

CÉCI HPC Training

Connecting with SSH from Linux or Mac:
Introduction and advanced topics

Juan.Cabrera@unamur.be

18/10/2018 CÉCI HPC Training 2

Connecting with Secure SHell

➢ SSH context
➢ SSH introduction
➢ Getting your key
➢ SSH client usage and configuration
➢ SSH frequent mistakes
➢ SSH Agents, Passphrase managers
➢ Proxies and (pseudo-)VPNs (shuttle)
➢ SSH-based file transfer (SCP, rsync, SSHFS)

18/10/2018 CÉCI HPC Training 3

SSH context: CÉCI infrastructure

CÉCI is:
6 computers clusters from 5 French-speaking universities

..
.

..
.

... ..
.

..
.

..
.

..
.

.....
.

..
.

..
.

..
.

18/10/2018 CÉCI HPC Training 4

SSH context: CÉCI infrastructure

Tier-1 facility access for CÉCI user under special conditions

..
.

..
.

..
.

..
.

... ..
.

..
.

..
.

..
.

.....
.

..
.

..
.

..
.

18/10/2018 CÉCI HPC Training 5

SSH context: CÉCI infrastructure

On each cluster
Storage & working nodes are interconnected
in a private network

Storage & working nodes
n

1

n
2

:
n

m

Private LAN Private LAN Private LAN Private LAN

..
.

..
.

Private LAN Private LAN

..
.

..
.

... ..
.

..
.

..
.

..
.

...

Private LAN

..
.

..
.

..
.

..
.

18/10/2018 CÉCI HPC Training 6

SSH context: CÉCI infrastructure

● Example

Lemaitre3 (UCLouvain) Nic4 (ULiege)

Working nodes

Interconnections

18/10/2018 CÉCI HPC Training 7

SSH context: CÉCI infrastructure

Storage & working nodes

User must connect to the frontend to
- access its storage data and edit files
- submit jobs to the working nodes
- compiling and debugging
- transfer data
- Do not run heavy jobs in the frontend

Private LAN Private LAN Private LAN

zenobe

..
.

..
.

Private LAN

Frontends
Lemaitre2

Private LAN

Hmem

Private LAN

..
.

..
.

nic4 dragon1

... ..
.

hercules

..
.

..
.

vega

..
.

...

Private LAN

..
.

..
.

..
.

..
.

18/10/2018 CÉCI HPC Training 8

SSH context: CÉCI infrastructure

Storage & working nodes

frontends access is protected by firewall rules

Private LAN Private LAN Private LAN

zenobe

..
.

..
.

Private LAN

University
 network

Lemaitre2

Private LAN

Hmem

Private LAN

..
.

..
.

nic4 dragon1

... ..
.

hercules

..
.

..
.

vega

..
.

...

Private LAN

..
.

..
.

..
.

..
.

Frontends

18/10/2018 CÉCI HPC Training 9

SSH context: CÉCI infrastructure

Storage & working nodes

With the Firewall rules,
we can approximate the connections
by logical private university network

CÉCI
User

MONS IP UNamur IP

Private LAN Private LAN Private LAN

zenobe

..
.

..
.

Private LAN

University
 network

Lemaitre2

Private LAN

Hmem

Private LAN

..
.

..
.

nic4 dragon1

... ..
.

hercules

..
.

..
.

vega

..
.

...

Private LAN

..
.

..
.

..
.

..
.

Frontends

18/10/2018 CÉCI HPC Training 10

SSH context: CÉCI infrastructure

CÉCI
User

MONS IP UNamur IP

Connections to frontends done via SSH
From a CÉCI university network

Private LAN Private LAN Private LAN

zenobe

..
.

..
.

Private LAN

University
 network

Lemaitre2

Private LAN

Hmem

Private LAN

..
.

..
.

nic4 dragon1

..
.

..
.

hercules

..
.

..
.

vega

... ..
.

Private LAN

..
.

..
.

..
.

...

Frontends

18/10/2018 CÉCI HPC Training 11

SSH context: CÉCI infrastructure

Public network
CÉCI
User

CÉCI
User

Private LAN Private LAN Private LAN

zenobe

..
.

..
.

Private LAN

Storage & working nodes

University
 network

External Users
must go throw
a Gateway
Or VPN

Lemaitre2

Private LAN

Hmem

Private LAN

..
.

..
.

gwceci.cism.ucl.be

nic4 dragon1

..
.

..
.

hercules

..
.

..
.

vega

..
.

..
.

hal.unamur.be
Or VPN

VPN hydra.ulb.ac.beGateways gwceci.cism.ucl.be

Private LAN

..
.

..
.

... ..
.

Frontends

18/10/2018 CÉCI HPC Training 12

 SSH introduction: Public-Private key

An SSH identity uses asymmetric cryptography with
a pair of keys, one private and one public

id_rsa.ceci.pub

id_rsa.ceci

When you ask for a new or renew a CÉCI account at
https://login.ceci-hpc.be,
2 keys are generated using your passphrase

Private
Public

U U
Private

Public

https://login.ceci-hpc.be/

18/10/2018 CÉCI HPC Training 13

 SSH introduction: Public-Private key

$ cat id_rsa.ceci

BEGIN RSA PRIVATE KEY
ProcType: 4,ENCRYPTED
DEKInfo: DESEDE3CBC,798194AFB2800B27

KnvjN+KM4NogUADgdVI7GawGEmxJtXl2NKbezDyI8aeUAYxHemgThcRMswe2DAPs
fCeAJkTZ/B23uAWRppVvuPwJtp/AD3cvYxY5jBvSwVlAUdrfOJauegGc99CqvDEV
...
...
wT/yGuuRi9xfn6/yY7wTDxeaJg5WRd54oq0jbpTPUQmZWjJ1cuzBNiioNBXAFTGD
OJkZChE7fLD+C7kvYH0J6u4NiXUWqVheNerl0OnCZuM770gY5P0Q7w==
END RSA PRIVATE KEY

The private key is encrypted by the passphrase and
sent by mail to the user.
It must be stored in a safe place in your computer.

CÉCI
User

For security reasons

CÉCI does not keep a copy of the private key.
If you loose It, forget the passphrase or think it is compromised you must
retrieve a new key at https://login.ceci-hpc.be

PrivateU

https://login.ceci-hpc.be/

18/10/2018 CÉCI HPC Training 14

 SSH introduction: Public-Private key

Public key is placed in frontends for authentication.

$ cat id_rsa.ceci.pub

sshrsa AAAAB3NzaC1yc2EAAAABIwAAAQEA2U59janaM1uhC4R1yL4Iozlx4FvQ6a
Q0tqIv9c6EHGj2wafVG8bxR1StYYecQ1oaY2C3AUeu9bTjtH9Rj5IPlvFf4OPAFMgU5
9SFabgeCZcNJbvZdpyI3mrEhTZLRTNhlohRoMACRot7rAxiKg62j2myfwWPXygwC4j
2N6uY5bPMMi9Tp0anjEJwzSBFDH+3gI+EkR4LutgWzqKYo6lRXuhhs3kPYOKvT+OJ
3qgDF73z1VXhBTBH4d+mIKnQKzvRiRIsnG9/Jda1PHHqd/7AdezZgWdFilE6wPUthY
p8anh+GRy0veNUHwus0aUpIRkxXAOp0viKQdZEXtSdKMIxnQ==

Lemaitre2 Hmem nic4 dragon1 hercules vega zenobe

Public U

18/10/2018 CÉCI HPC Training 15

 SSH introduction: Public-Private key

Each frontend as it's own private and public key

Lemaitre2

Private
Public

F F

Hmem

Private
Public

F F

nic4

Private
Public

F F

dragon1

Private
Public

F F

hercules

Private
Public

F F

vega

Private
Public

F F

zenobe

Private
Public

F F

18/10/2018 CÉCI HPC Training 16

 SSH introduction: protocol

The SSH connection and authentication protocol has
5 main phases

18/10/2018 CÉCI HPC Training 17

 SSH introduction: protocol

1)Establish TCP Connection to frontend

2)Identification string Exchange (check if good ssh version)

3)Algorithm negotiation (which encryption algorithm is used)

4)Diffie-Hellman Key Exchange (User gets frontend's public key)

5)User Authentication and Authorization
(User send his/her login and public key)

18/10/2018 CÉCI HPC Training 18

Getting your private key

Users without email account access, without CÉCI
university email or who does not need a CÉCI account can
use a key for one of the guest accounts.

http://www.cism.ucl.ac.be/Services/Formations/pk/

Save the private key in a file named id_rsa.ceci

http://www.cism.ucl.ac.be/Services/Formations/pk/

18/10/2018 CÉCI HPC Training 19

Getting your private key

Users with email account access can ask for an account
at:

https://login.ceci-hpc.be/init/
● Click 'Create Account'

● Type in your email address

● Click on the link sent to you by email.

● Fill-in the form and hit the “Submit” button.

● Wait ... (A sysadmin is reviewing your information).

● receive your private key by email.

● Store the id_rsa.ceci file in a safe location.

https://login.ceci-hpc.be/init/

18/10/2018 CÉCI HPC Training 20

 SSH client : Linux & MacOS

SSH client for connection is already installed

18/10/2018 CÉCI HPC Training 21

 SSH client usage

$ chmod 600 ~/.ssh/id_rsa.ceci

1) Save your key id_rsa.ceci file from your e-mail to your home directory
2) Open a terminal
3) Create the .ssh directory if it does not exist

4) Move your key to this directory

5) Change the permissions of the file so that only you can read it

6) Check the permissions. The follow command :

Must output -rw------ permissions

7) Now you can connect to a CÉCI cluster, e.g. Hmem, with

$ ssh -i ~/.ssh/id_rsa.ceci yourlogin@hmem.cism.ucl.ac.be

$ ls -l ~/.ssh/id_rsa.ceci

$ mkdir ~/.ssh

$ mv id_rsa.ceci ~/.ssh/.

18/10/2018 CÉCI HPC Training 22

 SSH client usage

$ ssh -i ~/.ssh/id_rsa.ceci jcabrera@hmem.cism.ucl.ac.be

Example

mailto:jcabrera@hmem.cism.ucl.ac.be

18/10/2018 CÉCI HPC Training 23

$ ssh -i ~/.ssh/id_rsa.ceci jcabrera@hmem.cism.ucl.ac.be
The authenticity of host 'hmem.cism.ucl.ac.be (130.104.1.220)' can't be established.
RSA key fingerprint is 06:54:39:a0:5c:b5:56:b3:29:9e:96:67:a0:4a:c1:ff.
Are you sure you want to continue connecting (yes/no)?

 SSH client usage

FIRST TIME you connect to a frontend from a client,
you will be asked to accept the Public Key
Check the key fingerprint from CÉCI web site
http://www.ceci-hpc.be/clusters.html#hmem

Example

mailto:jcabrera@hmem.cism.ucl.ac.be
http://www.ceci-hpc.be/clusters.html#hmem

18/10/2018 CÉCI HPC Training 24

 SSH client usage

$ ssh -i ~/.ssh/id_rsa.ceci jcabrera@hmem.cism.ucl.ac.be
The authenticity of host 'hmem.cism.ucl.ac.be (130.104.1.220)' can't be established.
RSA key fingerprint is 06:54:39:a0:5c:b5:56:b3:29:9e:96:67:a0:4a:c1:ff.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hmem.cism.ucl.ac.be' (RSA) to the list of known hosts.
Enter passphrase for key '/home/jcabrera/.ssh/id_rsa.ceci':

Now, the hmem public key is stored in your know_host file

Enter the passphrase you set when you create the account
This will decrypt your private key

Example

mailto:jcabrera@hmem.cism.ucl.ac.be

18/10/2018 CÉCI HPC Training 25

 SSH client usage

$ ssh -i ~/.ssh/id_rsa.ceci jcabrera@hmem.cism.ucl.ac.be
The authenticity of host 'hmem.cism.ucl.ac.be (130.104.1.220)' can't be established.
RSA key fingerprint is 06:54:39:a0:5c:b5:56:b3:29:9e:96:67:a0:4a:c1:ff.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hmem.cism.ucl.ac.be' (RSA) to the list of known hosts.
Enter passphrase for key '/home/jcabrera/.ssh/id_rsa.ceci':
Welcome to
 __ __ __ __ ______ __ __
 /\ _\ \ /\ "-./ \ /\ ___\ /\ "-./ \
 \ \ __ \ \ \ \-./\ \ \ \ __\ \ \ \-./\ \
 \ _\ _\ \ _\ \ _\ \ _____\ \ _\ \ _\
 \/_/\/_/ \/_/ \/_/ \/_____/ \/_/ \/_/
 HighMemory CISM-CECI cluster
…
…
…
 Don't know where to start?
 --> http://www.ceci-hpc.be/install_software.html
 --> http://www.ceci-hpc.be/slurm_tutorial.html
[jcabrera@hmem00 ~]$

You are now connected !!

Example

mailto:jcabrera@hmem.cism.ucl.ac.be
http://www.ceci-hpc.be/slurm_tutorial.html

18/10/2018 CÉCI HPC Training 26

 SSH client usage: Frequent mistakes

The permissions on your key file are not correct
If, after running ssh hmem, for instance, you see something like:
@@@
@ WARNING: UNPROTECTED PRIVATE KEY FILE! @
@@@
Permissions 0644 for '/home/dfr/.ssh/id_rsa.ceci' are too open.
It is recommended that your private key files are NOT accessible by others.
This private key will be ignored.
bad permissions: ignore key: /home/dfr/.ssh/id_rsa.ceci
dfr@hmem.cism.ucl.ac.be's password:
it means that Permissions 0644 for '/home/dfr/.ssh/id_rsa.ceci' are too open.
Change them to 600 as explained in the first section of this document.

It means that
Permissions 0644 for '/home/dfr/.ssh/id_rsa.ceci' are too open.
Change them to 600 as explained previously

$ chmod 600 ~/.ssh/id_rsa.ceci

18/10/2018 CÉCI HPC Training 27

 SSH client usage: Frequent mistakes

You did not specify the correct path to your SSH key
If, after running ssh, you are being asked for a password directly,
$ ssh hmem
dfr@hmem.cism.ucl.ac.be's password:

it means that your SSH client did not use the SSH key. Make sure you either
used the -i option or that your .ssh/config is properly configured.

You used a wrong username or tried to connect before
your keys are synchronized
If, after running ssh, you are being asked for a passphrase, then a password,
$ ssh hmem
Enter passphrase for key '/home/dfr/.ssh/id_rsa.ceci':
dfr@hmem.cism.ucl.ac.be's password:

it often means that the user name you are using is not the correct one. It
could also mean that you are trying to connect with the new private key while
it has not been synchronized to the cluster yet (clusters are not synchronized
simultaneously you need to wait ~30 min.)

18/10/2018 CÉCI HPC Training 28

 SSH client usage

$ ssh -v -i ~/.ssh/id_rsa.ceci yourlogin@hmem.cism.ucl.ac.be
…
debug1: Local version string SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2
debug1: Remote protocol version 2.0, remote software version OpenSSH_5.3
…
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
…
The authenticity of host 'hmem.cism.ucl.ac.be (130.104.1.220)' can't be established.
RSA key fingerprint is 06:54:39:a0:5c:b5:56:b3:29:9e:96:67:a0:4a:c1:ff.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hmem.cism.ucl.ac.be' (RSA) to the list of known hosts.
debug1: ssh_rsa_verify: signature correct
…
debug1: SSH2_MSG_NEWKEYS received
…
debug1: Offering RSA public key: /home/jcabrera/.ssh/id_rsa.ceci
debug1: Server accepts key: pkalg ssh-rsa blen 277
…
Enter passphrase for key '/home/jcabrera/.ssh/id_rsa.ceci':
…
debug1: Authentication succeeded (publickey).

You can use -v, -vv or -vvv to troubleshooting a session

Identification
string Exchange

Algorithm
negotiation

Diffie-Hellman
Key Exchange

server authenticity

user authenticity

User
Authentication
and Authorization

communication is encrypted with symmetric key

18/10/2018 CÉCI HPC Training 29

Exercise

Make your first connection to hmem.cism.ucl.ac.be

18/10/2018 CÉCI HPC Training 30

 SSH configuration

$ ssh -i ~/.ssh/id_rsa.ceci yourlogin@hmem.cism.ucl.ac.be

You can reduce the length of the follow command:

Edit or create the configuration file ~/.ssh/config and add the contents
generated by the following script:

http://www.ceci-hpc.be/sshconfig.html

http://www.ceci-hpc.be/sshconfig.html

18/10/2018 CÉCI HPC Training 31

 SSH configuration

FowardX11 is needed to open
any host program in the client
display.

With ForwardAgent the
connection to the agent is
automatically forwarded to the
remote side

Now you can connect with the
command:

$ ssh hmem

Generalities ---------------------------------

Host hmem lemaitre3 hercules dragon1 vega nic4

 ForwardAgent yes

 ForwardX11 yes

 IdentityFile ~/.ssh/id_rsa.ceci

CÉCI clusters ---------------------------------

Host hmem

 Hostname hmem.cism.ucl.ac.be

 User jsmith

Host lemaitre3 ...

Host hercules ...

Host dragon1 ...

Host vega ...

Host nic4 ...

18/10/2018 CÉCI HPC Training 32

Exercise

● Create your configuration file

● Use the CECI Wizard to add all frontends

● And connect

● execute xeyes command on hmem

http://www.ceci-hpc.be/sshconfig.html

18/10/2018 CÉCI HPC Training 33

SSH Agents, Passphrase managers

Use an SSH agent which will remember the passphrase so
you do not have to type it in each time you issue the SSH command.
1) make sure you have an agent running
$ ssh-add -l
Could not open a connection to your authentication agent.

$ eval $(ssh-agent)

$ ssh-add -l
2048 20:6c:8c:cd:e8:e6:9b:4f:8c:9c:d6:8a:eb:37:6d:17 /home/jcabrera/.ssh/id_rsa.ceci (RSA)

$ ssh-add ~/.ssh/id_rsa.ceci
Enter passphrase for /home/jcabrera/.ssh/id_rsa.ceci:
Identity added: /home/jcabrera/.ssh/id_rsa.ceci (/home/jcabrera/.ssh/id_rsa.ceci)

3) add you key. Your key is decrypted and stored in memory

4) check the loaded key

2) If you get "Could not open a connection to your authentication agent."
 start an agent with

5) You can connect to the host without set the passphrase
$ ssh hmem

18/10/2018 CÉCI HPC Training 34

SSH Agents, Passphrase managers

You can have an ssh-agent started automatically at login by using
password managing software such as

Mac OS Keychain, KDE KWallet, Gnome Keyring (Seahorse), etc.

Gnome Keyring loads all private keys in ~/.ssh which have
the corresponding public key.

 You can generate the public key with the command

ssh-keygen -y -f ~/.ssh/id_rsa.ceci > ~/.ssh/id_rsa.ceci.pub

http://en.wikipedia.org/wiki/Keychain_%28Mac_OS%29
http://en.wikipedia.org/wiki/KWallet
http://en.wikipedia.org/wiki/GNOME_Keyring
https://wiki.gnome.org/Apps/Seahorse

18/10/2018 CÉCI HPC Training 35

Exercise

● Launch the ssh-agent

● Add your private key and connect.

You will be asked for you passphrase for the last time

18/10/2018 CÉCI HPC Training 36

SSH context: CÉCI infrastructure
REMEMBER

Public network
CÉCI
User

CÉCI
User

Private LAN Private LAN Private LAN

zenobe

..
.

..
.

Private LAN

Storage & working nodes

University
 network

External Users
must go throw
a Gateway
Or VPN

Lemaitre2

Private LAN

Hmem

Private LAN

..
.

..
.

gwceci.cism.ucl.be

nic4 dragon1

..
.

..
.

hercules

..
.

..
.

vega

..
.

..
.

hal.unamur.be
Or VPN

VPN hydra.ulb.ac.beGateways gwceci.cism.ucl.be

Private LAN

..
.

..
.

... ..
.

Frontends

18/10/2018 CÉCI HPC Training 37

Hmem

Proxies and (pseudo-)VPNs

Proxy Connection via gateway

$ ssh -o 'ProxyCommand ssh jcabrera@gwceci.cism.ucl.ac.be -W %h:%p' hmem
cabrera@hall.cism.ucl.ac.be's password:
Last login: Mon Aug 17 14:36:50 2015 from vm1.cism.ucl.ac.be
Welcome to
 __ __ __ __ ______ __ __
 /\ _\ \ /\ "-./ \ /\ ___\ /\ "-./ \
 \ \ __ \ \ \ \-./\ \ \ \ __\ \ \ \-./\ \
 \ _\ _\ \ _\ \ _\ \ _____\ \ _\ \ _\
 \/_/\/_/ \/_/ \/_/ \/_____/ \/_/ \/_/
 HighMemory CISM-CECI cluster

CÉCI
User

gateway

Public network

$ ssh -o 'ProxyCommand ssh gatewayuser@gatewayadress -W %h:%p' hmem

Replace gatewayuser@gatewayadress by
your university login name and gateway address

gwceci.cism.ucl.be

All input and output data from client is forwarded to the host through the gateway

18/10/2018 CÉCI HPC Training 38

Proxies and (pseudo-)VPNs

$ ssh hmem%gwhal

Proxy Connection via gateway

For UCL and UNamur user can connect through a gateway
Use the wizard http://www.ceci-hpc.be/sshconfig.html

UNamur Specific --

Host gwhal

 Hostname hal.unamur.be

 User jbcabrer

Host *%gwhal

 ProxyCommand ssh -W %h:%p gwhal

To connect just type:

You can do the same for others cluster

Gatewayadress:
 UCL: gwceci.cism.ucl.ac.be
 Unamur: hal.unamur.be

http://www.ceci-hpc.be/sshconfig.html

18/10/2018 CÉCI HPC Training 39

Proxies and (pseudo-)VPNs

You can redirect throw ssh tunnel all ports for all or some of your
IP connections via the gateway.
This can be done with the python program sshuttle.
To use it, you need to have root or sudo permission.

$./sshuttle -r jbcabrer@hal.unamur.be 0.0.0.0/0

Redirect connections for all IP

Redirect only UCL IP

$ wget https://github.com/sshuttle/sshuttle/archive/v0.78.4.zip
$ unzip v0.78.4.zip
$ cd sshuttle-0.78.4/
$ sudo ./setup.py install

$./sshuttle -r gwceci 130.104.1.0/24

Now you can access to https://login.ceci-hpc.be/ from outside the university
Check IP at https://www.whatismyip.com/

You can also install sshuttle with pip, apt-get, yum or brew

https://login.ceci-hpc.be/

18/10/2018 CÉCI HPC Training 40

SSH-based file transfer
(SCP, rsync, SSHFS)

You can copy files/directories back and forth between computers
● Verify your agent is running and hmem is defined in your config file
● Create a temporary directory with dummy files
$ mkdir -p coursssh/scptest; touch coursssh/scptest/file{1..4}.txt

● Copy the directory to your home directory in hmem and check
$ scp -r coursssh/scptest hmem:coursssh/.
$ ssh hmem 'ls coursssh/scptest/'

$ scp -r hmem:coursssh/scptest coursssh/scptest2

$ scp -r -3 hmem:coursssh/scptest hercules:coursssh/.

● Copy between frontends. (direct connection between frontends)

● Copy it back

● To use the alias hercules your ~/.ssh/config file must be set in hmem

$ scp -r hmem:coursssh/scptest hercules:coursssh/.

For a copy throw your computer use -3

$ scp -r coursssh/scptest2 hmem%:coursssh/.

● Copy via proxy (from outside the universities network)

18/10/2018 CÉCI HPC Training 41

SSH-based file transfer
(SCP, rsync, SSHFS)

rsync is widely used for backups and mirroring and as an improved
copy command for everyday use

Most common usage is to synchronize files with archive option -a and compress option z.
If you want to get a copy of your hard work you did in the frontend to your laptop:

$ ssh hmem 'mkdir coursssh/rsynctest; touch coursssh/rsynctest/file{1..4}.txt'
$ rsync -avz --progress hmem:coursssh/rsynctest coursssh/.

$ ssh hmem 'echo "Adding hello1 word in hmem" >> coursssh/rsynctest/file4.txt'
$ rsync -avz --progress hmem:coursssh/rsynctest coursssh/.

Modify a file at the frontend and synchronize

Modify a file in your computer and prevent Overwrite when synchronize -u

$ echo 'Adding hello in client' > coursssh/rsynctest/file3.txt
$ rsync -avzu --progress hmem:coursssh/rsynctest coursssh/.

Delete a file at the frontend and force delete it in your computer.

$ ssh hmem rm coursssh/rsynctest/file1.txt
$ rsync -avz --del --progress hmem:coursssh/rsynctest coursssh/.

18/10/2018 CÉCI HPC Training 42

SSH-based file transfer
(SCP, rsync, SSHFS)

Use SSHFS to mount a remote file system - accessible via SSH

Linux install:

$ sudo apt-get install sshfs

Mac Install:

Install FUSE and SSHFS from https://osxfuse.github.io/

$ yum install sshfs

Fedora/CentOs

Debian, Ubuntu

18/10/2018 CÉCI HPC Training 43

SSH-based file transfer
(SCP, rsync, SSHFS)

$ echo 'file content' > CECIHOME/file_fuse.txt

$ fusermount -u ~/clusters_dirs/hmem

$ cluster=hmem;
$ sshfs -o uid=`id -u` -o gid=`id -g` $cluster:$(ssh $cluster 'echo $CECIHOME')/ CECIHOME

$ ssh hmem 'cat $CECIHOME/file_fuse.txt'

$ mkdir CECIHOME

Create a local repository to mout the CÉCI home

Mount the remote CÉCI Home

Create file in the mounted directory

Check the file content in the frontend

the command:

gives the path of CECIHOME in the cluster

disconnect

Example: Mount your CECIHOME

$ ssh $cluster 'echo $CECIHOME'

https://support.ceci-hpc.be/doc/_contents/ManagingFiles/TheCommonFilesystem.html#home

18/10/2018 CÉCI HPC Training 44

Exercise

● Mount CECIHOME from your university frontend.

18/10/2018 CÉCI HPC Training 45

Thanks

Thank you for your attention

18/10/2018 CÉCI HPC Training 46

RFC 3447 Public-Key Cryptography Standards (PKCS)
#1: RSA Cryptography Specifications Version 2.1

8.2.1 Signature generation operation

 RSASSA-PKCS1-V1_5-SIGN (K, M)

 Input:
 K signer's RSA private key
 M message to be signed, an octet string

 Output:
 S signature, an octet string of length k, where k is the
 length in octets of the RSA modulus n

 Errors: "message too long"; "RSA modulus too short"

 Steps:

 1. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5 encoding
 operation (Section 9.2) to the message M to produce an encoded
 message EM of length k octets:

 EM = EMSA-PKCS1-V1_5-ENCODE (M, k).

 If the encoding operation outputs "message too long," output
 "message too long" and stop. If the encoding operation outputs
 "intended encoded message length too short," output "RSA modulus
 too short" and stop.

 2. RSA signature:

 a. Convert the encoded message EM to an integer message
 representative m (see Section 4.2):

 m = OS2IP (EM).

 b. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA
 private key K and the message representative m to produce an
 integer signature representative s:

 s = RSASP1 (K, m).

 c. Convert the signature representative s to a signature S of
 length k octets (see Section 4.1):

 S = I2OSP (s, k).

 3. Output the signature S.

18/10/2018 CÉCI HPC Training 47

8.2.2 Signature verification operation

 RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

 Input:
 (n, e) signer's RSA public key
 M message whose signature is to be verified, an octet string
 S signature to be verified, an octet string of length k, where
 k is the length in octets of the RSA modulus n

 Output:
 "valid signature" or "invalid signature"

 Errors: "message too long"; "RSA modulus too short"

 Steps:

 1. Length checking: If the length of the signature S is not k octets,
 output "invalid signature" and stop.

 2. RSA verification:

 a. Convert the signature S to an integer signature representative
 s (see Section 4.2):

 s = OS2IP (S).

 b. Apply the RSAVP1 verification primitive (Section 5.2.2) to the
 RSA public key (n, e) and the signature representative s to
 produce an integer message representative m:

 m = RSAVP1 ((n, e), s).

 If RSAVP1 outputs "signature representative out of range,"
 output "invalid signature" and stop.

c. Convert the message representative m to an encoded message EM

 of length k octets (see Section 4.1):

 EM' = I2OSP (m, k).

 If I2OSP outputs "integer too large," output "invalid
 signature" and stop.

 3. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5
 encoding
 operation (Section 9.2) to the message M to produce a second
 encoded message EM' of length k octets:

 EM' = EMSA-PKCS1-V1_5-ENCODE (M, k).

 If the encoding operation outputs "message too long," output
 "message too long" and stop. If the encoding operation outputs
 "intended encoded message length too short," output "RSA modulus
 too short" and stop.

 4. Compare the encoded message EM
 and the second encoded message EM'.
 If they are the same, output "valid signature"; otherwise, output
 "invalid signature."

18/10/2018 CÉCI HPC Training 48

 Diffie-Hellman Key Exchange (RFC 4253)

 The Diffie-Hellman (DH) key exchange provides a shared secret that
 cannot be determined by either party alone. The key exchange is
 combined with a signature with the host key to provide host
 authentication. This key exchange method provides explicit server
 authentication as defined in Section 7.

 The following steps are used to exchange a key. In this, C is the
 client; S is the server; p is a large safe prime; g is a generator
 for a subgroup of GF(p); q is the order of the subgroup; V_S is S's
 identification string; V_C is C's identification string; K_S is S's
 public host key; I_C is C's SSH_MSG_KEXINIT message and I_S is S's
 SSH_MSG_KEXINIT message that have been exchanged before this part
 begins.

 1. C generates a random number x (1 < x < q) and computes
 e = g^x mod p. C sends e to S.

 2. S generates a random number y (0 < y < q) and computes
 f = g^y mod p. S receives e. It computes K = e^y mod p,
 H = hash(V_C || V_S || I_C || I_S || K_S || e || f || K)
 (these elements are encoded according to their types; see below),
 and signature s on H with its private host key. S sends
 (K_S || f || s) to C. The signing operation may involve a
 second hashing operation.

 3. C verifies that K_S really is the host key for S (e.g., using
 certificates or a local database). C is also allowed to accept
 the key without verification; however, doing so will render the
 protocol insecure against active attacks (but may be desirable for
 practical reasons in the short term in many environments). C then
 computes K = f^x mod p, H = hash(V_C || V_S || I_C || I_S || K_S
 || e || f || K), and verifies the signature s on H.

 Values of 'e' or 'f' that are not in the range [1, p-1] MUST NOT be
 sent or accepted by either side. If this condition is violated, the
 key exchange fails.

 This is implemented with the following messages. The hash algorithm
 for computing the exchange hash is defined by the method name, and is
 called HASH. The public key algorithm for signing is negotiated with
 the SSH_MSG_KEXINIT messages.

 First, the client sends the following:

 byte SSH_MSG_KEXDH_INIT
 mpint e

 The server then responds with the following:

 byte SSH_MSG_KEXDH_REPLY
 string server public host key and certificates (K_S)
 mpint f
 string signature of H

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client's identification string (CR and LF
 excluded)
 string V_S, the server's identification string (CR and LF
 excluded)
 string I_C, the payload of the client's SSH_MSG_KEXINIT
 string I_S, the payload of the server's SSH_MSG_KEXINIT
 string K_S, the host key
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

 This value is called the exchange hash, and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret.

 The signature algorithm MUST be applied over H, not the original
 data. Most signature algorithms include hashing and additional
 padding (e.g., "ssh-dss" specifies SHA-1 hashing). In that case, the
 data is first hashed with HASH to compute H, and H is then hashed
 with SHA-1 as part of the signing operation.

18/10/2018 CÉCI HPC Training 49

7. Public Key Authentication Method: "publickey" RFC 4252

 The only REQUIRED authentication 'method name' is "publickey"
 authentication. All implementations MUST support this method;
 however, not all users need to have public keys, and most local
 policies are not likely to require public key authentication for all
 users in the near future.

 With this method, the possession of a private key serves as
 authentication. This method works by sending a signature created
 with a private key of the user. The server MUST check that the key
 is a valid authenticator for the user, and MUST check that the
 signature is valid. If both hold, the authentication request MUST be
 accepted; otherwise, it MUST be rejected. Note that the server MAY
 require additional authentications after successful authentication.

 Private keys are often stored in an encrypted form at the client
 host, and the user must supply a passphrase before the signature can
 be generated. Even if they are not, the signing operation involves
 some expensive computation. To avoid unnecessary processing and user
 interaction, the following message is provided for querying whether
 authentication using the "publickey" method would be acceptable.

 byte SSH_MSG_USERAUTH_REQUEST
 string user name in ISO-10646 UTF-8 encoding [RFC3629]
 string service name in US-ASCII
 string "publickey"
 boolean FALSE
 string public key algorithm name
 string public key blob

 Public key algorithms are defined in the transport layer
 specification [SSH-TRANS]. The 'public key blob' may contain
 certificates.

 Any public key algorithm may be offered for use in authentication.
 In particular, the list is not constrained by what was negotiated
 during key exchange. If the server does not support some algorithm,
 it MUST simply reject the request.

 The server MUST respond to this message with either
 SSH_MSG_USERAUTH_FAILURE or with the following:

 byte SSH_MSG_USERAUTH_PK_OK
 string public key algorithm name from the request
 string public key blob from the request

 To perform actual authentication, the client MAY then send a
 signature generated using the private key. The client MAY send the
 signature directly without first verifying whether the key is
 acceptable. The signature is sent using the following packet:

 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service name
 string "publickey"
 boolean TRUE
 string public key algorithm name
 string public key to be used for authentication
 string signature

 The value of 'signature' is a signature by the corresponding private
 key over the following data, in the following order:

 string session identifier
 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service name
 string "publickey"
 boolean TRUE
 string public key algorithm name
 string public key to be used for authentication

18/10/2018 CÉCI HPC Training 50

When the server receives this message, it MUST check whether the
 supplied key is acceptable for authentication, and if so, it MUST
 check whether the signature is correct.

 If both checks succeed, this method is successful. Note that the
 server may require additional authentications. The server MUST
 respond with SSH_MSG_USERAUTH_SUCCESS (if no more authentications are
 needed), or SSH_MSG_USERAUTH_FAILURE (if the request failed, or more
 authentications are needed).

 The following method-specific message numbers are used by the
 "publickey" authentication method.

 SSH_MSG_USERAUTH_PK_OK 60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

