analysis (HPDA) works & needs. covering BigData, DeepLearning, MachineLearning, AI & co. Research groups already active in those fields are our primary center of interest. However, those moving or intending to move into those fields are welcome to fil the survey too. Our objective is to identify concrete hardware and software requirements for the future CECI Vega2 cluster which will be oriented towards HTC (High Throughput Computing) and HPDA.

You are therefore cordially invited to follow this link and fill the survey.

MONDAY, 25 MARCH 2018

The next CÉCI scientific day will take place on May 4th in Namur. Details and registration here.

FRIDAY, 16 MARCH 2018

PRACE Call for Proposal

10th CECI Scientific Meeting

PRACE has issued the 17th call for Proposals. Deadline: 2nd May 2018, 10:00 CET; Stake: Single-year and Multiyear proposals starting 2nd October 2018; Resources: Joliol-Curie, Hazel Hen, JUWELS, Marconi, MareNostrum IV, Piz Daint and SuperMUC.

Let us know if you apply and participate!

© CÉCL MI Z

FR Contact

Create/Manage Account

CÉCI is the 'Consortium des Équipements de Calcul Intensif'; a consortium of high-performance computing centers of UCLouvain, ULB, ULiège, UMons, and UNamur. The CÉCI is supported by the F.R.S-FNRS and the Walloon Region. Read more,

Quick links

Save the date!

The next CÉCI scientific day will take place on Thursday April 25th in Brussels.

More information soon!

Latest News

MONDAY, 04 JUNE 2018

LEMAITRE3 installed at UCL

Lemaitre3 is now operational and replaces Lemaitre2, which will be decommissioned this Summer. It has 80 nodes (SkyLake 2.3 GHz, 24CPUs, 96GB RAM) interconnected with the Intel OmniPath Architecture and more than half a petabyte of scratch space.

TUESDAY, 08 MAY 2018

Dragon1 cluster featured in a Belnet article

The Dragon1 CÉCI cluster is highlighted in an interview from Belnet to Chantal Poiret, professor in Information and Communication Technology at the University of Mons.

I want to... create an account

CÉCI Login Management

I want to...

invite a guest or renew a guest account

create an account

My email address:		
frederic.wautelet	@unamur.be	<u> </u>
Send		

FAQ

That's it

- Click on the link sent to you by email.
- Fill-in the form and hit the "Submit" button
- Get your SSH private key from your email
- Configure your SSH client
- Connect and profit!

Introduction to Linux and the command line

Julia	Accelerators/Co-processors Python for HPC								
Slurm workload manager									
Share memory (OpenMP) Message passing (MPI)									
Checkpointing									
Debugging and profiling									
Compilers and libraries									
Introduction to GNU/Linux and the command line									
Introduction to HPC									

SSH tools

- Windows
 - PuTTY
 - MobaXterm
 - X-Win32
 - OpenSSH on Windows (Windows 10)
- Linux/MacOS
 - ssh
 - scp

MobaXterm

- Easy to use
- No installation needed
- Command line interface
- Allow use of graphical application remotely
- Files transfer

Bash

- Shell is the interface between the user and the Linux system
- Interprets and run commands
- For Linux, "Bash" is the default
- Shell scripts

Modules

- Modify user's environment
- Allow use of application with different versions
- Commands:
 - \$ module load/unload
 - \$ module list
 - \$ module available
 - \$ module spider

module available

Lmod

					Meta Mo	dules			
dot null	releases/e releases/2	lic-2017b 016a	releases/2016b releases/2017b	(<mark>s,L</mark> ,D)	releases/2018a releases/2018b	tis/201 use.own	8.01 (<mark>S,L</mark>)		
				TIS: Too	lchain Independe	nt Softwa	re (2018.01)		
EasyB	uild/3.5.1	MCR/R2013a	MCR/R2015a	MCR/R2017a			crystal/17-v1.0.1	julia/0.6.3	
Java/	1.8.0 31	MCR/R2013b	MCR/R2015b	MCR/R2017)		crystal/17-v1.0.2 ((D) julia/1.0.0	(D)
Java/	1.8.0 92	MCR/R2014a	MCR/R2016a	MCR/R2018a	1	(D)	freesurfer/6.0.0	xpress/xp850)
Java/	1.8.0_121	MCR/R2014b	MCR/R2016b	NCBI-BLAST	-database/201703	06	gurobi/gurobi800		
					Releases	(2017b) -			
ABINI	T/8.4.4-intel	-2017b		Python/2.7.	14-GCCcore-6.4.0	-bare			
ANTLR	/2.7.7-intel-	2017b		Python/3.6.	3-foss-2017b				
Boost	/1.65.1-foss-	2017b		Python/3.6.	3-intel-2017b		(D)		
Boost	/1.66.0-intel	-2017b	(D)	Ohull/2015.	2-foss-2017b				
CD0/1	.9.2-intel-20	17b		Qt/4.8.7-fc	ss-2017b				
CGAL/4	4.11-foss-201	7b-Python-2.	7.14	R/3.4.3-fos	s-2017b-X11-2017	1023			
CP2K/	5.1-intel-201	7b		Ruby/2.5.0-intel-2017b					
Doxyge	en/1.8.13-GCC	core-6.4.0		SCOTCH/6.0.4-foss-2017b					
Eigen,	/3.3.4			SCOTCH/6.0.	4-intel-2017b		(D)		
FFTW/	3.3.6-gompi-2	017b		SQLite/3.20	.1-GCCcore-6.4.6				
FFTW/	3.3.6-intel-2	017b	(D)	SWIG/3.0.12	-foss-2017b-Pyth	on-2.7.14			
FLUEN	T/14.0			SWIG/3.0.12	-foss-2017b-Pyth	on-3.6.3			
FLUEN	T/18.2		(D)	SWIG/3.0.12	-intel-2017b-Pyt	hon-3.6.3	(D)		
GCC/6	.4.0-2.28			ScaLAPACK/2	.0.2-gompi-2017b	-OpenBLAS	-0.2.20		
GDAL/	2.2.3-foss-20	17b-Python-2	.7.14	Singularity	/2.5.2-foss-2017	b			
GDAL/	2.2.3-foss-20	17b-Python-3	.6.3 (D)	UDUNITS/2.2	.25-intel-2017b				
GEOS/	3.6.2-foss-20	17b-Python-2	.7.14	UDUNITS/2.2	.26-intel-2017b		(D)		
GEOS/	3.6.2-foss-20	17b-Python-3	.6.3	X11/2017102	3-GCCcore-6.4.0				
GEOS/	3.6.2-intel-2	017b-Python-	3.6.3 (D)	YAXT/0.5.1-	intel-2017b				
GLib/	2.53.5-GCCcor	e-6.4.0		foss/2017b					
GMP/6	.1.2-GCCcore-	6.4.0		gc/7.6.0-GC	Ccore-6.4.0				
GSL/2	.4-GCCcore-6.	4.0		gflags/2.2.	1-intel-2017b				
Guile,	/1.8.8-GCCcor	e-6.4.0		gompi/2017b)				
HDF5/	1.8.19-intel-	2017b		grib_api/1.	24.0-intel-2017b				
ines 1-3	36								

How to use HPC infrastructure

Part I

- 1. Introduction to high-performance computing
- 2. Connecting with SSH from Windows and Linux on CECI clusters
- 3. Introduction to Linux and the command line

Part II

- 4. Choosing and activating software with system modules on CECI clusters
- 5. Writing and editing text files with Vim
- 6. Preparing, submitting and managing jobs with Slurm
- 7. Using a Checkpoint/restart program to overcome time limits

Batch jobs

Interactive or batch

- Interactive
 - Short tasks
 - Tasks that require frequent user interaction
 - Graphically intensive tasks
- Batch
 - Longer running processes
 - Parallel processes
 - Running large numbers of short jobs simultaneously
 - Submitted to a job scheduler

Job scheduler

- Dispatch the batch jobs on compute nodes
- Parameters
 - Memory
 - Processor type
 - Execution time
 - Number of processors
 - Software license tokens
- Slurm workload manager

Submit a batch job

Connect to a login node

\$ ssh hercules.ptci.unamur.be

Job scripts

- Define resources to be reserved for your job:
 - CPU time
 - memory
 - platform
 - number of CPUs
 - List instructions to be executed
- Bash shell script

Job scripts

• run.sh

#!/bin/bash #SBATCH --job-name=hello #SBATCH --ntasks=1 #SBATCH --cpus-per-task=1 #SBATCH --ntasks-per-node=1 #SBATCH --time=1:00:00 #SBATCH --mem-per-cpu=1000 echo "Hello World!"

Submitting jobs

• Submit the job script

\$ sbatch run.sh
Submitted batch job 3513668

• Return the job id

• Job is running

\$ squeue -u \$USER							
JOBID	PARTITION	NAME	USER	ST	TIME	NODES NODELIST	
3513667	cpu	hello	fwautele	R	0:12	1 n065	

• Job is finished

\$ squeue -u \$USER
\$

Batch jobs

Check output file

\$ ls -altr ... -rw-rw-r-- 1 fwautele fwautele 13 Feb 26 11:16 slurm-3513668.out

• Hello world!

\$ cat slurm-3513668.out
Hello World!

Safeguards

- Slurm will automatically cancel jobs:
 - When the memory reserved is exceeded
 - When time is over
- Slurm constraint job in the number of core requested

Delete a job

• scancel

\$ scancel 2243523

• You can only delete your own jobs... (hopefully)

Monitoring jobs

• squeue

\$ squeue								
	JOBID	PARTITION	NAME	USER	SΤ	TIME	NODES	NODELIST (REASON)
	2619747	cpu	PYV3_FBI	jquertin	R	16:15:37	1	n076
	2619745	cpu	PYV3_DHB	jquertin	R	4-14:36:35	1	n020
	2620638	cpu	pyv3_fa_	jquertin	R	43:33	1	n025
	2618213	cpu	PYV3_SDP	jquertin	R	9-19:40:43	1	n054
	2620635	cpu	PYV3-CC2	jquertin	R	56:59	1	n020
	2620632	cpu	PYV3-CC2	jquertin	R	59:22	1	n014
	2620633	cpu	PYV3-CC2	jquertin	R	59:22	1	n014
	2620630	cpu	PYV3-CC2	jquertin	R	59:52	1	n054
	2620631	cpu	PYV3-CC2	jquertin	R	59:52	1	n064
	2620627	cpu	PYV3-CC2	jquertin	R	1:01:24	1	n064
	2620628	cpu	PYV3-CC2	jquertin	R	1:01:24	1	n064
	2620622	сри	PYV3-CC2	jquertin	R	1:18:17	1	n076

scriptgen

Slurm Script Generation Wizard

http://www.ceci-hpc.be/scriptgen.html

Array jobs

- Run several instances of the same program with different inputs
- Same allocation options
 - Memory size
 - Time limit
 - ...

--array options

SBATCH --array=0-31

SBATCH --array=1,3,5,7

SBATCH -array=1-7:2

SBATCH --array=1-15%4

Example

<pre>\$ sbatcharray=0-3 run.sh Submitted batch job 3512681</pre>													
\$ squeue -u fwautele													
	JOBID 1	PARTITION	NAME	USER	ST	TIME	NODES NODELIS						
	3512681_0	cpu	run.sh	fwautele	R	0:12	1 n064						
	3512681 1	cpu	run.sh	fwautele	R	0:12	1 n077						
	3512681_2	cpu	run.sh	fwautele	R	0:12	1 n047						
	3512681_3	cpu	run.sh	fwautele	R	0:12	1 n047						

Job Dependencies

- A job can be dependent upon other job(s) status
- Dependency type:
 - after
 - after the specified jobs have started
 - afterany
 - after the specified jobs have terminated
 - afternotok
 - after the specified jobs have failed
 - afterok
 - after the specified jobs have terminated successfully

Checkpointing

- To overcome job time limitation
- Allow rollback-recovery for long-running applications
- Enable job migration

How to use HPC infrastructure

Part I

- 1. Introduction to high-performance computing
- 2. Connecting with SSH from Windows and Linux on CECI clusters
- 3. Introduction to Linux and the command line

Part II

- 4. Choosing and activating software with system modules on CECI clusters
- 5. Writing and editing text files with Vim
- 6. Preparing, submitting and managing jobs with Slurm
- 7. Using a Checkpoint/restart program to overcome time limits

Compilers and libraries

Objectives

- Building from source is preferred in an HPC environment
- Allow users to install applications
 - Link with numerical libraries
 - Built with optimized compiler
- Special case
 - Python
 - R
 - Perl

Compilers available

- GNU Compiler Collection (GCC)
- Intel Parallel Studio XE Cluster Edition
- The Portland Group PGI Accelerator CDK

GNU Compiler Collection (GCC)

- Open Source (GPL)
- Pretty good performance
- Compiler suite
 - gcc: C compiler
 - g++: C++ compiler
 - gfortran: Fortran compiler
- module load foss

Intel Parallel Studio XE Cluster Edition

- Commercial
- High performance compiler
- Compiler suite
 - icc: C compiler
 - icpc: C++ compiler
 - ifort: Fortran compiler
- module load intel

PGI

PGI CDK Cluster Development Kit Software Paralel Forma, C and C++ Compilers & Tools For Building and Programming A Linux Cluster

- The Portland Group PGI Accelerator CDK
- Commercial (NVIDIA)
- Offloading on GPU
- Compiler suite
 - pgcc: C compiler
 - pgCC: C++ compiler
 - pgf77: Fortran 77 compiler
 - pgf90: Fortran 90 compiler
- module load PGI

Optimized libraries

- Do not reinvent the wheel
- Use multicore-tuned libraries.
- Use optimized libraries
 - Boost
 - FFTW
 - GMP
 - GSL
 - HDF5
 - ...

Compiler Toolchains

- Compiler toolchain =
 - Compiler
 - + MPI library
 - + BLAS/LAPACK library
 - linear algebra routines
 - + FFT library
 - Fast Fourier Transforms
- Examples
 - foss/2021b
 - intel/2021b

Compiler Toolchains

- Open Source compiler toolchain
 - foss/2021b
 - GCC 11.2.0
 - OpenMPI 4.1.1
 - OpenBLAS 0.3.18 (including LAPACK)
 - FlexiBLAS 3.0.4
 - ScaLAPACK 2.1.0
 - FFTW 3.3.10

Compiler Toolchains

- Intel Parallel Studio XE Cluster Edition 2021
 - A toochain: intel/2021b
 - icc 2021.4.0 (C compiler)
 - icpc 2021.4.0 (C++ compiler)
 - ifort 2021.4.0 (Fortran compiler)
 - impi 2021.4.0 (Intel MPI)
 - MKL 2021.4.0 (Math Kernel Library)

How to program on HPC cluster

Part I: Introduction

- 1. Introduction to scientific software development and deployment
- 2. Introduction to scripting and interpreted languages (Python, R, Octave)
- 3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

- 4. Introduction to C programming language
- 5. Introduction to JULIA
- 6. Introduction to structured programming with Fortran

Scripting languages

Python

- Python 2 (deprecated)
 - Python/2.7.16-GCCcore-8.3.0
 - Python/2.7.18-GCCcore-9.3.0
 - Python/2.7.18-GCCcore-10.2.0
- Python 3
 - Python/3.8.6-GCCcore-10.2.0
 - Python/3.9.5-GCCcore-10.3.0
 - Python/3.9.6-GCCcore-11.2.0

Installing languages extensions

- Install with PIP
 - PIP is the easiest and recommended way to install Python packages

\$ pip install --user example

- Install from source
 - If package not available on PIP
 - Steps:
 - Download the source and unpack it
 - Change to the source directory
 - python setup.py install --prefix=\$HOME/.local

\$ python setup.py install --prefix=\$HOME/.local

R

- Available versions
 - R/4.0.0-foss-2020a
 - R/4.0.3-foss-2020b
 - R/4.1.0-foss-2021a
- Already bundle with a set of libraries
 - Type "installed.packages()" to list them
- Additional libraries
 - R-bundle-Bioconductor/3.11-foss-2020a-R-4.0.0
 - R-bundle-Bioconductor/3.12-foss-2020b-R-4.0.3
 - R-bundle-Bioconductor/3.13-foss-2021a-R-4.1.0.eb

Octave

- Interactive programming language
- Suited for numerical calculations
- Alternative to MATLAB
- Available version(s)
 - Octave/5.1.0-foss-2019b

Julia

- General-purpose and high-level as Python
- Interactive as R
- But fast as C
- Available versions
 - Julia/1.5.1-linux-x86_64
 - Julia/1.6.7-linux-x86_64
 - Julia/1.8.2-linux-x86_64

How to program on HPC cluster

Part I: Introduction

- 1. Introduction to scientific software development and deployment
- 2. Introduction to scripting and interpreted languages (Python, R, Octave)
- 3. How to speed up you code at low cost?

Part II: Fortran/C/Julia

- 4. Introduction to C programming language
- 5. Introduction to JULIA
- 6. Introduction to structured programming with Fortran

How to program on HPC cluster

Learning How to program on HPC cluster (cont'd)

Part III: Python

- 7. Introduction to Python
- 8. Python as an Object Oriented Language
- 9. Efficient use of Python on the cluster

Part IV: Tools

- 10. Introduction to code versioning
- 11. Debugging and profiling scientific code, and commercial optimized libraries

Debugging and profiling

Profiling = finding hotspots

- Hotspot = <u>Where</u> in an application or system there is a <u>significant</u> amount of <u>activity</u>
 - Where: address in memory \rightarrow line of source code
 - Significant: activity that occurs infrequently probably does not have much impact on system performance
 - Activity: time spent or other internal processor event

Intel Vtune[™] Amplifier

- What is the VTune[™] Performance Analyzer?
 - Helps you identify and characterize performance issues by:
 - Collecting performance data
 - Organizing and displaying the data from system-wide down to source code or processor instruction
 - Identifying potential performance issues and suggesting improvements
 - Able to analyse serial, OpenMP and MPI application

\$ ml load VTune

How to program on HPC cluster

Part III: Python

- 7. Introduction to Python
- 8. Python as an Object Oriented Language
- 9. Efficient use of Python on the cluster

Part IV: Tools

- 10. Introduction to code versioning
- 11. Debugging and profiling scientific code, and commercial optimized libraries

Parallel computing

Job type

- Sequential job
 - A single core on one node
- Threaded jobs
 - Several cores on one node
 - OpenMP
- MPI jobs
 - Several cores on several nodes
 - OpenMPI, MPICH, ...

Going Parallel

Part I

- 1. Introduction to parallel computing
- 2. Parallel programming with MPI

Part II

- 4. Parallel programming with OpenMP
- 5. Directive Based Parallel programming on GPU (OpenACC)
- 6. Parallel programming on GPU with CUDA

Accelerators

Accelerators

- Hardware component with a specialized microprocessor
- Mostly General Purpose Graphical Processing Units (GPGPUs)
- Offer excellent floating point performance per Watt
- Parts of computation "offloaded" to accelerator

GPGPUs resources at CÉCI

Cluster	Model	Cores	Memory	Float performance (FP32)	Double performance (FP64)
Dragon2	4 x NVIDIA Tesla V100	5120	16 GB	14 TFLOPS	<u>7 TFLOPS</u>
Hercules2	4 x NVIDIA RTX A6000	10752	48 GB	<u>40 TFLOPS</u>	1 TFLOPS
	8 x NVIDIA Tesla A40	10752	48 GB	<u>38 TFLOPS</u>	600 GFLOPS

Going Parallel

Part I

- 1. Introduction to parallel computing
- 2. Parallel programming with MPI

Part II

- 4. Parallel programming with OpenMP
- 5. Directive Based Parallel programming on GPU (OpenACC)
- 6. Parallel programming on GPU with CUDA

Four levels of storage

- \$CECIHOME
 - 400 TB
 - CÉCI distributed storage
- \$HOME
 - Programs and scripts
- \$WORKDIR
 - Input and output data
- \$LOCALSCRATCH or \$GLOBALSCRATCH
 - Job temporary data

Scientific data: text or binary?

Table 5

Simulation results for using full data, CRs only, and proposed method under four missing mechanisms

	Bias ^a		Variance ^b		$95\% \ \mathrm{CI^c}$	
Method	$(\hat{\beta}_W)$	(\hat{eta}_X)	(\hat{eta}_W)	(\hat{eta}_X)	$(\hat{\beta}_W)$	(\hat{eta}_X)
		(M.1) P(R)	= 1) = 0).66		
Full	0.01346	0.02229	0.04008	0.03685	0.955	0.950
Comp	0.03062	-0.003561	0.1149	0.06732	0.960	0.955
Impu	0.01431	0.021	0.04088	0.05169	0.980	0.975
	(1	$(\mathbf{A.2})$ logit P	R(R=1)	= 2Y		
Full	0.007908	-0.02116	0.03838	0.03624	0.975	0.925
Comp	0.01945	0.07096	0.107	0.06581	0.960	0.950
Impu	0.006966	0.01597	0.04227	0.05226	0.975	0.985
	(1	$(\mathbf{I.3})$ logit P	(R=1)	= 2X		
Full	0.007908	-0.02116	0.03838	0.03624	0.975	0.925
Comp	0.01225	0.0589	0.08856	0.06818	0.980	0.975
Impu	0.009563	-0.04699	0.03865	0.04923	0.985	0.970
	(M.	4) logit $P(I$	(2 = 1) =	X + Y		
Full	0.01346	0.02229	0.04008	0.03685	0.955	0.950
Comp	0.02404	1.613	0.1102	0.08202	0.955	0.580
Impu	0.01814	0.08289	0.0578	0.06075	0.955	0.970

^aBias = $(\hat{\beta} - \beta_0)/\beta_0$.

^bSimulation variance.

^cConfidence interval using jackknife standard error.

Scientific data

- What is scientific data?
 - N-dimensional arrays + metadata:
 - · Measurements at specific time, location, condition
 - Physics: temperature, pressure
 - Chemistry: reaction speed
 - Biology: type (species, cell types, nucleotides)
 - Economics: price
 - ...

Example

• Problem:

- Example:
 - A data crushing software written in Fortran generate results
 - A post-processing application written in Python read this results

Solution 1: Text file

- Pro:
 - Human readable
 - Easy to write
 - Platform independent (Endianness)
 - Very flexible
 - Easy to add a variable
- Cons:
 - Sometime hard to parse
 - No accuracy
 - Performance problem
 - Data size

Solution 2: NetCDF

- NetCDF (Network Common Data Form)
- For array oriented scientific data
- Available in many programming and scripting languages
 - C++, Java, Fortran, Perl, Python, R, ...
- Emphasizes simplicity over power (unlike HDF5)

Solution 3: HDF5

- Open file format
- Can represent very complex data objects
 - Like a files hierarchy
- No limit on the number or size of data objects
- Allow access time and storage space optimizations
- Many tools available

HDFView

17 I	HDFView 📃 🗖 🔿	<
<u>File Window Tools H</u> elp		
File/URL /home/fwautele/test	t.h5	-
<pre>test.h5 dataset1 dataset2 dataset2.1 dataset1.1 dataset1.1 dataset1.2.1 f group1.2 group2 dataset2.1</pre>	TableView - dataset1 - / - /home r² Table 0 1 2 0 1 2 0 1 0 1 0 1 2 0 0 1 0 1 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0.7749942 0.165297 1 0.0 1.0 0 0.7749942 0.165297 1 0.912218 0.3192058 2 0.329779 0.204235 3 0.7672147 0.069973	
dataset2 (14058) String, length = 4, 2 x 2 Number of attributes = 0		
Log Info Metadata		

https://www.hdfgroup.org/downloads/hdfview/

And also...

Data versioning

Data Management

- 1. Introduction to data storage and access
- 2. Efficient data storage on CECI clusters
- 3. Open Science and Open Research Data / Data Management Plan
- 4. Data versioning

Green HPC

- Green500
 - Rank supercomputers in terms of energy efficiency
 - Performance per Watt (GFLOPS/W)
 - https://www.top500.org/lists/green500

Frontier, Oak Ridge National Laboratory, USA

A green supercomputer: LUMI

- 200,000 cores
- Negative carbon footprint
- 100% renewable energy
- Wasted heat can be used by 20% of the houses of the surrounding city

Carbon footprint of your computation

http://www.green-algorithms.org

Thanks you for your attention and happy computing

