

Goal of this lecture

® Help you to decide if you want to use Python for
your project

® Give you the python syntax such that you can read
python code (and write simple one)

CECI training: python

What do we cover

® Basic data structure in Python

= Advanced one/class will be for the next lecture
® Control Flow
® Function
® My python favorite trick
® Modules/Packages

CECI training: python

What is Python

Python is object-oriented

Python is Interpreted (executed line by line)

= High portability

= Usually lower performance than compiled languages
Python is High(er)-level (than C or Fortran)

= Lots of high-level modules and functions

Python is dynamically-typed and strong-typed
= no need to explicitly define the type of a variable
= variable types are not automatically changed (and should not)

CECI training: python

Why Python?

Easy to learn
= Python code is usually easy to read, syntax tends to be short and simple
= The Python interpreter lets you try and play
= Help is included in the interpreter
= Huge community

Straight to the point
= Many tasks can be delegated to modules, so that you only focus on things
specific to your needs
e Fast
= A lot of Python modules are written in C, so the heavy lifting is fast
= Python itself can be made faster in many ways (there’s a session on that)

Hugely popular

CECI training: python 5 2022

Why Python?

(Tiobe Ranking 1

TIOBE Programming Community Index

Source: www.tiobe.com

30

2 5

Tuesday, Nov 1, 2022
b0 Python: 17.18%

-
\: N
10
i
. A J

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

== Python === (C Java C++ == C# == Visual Basic JavaScript == Assembly language == SQL PHP

® Python is currently #lI

® Strong rise since 2018

= Python for machine learning

CECI training: C 6 2022

Hello VWorld

>>> print("Hello World")l

® You can start a terminal

= python3

® \Write the line in a file

= python3 ./myfile.py

® Add a shebang to your file

#! /usr/bin/env python3

print("hello world")

= _/myfile.py
® JupyterHub

CECI training: python

Variable

Assignment:
number = 35
floating = 1.3e2
word = 'something’
other word = "anything"
sentence = 'sentence with " in it’

Note the absence of type specification (dynamic typing)

And you can do:

e help(str) : shows the help
e« dir(word) : lists available methods
e word : displays the content of the variable

CECI training: python 8 2022

Basic Python Data Structure

CECI training: python 9 2022

List

Python list : ordered set of heterogeneous objects
Assignment:

my list = [1, 3, "a", [2, 3]]

Access:

element = my list[2] (starts at 0)
last element = my list[-1]

Slicing:

short list = my list[1:3]
Note: slicing works like [a, b[. It does not include the right boundary. The example above
only includes elements 1 and 2.

Add element to a list:

short_list.append(10)

CECI training: python |0 2022

Comprehension list

Building lists:
[x*x for x in range(10)]

[6, 1, 4, 9, 16, 25, 36, 49, 64, 81]
Mapping and filtering:
beasts = ["cat","dog", "Python"]

print([beast.upper() for beast in beasts])
print([beast for beast in beasts if "o0" in beast])

['CAT', 'DOG', 'PYTHON']
['dog', 'Python']
Merging with zip:

toys = ["ball","frisbee","dead animal"]
my string ="the {} plays with a {}"

[my string.format(a, b) for a, b in zip(beasts, toys)]

['the cat plays with a ball’,
‘the dog plays with a frisbee',
'the Python plays with a dead animal']

CECI training: python |l

2022

Dictionary

Python dict: ordered heterogeneous list of (key -> value) pairs
Assignment:
my dict = { 1:"test", "2":4, 4:[1,2] }
Access:
my var = my dict["2"]
Key of the Dictionary need to be immutable element:
So not list/dictionaryy/...
Dict comprehensions work too:
In 1231 {x: x**2-1 for x in range(10)}

Jutizsre {6: -1, 1: 0, 2: 3, 3: 8, 4: 15, 5: 24, 6: 35, 7: 48, 8: 63, 9: 80}

CECI training: python 12 2022

Tuple

® |mmutable ordered element
= A=(1,21])

= (Can be used for dict

® Access as for list
= A[O] returns |

® Can not change the content

= AJO0] = 2 crashes (TypeError: 'tuple' object does not
support item assignment)

CECI training: python 13 2022

Set

® Unordered and unique element (all element are

immutable >>> a= {1,2,3}
>>> d

i1, 2, 3}

® Order are not preserve

= (Can change from one run to the next

® (Can add element

>>> a = {(1-4)**2 for 1 in range(10)}
>>> a.add(36)
>>> d

{0, 1, 4, 36, 9, 16, 25}

® Comprehension set

>>> {(1-4)**2 for 1 in range(10)}
{0, 1, 4, 9, 16, 25}

CECI training: python | 4 2022

Files

Python offers a nicer way to read a file line by line:

In [24]: with open("houses.csv") as f:
for line in f:
print(line)

Explanation:

e the with keyword starts a context manager: it deals with opening the file and
executes the block only if it succeeds, then closes the file.
e file descriptors are iterable (line by line)

You can also read the full file with

text = f.read()
all_lines = f.readlines()

CECI training: python |5 2022

Function and Flow

CECI training: python |6 2022

If statement

An If block:

test = 0
if test > 0:
print("it is bigger than zero")
elif test < 0:
print("it is below zero")
else:
print("it is zero")

Notes:
e Control flow statements are followed by colons

e Block limits are defined by indentation (4 spaces by convention)
e Conditionals can use the and, or and not keywords

CECI training: python |7 2022

For loop

The most common loop in python:

In [31% animals = ["dog", "python", “cat"]
for animal in animals:
if len(animal) > 3:

print (animal, ": that's a long animal !")
else:
print(animal)
dog
python : that's a long animal !
cat
Notes:

e the syntaxis for <variable> in <iterable thing>:

CECI training: python |18

2022

More on for loop

What if | need the index ?

410 animals = ["dog", "cat","T-rex"]
for index, animal in enumerate(animals):
print("animal {} is {}".format(index,animal))

animal 0 1is dog
animal 1 is cat
animal 2 is T-rex

What about dictionaries ?
A+ my dict = {"first": "Monday", "second": "Tuesday", "third": "Wednesday"}

for key, value in my dict.items():
print("the {} day is {}".format(key,value))

the first day is Monday
the second day is Tuesday
the third day 1s Wednesday

(More on string formatting very soon)

CECI training: python 19 2022

Functions

def my function(arg 1, arg 2=0, arg 3=0):
print ("argl:", arg 1, ", arg 2:", arg 2, ", arg 3:", arg 3)
return str(arg 1)+" "+str(arg 2)+" "+str(arg 3)

my output = my function("a string",arg 3=7)
print("my output:", my output)

Notes:

e function keyword is def

e functions can have a return value, given after the return keyword

e arguments can have default values

e arguments with default values should always come after the ones without
 when called, arguments can be given by position or name

e named arguments should always come after positional arguments

CECI training: python 20 2022

Function/packing

Bundle function arguments into lists or dictionaries:

my_liSt = [lldogll’llcatll]
my fun(*my list) # equivalent to 'my fun("dog", "cat")'

my dict = {"animal":"dog", "toy":"bone"}
my fun(**my dict) # equivalent to my fun(animal="dog", toy="bone")

It allows to create functions with unknown number of arguments (like print):

0 LL71 def my fun(*args, **kwargs):

print("args:", args)
print("kwargs:", kwargs)

my fun("pos argl", 34, named arg="named")

args: ('pos argl', 34)
kwargs: {'named arg': 'named'}

Here args is an unmutable list (tuple) and kwargs is a dictionary.

CECI training: python pA 2022

String Formating

CECI training: python 22 2022

String manipulation

IH lrj my_string — "Hello, "+ "World"
print(my string)

Hello, World

Join from a list:;

In 18): my list = ["cat","dog","python"]
my string = " + ".join(my_ list)
print(my string)

cat + dog + python
Stripping and Splitting:

In [9]: my sentence = " cats like mice \n ".strip()
my sentence = my sentence.split() #it is now a list !
print(my sentence)

['cats', 'like', 'mice']

CECI training: python

Templating:

In 110}t my string = "the {} is {}"
out = my string.format("cat", "happy")
print(out)

the cat 1is happy

Better templating:

In [11]: my string = "the {animal} is {status}, really {status}"

out = my string.format(animal="cat", status="happy")
print(out)

the cat is happy, really happy
The python way, with dicts:

my dict = {"animal":"cat", "status":"happy"}

out = my string.format(**my dict) #dict argument unpacking
print(out)

the cat 1is happy, really happy

CECI training: python 24 2022

Strings, final notes
You can specify additional options (alignment, number format)

print("this is a {:730} string in a 30 spaces block".format('centered'))
print("this is a {:>30} string in a 30 spaces block".format('right aligned'))
print("this is a {:<30} string in a 30 spaces block".format('left aligned'))

this 1is a centered string in a 30 spaces block
this is a right aligned string in a 30 spaces block
this is a left aligned string in a 30 spaces block

print("this number is printed normally: {}".format(3.141592653589))
print("this number is limited to 2 decimal places: {:.2f}".format(3.141592653589))
print("this number is forced to 6 characters: {:06.2f}".format(3.141592653589))

this number is printed normally: 3.141592653589
this number is limited to 2 decimal places: 3.14
this number is forced to 6 characters: 003.14

The legacy syntax for string formatting is

"this way of formatting %s is %i years old" % ("strings", 100)

You'll probably see it a lot if you read older codes.

CECI training: python 25 2022

Now, you know Python!
Let me present some cool stuff!

CECI training: python

Favorite features |

Simple way to search strings:

In [25]: my string = "The cat plays with a ball"
if "cat" in my string:
print("found")
found
this works on lists too:
In 261+ my st =[1,1,2,3,5,8,13,21]

if 8 in my list:
print("found")

found

and on dictionary keys:

In [27]: my dict = {"cat":"ball", "dog":"bone"}
if "python" in my dict:
print("found")

CECI training: python

Favorite Features 2

e Everything is True or False:

In [28]: my_list = []
if my list:
print("Not empty")

my string = ""
if my string:
print(“Not empty")

In general, empty iterables are False, non-empty are True

e The useful and very readable ternary operator:

my var = "dog" if test > 15 else "cat"
print(my var)

cat

CECI training: python

Favorite Features 3

Multiple assignment works as expected:

dog cat

You can use it to make functions that return multiple values:

In 132]: gef my function():
return "cat", "dog"
var_a, var b = my function()
print(var_a, var b)

cat dog

CECI training: python 29 2022

Favorite Features 4

Sort and reverse lists:

In 13317 animals = ["dog", "cat", "python"]

for animal in reversed(animals):
print(animal, end=" ")

print(“\n---")

for animal in sorted(animals):
print(animal, end=" ")

python cat dog

cat dog python

note: sorted takes an optional "key" argument to tell it how to sort.

quick checks on lists:

In 13417 1ist = ["cat", "dog", 0, 6]
print(any(list)) # if at least one element is "True"
print(all(list)) # if all elements are "True"

True
False

CECI training: python

Python has “funny” behaviour

CECI training: python 31 2022

All Python variables are references a.k.a labels to objects.

When you do:

[1, 2, 3]
a

d
b
then a and b are both references for the same in-memory object (the [1,2,3] list). So
If you do:

In [35]: 3=11, 2, 33
b =a

al[l] =5

print(b)

[1, 5, 3]
then you have changed the object labelled by both a and b !

CECI training: python

Python variables

Be cautious though: assignment (using =) creates a new label and replaces any existing
label with that name:

[1, 2]

a

= [3, 4]

rint("a =", a, "and b =", b)

a
b
a
P

a=1[3, 4] and b = [1, 2]

Thisdoes notmake b = [3, 4], asthe b labelis still attachedto [1, 2] .Itonly
creates a new label a attachedto [3, 4].

CECI training: python 33 2022

Python variables: pitfalls

The combination of this and the local scope of variables in functions can lead to unintuitive
behaviours:

def my func(mlist):
mlist[0] = 3

my list = [0, 1, 2]

my func(my list)
print(my list)

[3, 1, 2]

modifies the input parameter as expected. However:

def my func(mlist):
mlist = mlist + [3]

my func(my list)
print(my list)

[3, 1, 2]

this assignment defines a local my list variable which overrides the reference in the
scope of the function: it has no effect onthe my list argument.

CECI training: python

Non immutable default value

® T[he default value is not reset after each function
call

def test(i, value=[]):

value.append(1i)
print(value)

test(1)
test(2)

[1]
[1, 2]

® Rather use:

def test(i, value=None):
if not value:
value = []
value.append(1i)
print(value)
test(1)
test(2)

v/ 0.2s

[1]
[2]

CECI training: python

COOL but | need ...

Random number
Parser (like csy, ini file,...)
Iterators,
Efficient numerical computation,
Symbolic computation,
Plot
... (name it)

CECI training: python

Modules

Modules allow you to use external code (think "libraries")
use a module:

import csv
help(csv.reader)

or just part of it:

from csv import reader
help(reader)

just don't import everything blindly:

from csv import * # this is dangerous

CECI training: python 37 2022

Module example : csv

csv is a core module: it is distributed by default with Python

import csv
with open('my file.csv') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
print("row:", row)
print("the {animal} plays with a {toy}".format(**row))

row: {'animal': 'dog', 'toy': 'bone'}
the dog plays with a bone
row: {'animal': 'cat', 'toy': 'ball'}

the cat plays with a ball

« DictReader is an object from the csv package

e reader is an iterator built by DictReader

e reader gives dictionaries, for instance {"animal":"dog", "toy":"bone"}
and affects them to the row reference

e keys names are taken from the first line of the csv file

CECI training: python

See Documentation

python.org = < e Bearch

@ Python » [English v} {3.11.0 v] 3.11.0 Documentation » The Python Standard Library » File Formats » c¢sv — CSV File Reading and Writin

csv — CSV File Reading and Writing

Table of Contents
csv — CSV File Reading
and Writing

= Module Contents
= Dialects and

Source code: Lib/csv.py

Formatting Parameters The so-called CSV (Comma Separated Values) format is the most common import and export format
» Reader Objects for spreadsheets and databases. CSV format was used for many years prior to attempts to describe the
e e format in a standardized way in RFC 4180. The lack of a well-defined standard means that subtle
m differences often exist in the data produced and consumed by different applications. These

differences can make it annoying to process CSV files from multiple sources. Still, while the delimiters

Previous topic) N
and quoting characters vary, the overall format is similar enough that it is possible to write a single

File Formats
module which can efficiently manipulate such data, hiding the details of reading and writing the data
Next topic from the programmer.
configparser —

The csv module implements classes to read and write tabular data in CSV format. It allows
programmers to say, “write this data in the format preferred by Excel,” or “read data from this file
which was generated by Excel,” without knowing the precise details of the CSV format used by Excel.
Programmers can also describe the CSV formats understood by other applications or define their own
special-purpose CSV formats.

Configuration file parser

This Page

Report a Bug
Show Source

The csv module’s reader and writer objects read and write sequences. Programmers can also read
and write data in dictionary form using the DictReader and DictWriter classes.

See also:

PEP 305 - CSV File API
The Python Enhancement Proposal which proposed this addition to Python.

Module Contents

The csv module defines the following functions:

csv.reader(csvfile, dialect='excel', xxfmtparams)
Return a reader object which will iterate over lines in the given csvfile. csvfile can be any object
which supports the iterator protocol and returns a string each time its __next__() method is
called — file objects and list objects are both suitable. If csvfile is a file object, it should be opened
with newline="". [1] An optional dialect parameter can be given which is used to define a set of
parameters specific to a particular CSV dialect. It mav be an instance of a subclass of the Dialect

CECI training: python 39 2022

Interacting with the OS and filesystem:

e SYS:
= provides access to arguments (argc, argv), useful sys.exit()
e OS:
= access to environment variables
= navigate folder structure
= create and remove folders
= access file properties
e glob:
= allows you to use the wildcards * and ? to get file lists
e argparse:

= easily build command-line arguments systems
= provide script usage and help to user

CECI training: python 40 2022

Enhanced versions of good things

e itertools: advanced iteration tools
= cycle: repeat sequence ad nauseam
= chain: join lists or other iterators
= compress: select elements from one list using another as filter

e collections: smart collections
» defaultDict: dictionary with default value for missing keys (powerful!)
= Counter: count occurrences of elements in lists

e re: regular expressions
= because honestly "Iin" is not always enough

CECI training: python 41 2022

Utilities

e COpy:

= sometimes you don't want to reference the same object with aand b
e time:

= manage time and date objects

= deal with timezones and date/time formats

= includes time.sleep()
e pickle:

= allows to save any python object as a string and import it later
e jsoOn:

= read and write in the most standard data format on the web
e requests:

= access urls, retrieve remote files

CECI training: python 42 2022

Basics for science

e NUMpY:

= linear algebra
» fast treatement of large sets of numbers
e matplotlib:

standard library for plotting
e ScCipy:

= Optimization

= integration

« differential equations
= statistics

= data analysis

CECI training: python

Installing modules

The standard package manager is pip:

e Search for a package:

pip search BeautifulSoup # famous html parser

e Install a package:

pip install BeautifulSoup # use "--user" to install in home

e Upgrade to latest version:

pip install --upgrade BeautifulSoup

e Remove a package:

pip uninstall BeautifulSoup

CECI training: python 44 2022

Dependencies nightmare

Working in a protected environment

Sometimes you need specific versions of modules, and these modules have dependencies,
and these dependencies conflict with system-wide packages, etc.

In these cases you should use the virtualenv package:

pip install virtualenv # install the package, only once
virtualenv my virtualenv
source my virtualenv/bin/activate

You can then use pip to install anything you need in this virtualenv and do your work.
Finally:

deactivate

closes the virtualenv session. Packages you have installed in it are not visible anymore.

CECI training: python 45 2022

Python files are modules

If you have a file called my module.py with the content:

my var = "CECI"
def do something(argument):
pass

You can simply do from another file in the same folder:

from my module import my var, do something
new var = my var + " Python"
do something(new var)

The alternative syntax works too:

import my module
my module.do something("test variable")

CECI training: python

Importing scripts

You know you can import any file as a module. This allows to debug in the interpreter by
using:
import my file

to access functions and objects. But doing this runs the whole content of my file.py
which is not what you want.

You can avoid that by putting the code to be executed only when the script is run (not
imported) inside a block like this:

def my function():

if name == "' main_ ': # that's two underscores
print(my function()) # put main code here

That way the "print" will not be called when you import my _file, only when you run python
my file.py

CECI training: python

Exercise

you will find 3 csv files in /home/cp3/jdf/training (Jupyterhub users) or
/CECI/home/ucl/cp3/jdefaver/training (CECI users):

1. List files
2. read each file using the csv module
3. as you read, build a dictionary of dictionaries using the id as a key, in the form:

©: { 'animal':'dog', 'toy':'bone', 'house’':'dog house' },
1: { 'animal':'cat', ... },

1. write one line per id with the format:

"the <> plays with a <> and lives in the <>"

CECI training: python

