Consortium des Equipements
de Calcul Intensif
en Fédération Wallonie-Bruxelles

C.|CE.C

Introduction to Parallel Computing

damien.francois@uclouvain.be
December 2022

: I. R § c Université catholigu
UCL oo "

INSTITUT DE CALCUL INTENSIF ET DE STOCKAGE DE MASSE

Agenda

1. General concepts, definitions, challenges
2. Hardware for parallel computing
3. Programming models

4. User tools

General concepts

Why parallel? (simplified)

Speed up — Solve a problem faster
— more processing power
(a.k.a. strong scaling)

Scale up — Solve a larger problem
— more memory and network capacity
(a.k.a. weak scaling)

Scale out — Solve many problems
— more storage capacity

Parallelization involves:

* decomposition of the work

— distributing instructions to processors
- distributing data to memories

e collaboration of the workers

- synchronization of the distributed work
- communication of data

Parallelization involves:

Decomposition of the work

* Operation decomposition : task-level parallelism
— Multiple programs (functional decomposition)
— Multiple instances of the same program
 Data decomposition : data-level parallelism

Parallelization involves:

Decomposition of the work

Operation decomposition : task-level parallelism
 Data decomposition : data-level parallelism
- Block, cyclic

1D

BLOCK CYC Lic

BLOCK, * *, BLOCK BLOCK, BLOCK

2D

CYCLIC, * *, CYCLIC CYCLIC, CYCLIC

Parallelization involves:

Decomposition of the work

* Operation decomposition : task-level parallelism
 Data decomposition : data-level parallelism

- Domain decomposition : decomposition of work and
data is done in a higher model, e.g. in the reality

Parallelization involves:

Collaboration of the workers

* Synchronization of the workers

high ~ — Synchronous (SIMD) at the processor level ; the

low -

same processor instruction for each worker at any
time ; (instruction level)

- Fine-grained parallelism : subtasks communicate

many times per second (typically at the loop level)

Coarse-grained parallelism : they do not
communicate many times per second (typically
function-call level)

Embarrassingly parallel : they rarely or never have
to communicate (asynchronous)

Parallelization involves:

Collaboration of the workers

 Communication between workers

- Point to point

- Broadcast oYY XTI
- Scatter \\ 7 \\ / /

- Gather
- Reduction

SSSSSS

10

Does it work?

Speedup, Efficiency, Scalability

Time for serial operations

/
Speedup T g

—

TP

Time for parallel operations

Efficien%/ _ S _ TS
p pT,
/

Number of
processors

Parallel
Speedup

4

1

Superlinear 7

3 /

y Typical
Success

Sublinear

—r—T—T—T1T—1—T1—1» #Processors

i Negative

v 11

Why wouldn’t it work?

Challenge 1: Amdahl's Law

Not all the work can be decomposed

B 1-B B (1-B)/ 2 B
B = Non-parallelizable
1 - B = Parallelizable (1-B) / 2

In parallel computing, Amdahl's law is mainly used
to predict the theoretical maximum speedup
for programs using multiple processors.

(1-B)
/3

(1-B)
73

(1-B)
g3

12

Why wouldn’t it work?

Challenge 2: Parallel overhead

Collaboration means communication and extra work

wvoid main [int arge, char *argvll] ;J_unkn_!—,fé
i i : :
int myrank, size; : SAmEMERR] S gefliar s inen Ly
y mnuTLiar
MPI_init{ &ar go, Sargv); " 2
MFPL Comm_rankMPI_COMM WORLD, £ myrank]; — x 2 AE ETVE S .
MFPI_Comm_size{ MPI_C OMM WORLD, &size) : T Willog - v
printf{ "Processor %d of %d: Hello Wordd!'n"™, myan k, size) f/// .
MPI_Finalize{)
1
o
i)
il ar:]
= unkn |
kD |
= unkn |
T
=1
PIE =
FIE__oF
T :ﬂ FE—"
] FLE 1
=]
ELE
u AllplE = e
i .
d_tH !
:-|B| |. Example of Parallel Communications Overhead
d and complexit!p': actual callgraph from the simple

parallel "hello woHd" program shown. Most of the
routines are from communications libraries.

=
ral
X

Why wouldn’t it work?

Challenge 3: Load imbalance

Parallelization is efficient only if every worker has the same amount of work

Barrier

P1

P2

P3

P4

Hardware for parallel computing

Von Neumann (serial) architecture

An abstract view of early computers

Input
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Output
Device

16

Parallelism at the CPU (core) level

* I(?l_S'Ft)r)u Ctl O n B I eve I p aral I e I I S m | 32K L1 Instruction Cache | Pre-decode | Instr Queue lll=_

Decoders ||

| Branch Predictor

| | 1.5K uOP Cache |]
—_ I n Stru Ctl O n pl pe I i n I n g ;Tf?ers ;:Jf:eers I gﬁ?fff; 3 Allocate/Rename/Retire

In-order

- Out'Of'Order executlon [[PortO | [Port1 | |F’oricgerTU1e|rPort2 | [Port3 | [Port4

A
. . ALU | ALU | ALU Coad Load STD
— Speculative execution Vio | [VAG] [P| [Swea][sthas
VShuffid | V-Shuffie | 256- FP Shut
Fdiv 256- FP Add | [256- FP Bool *
256- FP MUL 256- FP Blend
T .. 256- FP Blend | ! Memory Control |

* Single Instruction Multiple | L s cae wnieo ‘
Data (SIMD)

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

17

Parallelism at the chip (socket) level

* Multicore
parallelism

: Systerﬁ :

| Processor

3
1

Ineluding
Display:

DMI and

| Misci /0

18

Parallelism at the computer level

* Multi-socket
parallelism
| Processor

- SMP h_Graphlcs
- NUMA L |

e Accelerators

| Processor

4 Graphicsyk: |

i Systeri‘i :

including
Display:
DMl and

| Misci /0

Systeri‘i :

.| Agent’8||

Memory |
Controller |
intluding !

Display;
DMl and

| Misc: 110

19

Parallelism at the data center level

Multi-node parallelism

20

Parallelism at the data center level

Cluster computing

About

CECI is the 'Consortium des Equipements de
Calcul Intensif'; a consortium of high-performance
computing centers of UCL, ULB, ULg, UMons, and
UNamur. Read more,

N LIESE
el SEGI

2 Z"c";.?‘cuﬁ\
UMONS
LPSI, CMN, INFO Uc L

7\1
Université

catholique
deLouvain E ﬂ

CIsMm

Consortium des Equipements de Calcul
Intensif

6 clusters, 10k cores, 1 login, 1 home directory

w

The common storage is functional!
Have you tried it yet? More info...

Latest News

SATURDAY, 23 SEPTEMBER 2017

A CECI user pictured in the ULiége news!

The ULiége website published a story (in French) about the work of Denis Baurain and his
collaborators on the Tier-1 cluster Zenobe that lead to a publication in Nature Ecology &
Evolution.

TUESDAY, 01 AUGUST 2017

Ariel Lozano is the new CECI logisticien

We are happy to announce the hire of a new CECI logisticien: Ariel Lozano. Welcome Ariel!

21

Parallelism at the data center level

Cloud computing “someone else’s cluster”

JU1I.
i

wEramazon

47 webservices

GOOSIQ - Microsoft Azure
Cloud Platform

OpenNebula openstack

22

Parallelism at the world level

Grid computing — “cluster of clusters”

e WLCG

0-’ Worldwide LHC Computing Grid

Collaboration | Meetings | Grid Operations | Security Docs & Ref | Getting Started | Public site

Home

Welcome to the Worldwide LHC Computing Grid Ahaui Wikt

What is WLCG? See our

Hangout with CERN: LHC
Transfer Throughput : :
T and Grid - the world is our

50 GBps L

calculator
- = = I = -
40 ps -
30 GB -
ps [_—
= - Jobs
20 GBps = — No jobs currently published.
- I I IIIIIIIIIIIIIIIIII
0Bps I News
12:00 16:00 20:00 00:00 04:00 08:00
= glice == atlas cms == |hch +* TEG Reports
* Computing Model
Update available
* Technology Market Cost
The Worldwide LHC Computing Grid (WLCG) project is a global collaboration of more than 170 Trends
computing centres in 42 countries, linking up national and international grid infrastructures. 5

23

Parallelism at the world level

Distributed computing — “no unused cycle”

What is SETI@home?

SETI@home is a scientific experiment, based at UC
Berkeley, that uses Internet-connected computers in the
Search for Extraterrestrial Intelligence (SETI). You can
participate by running a free program that downloads
and analyzes radio telescope data.

Join SETI@home

User of the Day

o The_PC_God
!"'/N rl)\ Hello community. My name is Daniel. | am 28
years old and i live in a small village called
Kuhardt (Rhineland-Palatinate, Germany)
which is located...

Community ~ Site ~ Sign Up Login

News

BSRC Student Travel Fundraiser

Berkeley SETI Research Center is holding a fundraiser to raise $7000 to send our
student interns to conferences to present their work.

We've been working with some great students at Berkeley SETI, and we're
optimistic that some of them will become the scientists and engineers who lead the
field in future and maybe even find the signal we're searching for. In the meantime
they have been doing amazing work and we'd like to send them to academic
conferences to present their results, and for their own professional development. If
you would like to help with this effort, we are running a crowdfunding campaign at
https://crowdfund.berkeley.edu/SETItravel - every donation counts! We also have
some fun perks including the chance to ask questions to members of the Berkeley
SETI team, and to attend a party in our lab.

Although this does not directly benefit SETI@home (our annual fundraiser will start
in a couple weeks), it's a worthy cause. I'll be contributing!
20ct 2017, 18:10:26 UTC - Discuss

3.

Programming paradigms and
programming models

Is parallization automagic?

* ILP: yes

« SIMD: mostly, but the compiler can be fooled by your code
(- pragmas)

* Intra-node: can be if the library/software you use is
designed for it (- * NUM_THREADS env vars, be aware
of NUMA placement issues)

 GPUs: can be If the library/software you use is designed
forit (-~ CUDA_VISIBLE DEVICES env vars, be aware of
GPU/CPU memory transfers)

* Inter-node: never automagic. You will at least need to
explicitly start processes (-~ be aware of the network
capabilities)

If you are in charge of parallization, see next slides... *

Main parallel programming paradigms

* Task-farming:

— Master program distributes work to worker programs
(leader/follower); or

— Worker programs pick up tasks from pool (work stealing).
* SPMD (Single program multiple data)

- A single program that contains both the logic for
distributing work and computing

- Multiple instances are started and “linked” together
- Instances are identified with a distinct index

27

Other parallel programming paradigms

« MPMD (Multiple program multiple data)

* Pipelining : workers take care of a subtask in the
processing chain and pass the intermediate result to the
next worker

* Divide and Conquer :

— workers are spawned at need and report their result to
the parent

— Speculative parallelism : workers are spawned and
result possibly discarded

If (very_long_computation)
then
do A
else
do B

28

Programming models

e Single computer:

- CPUs: PThreads, OpenMP, TBB, OpenCL, ...

- Accelerators: CUDA, OpenCL, OpenAcc/OpenMP,
SYCL, Hipp, ROCm, ...

* Multi-computer:

- Clusters:

* Message passing: MPI, PVM

* PGAS: CoArray Fortran, UPC, Global Arrays
- Clouds: MapReduce, Spark RDD

- Distributed computing: BOINC

29

4.

User tools
that GNU/Linux offers

4.1 Parallelized tools

4.2 Job control and parallel processes
4.3 Basic tools

4.4 GNU Parallel

30

4.1. Parallelized utilities

Some tools have a parallelized counterpart. Examples:

serial

gzip
grep
ssh
sort
scp
bc

pigz

ripgrep
clustershell
sort —parallel
bbcp

bcx

parallel

31

4.2. Job control & Parallel processes in Bash

Consider the following example program

® MO dfr@hmem00 — bash

dfr@hmemPd:~/parcomp $ cat lower.sh
#! fbinfbash
#
Usage:
.flower.sh [input_file [output_file]]

If output_file is not defined, stdout is used
If input_file and output_file are not defined, stdin and stdout are used.

#
#
#
Make ACTG chars lower case with extra processing.
#
&
#

while read line; do

sleep 1

echo $line | tr ACTG actg >> ${2-/dev/stdout}
done < ${1-/dev/stdin}

dfr@hmem@8:~/parcomp § cat d.txt

g
dfr@hmem@®:~/parcomp $ [

It is written in Bash and just transforms some upper case letters to lower case -

4.2. Job control & Parallel processes in Bash

Run the program twice

® OO dfr@hmem00 — bash

dfr@hmem80:~/parcomp $ # Foreground: commands end with ';'
.flower.sh dl.txt rl.txt ; ./lower.sh dl.txt r2.txt

33

4.2. Job control & Parallel processes in Bash

Run the program twice and measure the time it takes

® OO dfr@hmem00 — bash

dfr@hmem80:~/parcomp $ # Foreground: commands end with ';'
time { ./lower.sh dl.txt rl.txt ; ./lower.sh dl.txt r2.txt ; };

34

4.2. Job control & Parallel processes in Bash

Run the program twice and measure the time it takes

® OO dfr@hmem00 — bash

dfr@hmem80:~/parcomp $ # Foreground: commands end with ';'
dfr@hmem@®:~/parcomp § time { ./lower.sh dl.txt rl.txt ; ./lower.sh dl.txt r2.txt ; };

real Om8.0833s
user Om@.eeds
S¥S Ome.819s

35

4.2. Job control & Parallel processes in Bash

Run the program twice “in the background” and measure the time

® MO dfr@hmem00 — bash

dfr@hmem80:~/parcomp $ # Foreground: commands end with ';'
dfr@hmemd8:~/parcomp $ time { ./lower.sh dl.txt rl.txt ; ./lower.sh dl.txt r2.txt ;

real Bm8.833s
user BmB . 084s
S¥S Ome.819s
dfr@hmemd8:~/parcomp $ # Background, in parallel: commands end with '&' and 'wait' necessary

dfr@hmemd®8:~/parcomp $ time { ./lower.sh d2.txt rl.txt & ./lower.sh d2.txt r2.txt & wait ; };

[1] 49722
[2] 49723
[11- Done .flower.sh d2.txt rl.txt
[2]1+ Done .flower.sh d2.txt r2.txt

real 8md .811s
user Om@ .ee4ds
5¥5 8m8 . 885s
dfr@hmem®®:~/parcomp $ ||

36

4.2. Job control & Parallel processes in Bash

Parallel for loop in Bash:

for 1 in {1..10}; do
commandl
command?

done

for 1 in {1..10}; do
(
commandl
command?2
) &
done; wait

(...) & :creates a sub-shell with all commands in the bloc and start it in the background

walt : barrier to synchronize all sub-shells

37

4.3. Basic tools

4.3.1. One program and many files

The xargs command distributes data from stdin to program Equivalent to

— — Jlower.sh d1.txt ;
drﬁhmemﬁﬂ:mr’parcomp $ 1s d?.txt ./lOWGr.Sh dZtXt :
dl.txt d2.txt d3.txt d4.txt /lowersh dBtXt ;

dfr@hmemd0:~/parcomp § 1s d?.txt | xargs -n 1 echo "File: "

File: dl.txt Jlower.sh d3.txt ;
File: d2.txt

File: «3. txt

File: d4.txt

dfr@hmem®8:~/parcomp § time { 1s d?.txt | xargs -n 1 ./lower.sh > /dev/null ; }

real Bml6.841s
user &mé .018s
5¥5s BmB .B06s
dfr@hmem®0:~/parcomp § time { 1s d?.txt | xargs -n 1 -P 4 _/lower.sh > /dev/null ; }

real Bmd.814s
user Ome . 088s
S¥S Bm@ .81l6s
dfr@hmem@®:~/parcomp $ [

Equivalent to
Jlower.sh d1.txt &
Jlower.sh d2.txt &
Jlower.sh d3.txt &
Jlower.sh d3.txt &
wait 4

38

4.3. Basic tools

4.3.2. Several programs and one file

/upper sh waits for ./lower.sh to finish

Using UNIX pipes for pipelining operatlons Note the intermediate file

®NO dfr@hmem00 — bash

dfr@hmemd0:~/parcomp § # Using an intermediay file
dfr@hmem@®®:~/parcomp § time { ./lower.sh d.txt tmp.txt ; ./upper.sh tmp.txt res.txt ; }

real Om8.0833s
user Om@.ee85s
S¥S 8m@ .817s

39

4.3. Basic tools

4.3.2. Several programs and one file

Using UNIX fifos for pipelining operations

® MO dfr@hmem00 — bash

dfr@hmemd0:~/parcomp § # Using an intermediay file
dfr@hmemd8:~/parcomp $ time { ./lower.sh d.txt tmp.txt ; ./upper.sh tmp.txt res.txt ; }

real Om8.0833s

g A FIFO file is a “fake” file to which

JUARINEE S a process can write at the end and
another can read at the beginning

dfr@hmem@8:~/parcomp

dfr@hmem88:~/parcomp § mkfifo tmpfifo

dfr@hmemd8:~/parcomp $ 1s -1 tmpfifo

prw-ruw-r-- 1 dfr dfr @ Oct 7 18:27 Etmpfifo

dfr@hmem8® :~/parcomp time { ./lower.sh d.txt tmpfifo & ./upper.sh tmpfifo res.txt ; }
[1] 65343

[11+ Done .flower.sh d.txt tmpfifo

real Om5.813s
user OmB.882s

5¥s 8mB . 887 s .
dfr@hmem@o:~/parcomp Jupper.sh starts reading as soon

as ./lower.sh starts writing

40

4.3. Basic tools

4.3.3. One program and one large file

The split command distributes data from stdin to program

® OO dfr@hmem00 — bash

dfr@hmem@®:~/parcomp $ # One process to process the whole file Sp“t the file and start 4 processes
dfr@hmem@@:~/parcomp § time { cat d.txt | ./lower.sh > res.txt

real Omd4 .014s .

user BmB .8083s

S¥S Ome .B8e9%s

dfr@hmemd®:~/parcomp $ # Four processes handlimg one line in round robin fashion

dfr@hmem®0:~/parcomp § time { cat d.txt | split --unbuffered --number r/4 --filter ./lower.sh »res.txt ; }

real Oml.811s
user OmB.8e89s
5VS BmB.821s

Need recent version of Coreutils/8.22-goolf-1.4.10
41

4.3. Basic tools

4.3.3. One program and one large file

The split command distributes data from stdin to program

-

® MO dfr@hmem00 — bash

dfr@hmem@®:~/parcomp $ # One process to process the whole file Sp“t the file and start 4 processes
dfr@hmem@@:~/parcomp § time { cat d.txt | ./lower.sh > res.txt

real Omd4 .014s .

user BmB .8083s

S¥S Ome .B8e9%s

dfr@hmemd®:~/parcomp $ # Four processes handlimg one line in round robin fashion

dfr@hmem®d:~/parcomp $ time { cat d.txt | split --unbuffered --number r/4 --filter ./lower.sh >res.txt ;

real 8ml.8l1ls

user 8mB . 889s

5¥5s 8m8.811s

dfr@hmemd®:~/parcomp $!! & top -u dfr -bnl | grep lower

time { cat d.txt | split --unbuffered --number r/4 --filter ./lower.sh >res.txt ; } & top -u dfr -bnl | gr
ep lower

[1] 12817

12822 dfr 28 8 183m 1252 1852 § : : :80.88 lower.sh

12823 dfr 28 8 183m 1252 1852 S : : :88.88 lower.sh

12824 dfr 28 8 183m 1252 1852 § : : :80.88 lower.sh

12825 dfr 28 8 183m 1252 1852 S : : :808.88 lower.sh

$

dfr@hmem@8:~/parcomp
real &ml.811s
user em@.011s
5¥s 8mB .819s

[11+ Done time { cat d.txt | split --unbuffered --number r/4 --filter ./lower.sh > rescj
txt;)
dfr@hmem®®:~/parcomp $ |JJ

Need recent version of Coreutils/8.22-goolf-1.4.10
42

4.3. Basic tools

4.3.4. Several programs and many files

A Makefile describes dependencies and is executed with ‘make’

® MM dfr@hmem00 — bash

Sample Makefile to process each file with
lower.sh then upper.sh

#

all: dl.res d2.res d3.res dd.res

Build intermediary files
%.tmp: %.txt
./lower.sh $< %@

Build final result This means: build a .tmp file
.res: %.tmp

Jupper .sh $< $Q from a similarly-named .txt file
using the ./lower program

This means: build a .res file
from a similarly-named .tmp file
using the ./upper.sh program

%
]
=
=
-
5
%
~
i
__
=
-
~
5
=

"Makefile" 14L, 219C written

4.3. Basic tools

4.3.4. Several programs and many files

The ‘make’ command can operate in parallel

® MO dfr@hmem00 — bash

dfr@hmem@®:~/parcomp $ time make
./lower.sh dl.txt dl.tmp
.fupper.sh dl.tmp dl.res
./lower.sh d2.txt d2.tmp
.fupper.sh d2.tmp d2.res
./lower.sh d3.txt d3.tmp
./upper.sh d3.tmp d3.res
./lower.sh d4.txt d4.tmp
./upper.sh d4.tmp d4.res

rm dl.tmp d2.tmp d4.tmp d3.tmp

real Bm32.2608s

user BmB .828s

5¥5s Bm8 .899s
dfr@hmem@@:~/parcomp $ rm *res
dfr@hmemd0:~/parcomp $ time make -j 4
./lower.sh dl.txt dl.tmp
./lower.sh d2.txt d2.tmp
./lower.sh d3.txt d3.tmp
./lower.sh d4.txt d4.tmp
.Jupper.sh dl.tmp dl.res
./upper.sh d2.tmp d2.res
./upper.sh d4.tmp d4.res
./upper.sh d3.tmp d3.res

rm dl.tmp d2.tmp d4.tmp d3.tmp

real Om8.163s
user Om@.0825s

4.3. Basic tools

Summary

e You have either

— one very large file to process

* with one program: split

* with several programs: fifo (or pipes)
- many files to process

* With one program xargs

* with many programs make

45

4.4. GNU Parallel

GNU Parallel

GNU parallel is a shell tool for executing jobs in parallel using one or more computers. A job can be a
single command or a small script that has to be run for each of the lines in the input. The typical input is a
list of files, a list of hosts, a list of users, a list of URLSs, or a list of tables. A job can also be a command
that reads from a pipe. GNU parallel can then split the input and pipe it into commands in parallel.

If you use xargs and tee today you will find GNU parallel very easy to use as GNU parallel is written to
have the same options as xargs. If you write loops in shell, you will find GNU parallel may be able to

replace most of the loops and make them run faster by running several jobs in parallel.

GNU parallel makes sure output from the commands is the same output as you would get had you run the G N U p a ra ' ' e I

commands sequentially. This makes it possible to use output from GNU parallel as input for other

programs. For people who live life in the parallel lane.

For each line of input GNU parallel will execute command with the line as arguments. If no command is given, the line of input is executed. Several lines

will be run in parallel. GNU parallel can often be used as a substitute for xargs or cat | bash.

More complicated to use but very powerful

Might not be available everywhere
46

4.4. GNU Parallel

* Syntax: parallel command :.: argument list

[~ NN dfr@hmem00 — bash
dfr@hmemd®:~/parcomp $ parallel echo :::

dfr@hmem@@:~/parcomp $§ parallel echo ::: {1..18}

18
dfr@hmem@@:~/parcomp $ time parallel sleep ::: {1..10}

real 8mll.288s

user BmB . 286s

5¥5s Bm8é.129s

dfr@hmem®0:~/parcomp $ parallel echo :::
dl.txt

d2 . txt

d3.txt

dd.txt

dfr@hmem@®:~/parcomp $ [

47

4.4. GNU Parallel

e Syntax: {} as argument placeholder.

dl.txt

d2.txt

d3.txt

dd.txt

dfr@hmem®@:~/parcomp § parallel echo {} {.}.res :::
dl.txt dl.res

d2.txt d2.res

d3.txt d3.res

dd.txt dd.res

dfr@hmem®®:~/parcomp $ parallel echo {} ::: ../parcomp/d?.txt
../parcomp/dl.txt

../parcomp/d2.txt

../parcomp/d3.txt

../parcomp/d4 . txt

dfr@hmem®0:~/parcomp § parallel echo {/} ::: ../parcomp/d?.txt
dl. txt

d2.txt

d3.txt

dd.txt
dfr@hmem@O:~/parcomp $
dfr@hmem@O:~/parcomp $
dfr@hmem8®:~/parcomp $ i

48

4.4. GNU Parallel

* Multiple parameters and --xapply

® M0 dfr@hmem00 — bash

dfr@hmemd0:~/parcomp § parallel echo ::: 12 3 4 :::
A

B
A
B
A
B
A
B
r

fr@hmem88:~/parcomp % parallel --xapply echo ::: 12 3 4 :::
A

B
C
D
fr@hmem@8:~/parcomp § parallel echo {1} and {2} ::: 1 2 3 4 :::
and
and
and
and
and
and
and
and
and
and
and
and
and

1
1
p
F.
3
3
4
a4
d
1
2
3
4
d
1
1
1
1
2
F.s
2
2
3
3
3
3
4

FPOoOMNMOD>PrPoOoOMNoD>roOND>

4.4. GNU Parallel

* When arguments are in a file : use :::: (4x ')

[~ NN dfr@hmem00 — bash

dfr@hmem®®:~/parcomp $ cat experiments.csv
Number,Letter
1,A

B
.B
A
.
C
A
fr@hmem@8:~/parcomp § parallel --colsep ',' --header '\n' echo {Number} {Letter} :::: experiments.csv
A
B
B
A
C
C

A
fr@hmemd0:~/parcomp $ [J

2
E
3
4
5
5
d
1
P
3
3
4
5
5
d

Other interesting options

--pipe Split a file

-S Use remote servers through SSH
-J n Run n jobs in parallel

-k Keep same order

--delay n Ensure there are n seconds between each start

--timeout n Kill task after n seconds if still running

Author asks to be cited: O. Tange (2011): GNU Parallel - The
Command-Line Power Tool, The USENIX Magazine, February
2011:42-47.

92

Homework

Reproduce the examples from the previous slides
with ./lower and ./upper.sh

using GNU Parallel

93

Solutions

* One program and many files

S time parallel -k ./lower.sh {} > res.txt ::: d?.txt

 One program and one large file

$ time cat d.txt | parallel -k -N1 --pipe ./lower.sh {} > res.txt

e Several programs and several files

$ time { parallel ./lower.sh {} {.}.tmp ::: d?2.txt ; \
> parallel ./upper.sh {} {.}.res ::: d?.tmp ; }

Summary

1. General concepts, definitions, challenges
2. Hardware for parallel computing
3. Programming models

4. User tools

56

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 53
	Slide 54
	Slide 56

