Efficient use of Python on the clusters

Ariel Lozano

CÉCI training

November 14, 2022

Outline

Analyze our code with profiling tools:

- cpu: cProfile, line_profiler, kernprof
- memory: memory_profiler, mprof
- How to make a more efficient use of hardware internals?
 - Numpy and Scipy ecosystem (mainly wrappers to C/Fortran compiled code)
 - binding to compiled code: interfaces between python and compiled modules

- compiling: tools to compile python code
- parallelism: overview of modules to exploit multicores

Sieve of eratostenes

Algorithm to find all prime numbers up to any given limit.

Ex: Find all the prime numbers less than or equal to 25:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Cross out every number displaced by 2 after 2 up to the limit:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Move to next *n* non crossed, cross out each non crossed number displaced by *n*:

- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

The remaining numbers non crossed in the list are all the primes below *limit*. Trivial optimization: jump directly to n^2 to start crossing out. Then, *n* must loop only up to \sqrt{limit} .

Simple pure python implementation

```
def primes_upto(limit):
    sieve = [False] * 2 + [True] * (limit - 1)
    for n in range(2, int(limit**0.5 + 1)):
        if sieve[n]:
            i = n**2
            while i < limit+1:
                sieve[i] = False
                i += n
        return [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(25)
print(primes)
```

\$ python3 sieve01_print.py

[2, 3, 5, 7, 11, 13, 17, 19, 23]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Simple pure python implementation

Finding primes up to 30 million ¹:

measuring runtime with bash time function

\$ time python3 sieve01.py
real 0m10.419s
user 0m10.192s
sys 0m0.217s

CPU profiling: timing functions

cProfile: built-in profiling tool in the standard library. It hooks into the virtual machine to measure the time taken to run every function that it sees.

\$ python3 -m cProfile -s cumulative sieve01.py 5 function calls in 10 859 seconds Ordered by: cumulative time ncalls tottime percall cumtime percall filename:lineno(function) 10.859 10.859 {built-in method builtins.exec} 0.000 0.000 0 087 0.087 10.859 10.859 sieve01.py:3(<module>) 9.447 9.447 10.772 10.772 sieve01.pv:3(primes_upto) 1.325 1.325 1.325 1.325 sieve01.pv:11(<listcomp>) 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects} 1 0.000 0.000

For big codes use a visualization tool as snakeviz

\$ python3 -m cProfile -o profile.stats sieve01.py \$ snakeviz profile.stats

CPU profiling: line by line details of a function

line_profiler: profiling individual functions on a line-by-line basis, **big overhead** introduced. We must add the <code>@profile</code> decorator on the function to be analyzed.

```
@profile
def primes_upto(limit):
    sieve = [False] * 2 + [True] * (limit - 1)
    for n in range(2, int(limit**0.5 + 1)):
        if sieve[n]:
            i = n**2
            while i < limit+1:
                sieve[i] = False
                i += n
        return [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(30000000)</pre>
```

Then, we run the code with the kernprof tool provided by the package.

CPU profiling: line by line details of a function

```
$ kernprof -l -v sieve01 prof.pv
Wrote profile results to sieve01_prof.py.lprof
Timer unit: 1e-06 s
Total time: 101.025 s
File: sieve01_prof.pv
Function: primes_upto at line 2
line #
           Hits
                       Time Per Hit
                                       % Time Line Contents
     2
                                               @profile
     3
                                               def primes_upto(limit):
     4
              1
                    229258.0 229258.0
                                         0.3
                                                  sieve = [False] * 2 + [True] * (limit - 1)
     5
                      2466.0
                                  0.5
                                                  for n in range(2, int(limit**0.5 + 1)):
           5477
                                         0.0
     6
           5476
                      2578.0 0.5
                                         0.0
                                                     if sieve[n]:
     7
                       855.0 1.2
                                                         i = n**2
            723
                                         0.0
     8
       70634832
                  28295172.0
                                  0.4
                                        32.4
                                                         while i < limit+1:
       70634109
                  29280104 0
                                  04
                                        33 5
                                                             sieve[i] = False
     g
    10
       70634109
                  26771040.0
                                  0.4
                                        30.7
                                                             i += n
    11
                   2740062.0 2740062.0 3.1
                                                  return [i for i, prime in enumerate(sieve) if prime]
              1
```

- コン・ 日本・ 日本・ 日本・ 日本・ のくぐ

% Time is relative to lines on the function, not to total run time

Memory profiling: line by line details of a function

memory_profiler: module to measure memory usage on a line-by-line basis, runs will be slower than line_profiler. Is also required the @profile decorator on the function to analyze.

```
$ python3 -m memory_profiler sieve01_prof.py
Filename: sieve01_prof.py
Line #
         Mem usage
                     Increment
                                 Line Contents
                            _____
                                 @profile
    2
        32.715 MiB 0.000 MiB
     3
                                 def primes_upto(limit):
    4
       261.703 MiB
                    228.988 MiB
                                     sieve = [False] * 2 + [True] * (limit - 1)
    5
       261.703 MiB
                   0.000 MiB for n in range(2, int(limit**0.5 + 1)):
     6
       261.703 MiB
                     0.000 MiB
                                         if sieve[n]:
    7
       261.703 MiB
                     0.000 MiB
                                            i = n**2
    8 261 703 MiB
                     0.000 MiB
                                            while i < limit+1.
    9
       261.703 MiB
                     0.000 MiB
                                                sieve[i] = False
       261 703 MiB
                     0 000 MiB
                                                i += n
   10
   11
                                     return [i for i, prime in enumerate(sieve) if prime]
```

Memory profiling: line by line details of a function

Why are 228 MB allocated on this line?

4 261.703 MiB 228.988 MiB sieve = [False] * 2 + [True] * (limit - 1)

- In a Python list each boolean variable has a size of 8 bytes. The standard for a C long int in 64-bits.
- We are creating a list with 30 million elements.
- Doing the math: $\frac{30E6*8B}{1024*1024} = 228.881 MB$

Remarks:

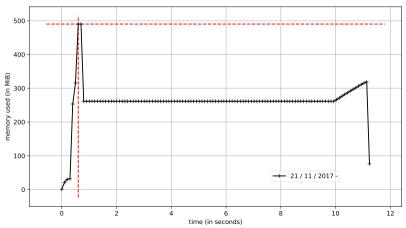
- Memory line by line analysis introduces an even bigger overhead, run can be up to 100x slower
- We can miss information due to many memory operations taking place on a single line

- The memory_profiler package provides the mprof tool to analyze and visualize the memory usage as a function of time
- It has a very minor impact on the running time

Usage:

```
$ mprof run --python python3 mycode.py
$ mprof plot
```

- \$ mprof run --python python3 sieve01.py
- \$ mprof plot



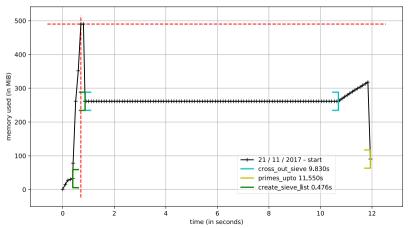
python sieve01.py

We can add a <code>@profile</code> decorator and <code>profile.timestamp()</code> labels to introduce details in the analysis

```
@profile
def primes_upto(limit):
    with profile.timestamp("create_sieve_list"):
        sieve = [False] * 2 + [True] * (limit - 1)
    with profile.timestamp("cross_out_sieve"):
        for n in range(2, int(limit**0.5 + 1)):
            if sieve[n]:
                i = n**2
                while i < limit+1:</pre>
                    sieve[i] = False
                    i += n
    return [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(3000000)
```

\$ mprof run --python python3 sieve01_memprof.py

\$ mprof plot



python sieve01 memprof.py

Memory profiling: analyzing the whole run vs time Why the 500 MB peak during the sieve list creation?

Experimenting with the mprof tool can be verified that:

```
sieve = [False] * 2 + [True] * (limit - 1)
```

is actually equivalent to something like:

```
sieve1 = [False] * 2
sieve2 = [True] * (limit - 1)
sieve = sieve1 + sieve2
del sieve1
del sieve2
```

▶ is allocated temporarily an extra \approx 30*E*6 boolean list !!

We can try to replace with:

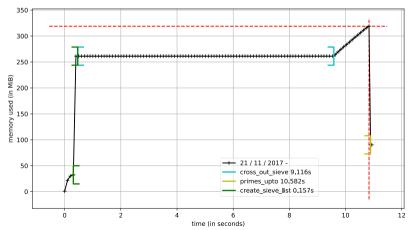
```
sieve = [True] * (limit + 1)
sieve[0] = False
sieve[1] = False
```

```
@profile
def primes_upto(limit):
    with profile.timestamp("create_sieve_list"):
        sieve = [True] * (limit + 1)
        sieve[0] = False
        sieve[1] = False
    with profile.timestamp("cross_out_sieve"):
        for n in range(2, int(limit**0.5 + 1)):
            if sieve[n]:
                i = n**2
                while i < limit+1:</pre>
                    sieve[i] = False
                    i += n
    return [i for i, prime in enumerate(sieve) if prime]
if __name__ == "__main__":
    primes = primes_upto(3000000)
```

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

\$ mprof run --python python3 sieve02_memprof.py

\$ mprof plot



python sieve02 memprof.py

Excercise to experiment: profile a python code

From a CECI cluster copy this folder to your home directory

cp -r /CECI/proj/training/python4hpc ~/

Create the virtualenv and follow the Hands on: First part as explained on

~/python4hpc/excercises/README.md

You will find a pure Python implementation of the 2D diffusion equation

Numpy library

- Provides a new kind of array datatype
- Contains methods for fast operations on entire arrays avoiding to define (inneficient) explicit loops

- They are basically wrappers to compiled C/Fortran/C++ code
- Their methods runs almost as fast as C compiled code
- > It is the foundation of many other higher-level numerical tools
- Compares to MATLAB in functionality

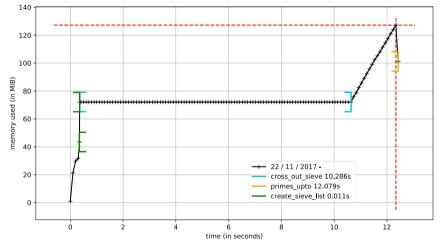
Numpy library: sieve revisited

We replace the sieve list with a Numpy boolean array:

```
import numpy as np
def primes_upto(limit):
    sieve = np.ones(limit + 1, dtype=np.bool)
    sieve[0] = False
    sieve[1] = False
    for n in range(2, int(limit**0.5 + 1)):
        if sieve[n]:
            i = n * * 2
            while i < limit+1.
                sieve[i] = False
                i += n
    return [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(3000000)
```

Numpy library: sieve revisited

python sieve03_np_memprof.py



- In a Numpy array each boolean has a size of 1 byte
- Math now: $\frac{30E6*1B}{1024*1024} = 28.61 MB$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Numpy library: sieve revisited

- Timing did not improve with Numpy array and same loop
- Full Numpy solution using slice indexing to iterate:

```
import numpy as np

def primes_upto(limit):
    sieve = np.ones(limit + 1, dtype=np.bool)
    sieve[0] = False
    sieve[1] = False
    for n in range(2, int(limit**0.5 + 1)):
        if sieve[n]:
            sieve[n**2::n] = 0
    return np.nonzero(sieve)[0]
```

 \$ time
 python3 sieve04_np.py

 real
 0m0.552s

 user
 0m0.518s

 sys
 0m0.033s

22x gain in time!!

Numpy library: sieve line by line profiling

```
$ kernprof -1 -v sieve04_np_prof.py
Wrote profile results to sieve04_np_prof.py.lprof
Timer unit: 1e-06 s
Total time: 0.482723 s
File: sieve04_np_prof.pv
Function: primes_upto at line 3
Line #
                        Time Per Hit
           Hits
                                        % Time Line Contents
     3
                                                @profile
     4
                                                def primes upto(limit):
     5
                               8785 0
                                            1.8
                                                     sieve = np.ones(limit + 1, dtype=np.bool)
                        8785
     6
                            5
                                  5.0
                                            0.0
                                                    sieve[0] = False
     7
                                  00
                                            0.0
                                                    sieve[1] = False
                            0
     8
           5477
                        2796
                                  0.5
                                            0.6
                                                    for n in range(2, int(limit**0.5 + 1)):
     9
           5476
                        3119
                                  0.6
                                           0.6
                                                        if sieve[n]:
    10
            723
                      420784
                                582.0
                                          87.2
                                                            sieve[n**2::n] = 0
    11
               1
                       47234 47234 0
                                           9.8
                                                     return np.nonzero(sieve)[0]
```

Numpy library: sieve line by line profiling

- line_profiler helps to understand the massive gain
- Pure python solution:

6	5476	2362	0.4	0.0	if sieve[n]:
7	723	680	0.9	0.0	i = n**2
8	70634832	28740579	0.4	28.4	while i < limit+1:
9	70634109	33142484	0.5	32.8	sieve[i] = False
10	70634109	26776815	0.4	26.5	i += n

Full Numpy solution:

9	5476	3119	0.6	0.6	if sieve[n]:
10	723	420784	582.0	87.2	sieve[n**2::n] = 0

- The loops to cross out the sieve are fully performed by lower level implementations in Numpy
- Time and memory usage is the same as best pure C or Fortran implementations!

CPU and Memory profiling: summary

- Line-by-line profiling introduces a huge overhead, they must be used reducing the problem size and for specific functions detected as bottlenecks
- The mprof tool is very dynamic, timestammping in a smart way can be used both as a fast CPU and Memory profiler
- The cProfile dumps are great to detect bottlenecks on big projects, but a visualization tool is almost mandatory. Apart of snakeviz explore also the KCachegrind package, usual workflow:

\$ python -m cProfile -o prof.out sieve02.py \$ pyprof2calltree -i prof.out -k

Numpy library: SciPy ecosystem

Collection of open source software for scientific computing in Python

- Core packages:
 - NumPy: the fundamental package for numerical computation
 - SciPy library: collection of numerical algorithms and domain-specific toolboxes, including signal processing, fourier transforms, clustering, optimization, statistics...
 - Matplotlib: a mature plotting package, provides publication-quality 2D plotting as well as basic 3D plotting

- Data and computation:
 - > pandas: providing high-performance, easy to use data structures (similar to R)
 - SymPy: symbolic mathematics and computer algebra
 - scikit-image: algorithms for image processing
 - scikit-learn: algorithms and tools for machine learning
 - h5py and PyTables: can both access data stored in the HDF5 format

Python Bindings

We saw that interfacing python with compiled code can provide huge performance gains. There are two main approaches to achieve this:

▲□▶▲@▶▲≧▶▲≧▶ ≧ のQ@

- Compile python (or python-like) code
- Link python to use existing libraries written in other languages

Compile Python

Just in time (JIT) compilers: compile and run a python code in real time

- Numba: jit compiler supporting numpy code
- Pypy: jit compiler for non-numpy code
- Ahead of time (AOT) compilers: creation of a compiled static library in your machine
 - Cython: the most popular, compile a python-like C code
 - ▶ f2py: tool part of numpy project allowing to compile and wrap Fortran code
 - Pythran: automatic Python-to-C++ converter and compiler compatible with numpy

Compile Python: JIT

- Pypy: We can directly run the original sieve01.py with pypy
- Numba: We just need to decorate the function we wish to compile

```
from numba import jit
@jit
def primes_upto(limit):
    sieve = [False] * 2 + [True] * (limit - 1)
    for n in range(2, int(limit**0.5 + 1)):
        if sieve[n]:
            i = n**2
            while i < limit+1:
                sieve[i] = False
                i += n
    return [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(3000000)
```

Compile Python: JIT remarks

- JIT compilers offers some nice speedups with very little manual intervention
- But the more we rely on a tool to automatically optimize we are rapidly bounded on what can be improved
- Pypy is not compatible with numpy code
- Numba is a very flexible tool and actively developed
- You might be happy with what you obtain with very low effort, is up to your problem and how many times you are going to run your code

Compile python: Cython

You must annotate your code using a new syntax in between python and C. Example sieve primes_upto function

```
def primes_upto(int limit):
    cdef int n, i
    cdef int prime
    sieve = [True]*limit
    for n in range(2, int(limit**0.5 + 1)):
        if sieve[n]:
            i = n**2
            while i < limit:
                sieve[i] = False
                i += n
    return [i for i, prime in enumerate(sieve) if prime]
```

After compiling, it can be imported as a module in a pure python code

```
from sievelib import primes_upto
```

```
primes = primes_upto(3000000)
```

Compile python: Cython

It requires to create a sort of makefile, called typically setup.py, there is a working example in example compiling/cython

```
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
setup(
    ext_modules = cythonize("sievelib.pyx")
)
```

To use the resulting module, built as a binary $\,.\,\mathrm{so}$ file, by a python script on the same directory

```
$ python setup.py build_ext --inplace
$ time python sieve01.py
real 0m2.663s
user 0m2.552s
sys 0m0.080s
```

Compile python: OpenMP support

- Both Cython and Pythran provide the possibility to produce OpenMP code
- This allows to use under the hood more cores in a multicore machine
- In Cython this is enabled by using special operators (i.e. prange instead range) and compiling with the -fopenmp flag
- In Pythran we annotate the python code to create a parallel region similar to original OpenMP usage in C

Python bindings: C libraries

- Cython allows also to wrap C libraries to provide bindings for Python
- Check the example in compiling/fib-wrap-c to see how wrapping works for a C function providing the n_{th} Fibonacci number.

\$ make
\$ python test.py
The 10th Fibonacci number is: 55

Python Bindings: f2py example

To wrap Fortran code the f2py tool provides a more straighforward approach to do so

<pre>subroutine foo(a) integer a</pre>	import hello			
<pre>print*, "Hello from Fortran!" print*, "a=",a</pre>	hello.foo(10)			
end				
\$ f2py -c -m hello hello.f90	<pre>\$ python call_fhello.py Hello from Fortran! a= 10</pre>			
\$ f2py −c −m hello hello.†90	Hello from Fortran!			

Summary: Compiled Python

- cython: C-Extensions for Python
 - optimising and static compiler
 - can compile Python code and Cython language
 - can compile Python with Numpy code
 - can do bindings with C code
- Pypy: Just-in-time compiler
 - sometimes less memory hungry than Cython
 - not fully compliant with Python with Numpy code
- Numba: a compiler specialized for numpy code using the LLVM compiler
- Pythran: compiler for both numpy and non-numpy code. Still quite experimental.
- All, except pypy requires to modify or decorate the original python code

Parallel processing

- multiprocessing module
 - allows to use process- and thread-based parallel processing
 - for multi-process can be non trivial to share memory among them
- joblib module
 - desinged for scientific use in mind but more job-scheduler like logic
 - optimized for numpy arrays
 - focused on embarrasingly parallel kind of problems
- PyMP module
 - Brings OpenMP-like functionality on Python !
- mpi4py
 - Python bindings to the MPI-1/2/3 interfaces
 - if you know MPI on C/Fortran you already know mpi4py
 - can make use equivalently of multiple cores on a single-machine or distributed
 - each process has a separate address space, no possibility to share memory between them

Experiment with using compiled code

Follow the Hands on: Second part as explained on

~/python4hpc/excercises/README.md

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Further references and training on the topic

- High Performance Python 2nd Ed by By Micha Gorelick and Ian Ozsvald
- Python in HPC Tutorial: https://github.com/pyHPC/pyhpc-tutorial
- PRACE Sponsored Online Course: Python in High Performance Computing