
 1

Preparing, submitting
and managing jobs with Slurm

damien.francois@uclouvain.be
October 2023

Until now:

- access the cluster
- copy data to/from the cluster
- choose and activate software
- run software in the command line prompt
- create/write text files
- actually run software on the cluster

tl;dr:
DON’T: run software on the login node
DO: submit a job to the resource manager/job scheduler

What is a job?

What is a resource manager/scheduler ?

Disk

RAM

CPU (socket)

CPU (core)GPU

Motherboard

Compute node

resources:

resources

time

now

Running job

Pending job

Completed job

Submitted jobs

scheduling:

resources

time

now

Running job

Pending jobs

Completed job

scheduling:

resources

time

now

Running job

Pending jobs

Completed job

scheduling:

exclusive allocation of resources
to jobs over time

Slurm

Free and free

Mature (exists since ~2003)

Very active community

Many success stories

Widely used

 Also an intergalactic soft drink

Futurama (TV Series, creators David X. Cohen, Matt Groening)
Fry and the Slurm Factory (1999)

20th Century Fox Television

Topics:

1. How to create a job

2. How to choose resources

3. Understand priorities

4. Typical workloads

5. Interactive sessions

6. Workflows

7. Advanced submission techniques

Part . You will learn how to:

Create and submit a job
Monitor and inspect jobs
Control (your own) jobs

with

Make up your mind ...

● operations you need to perform
● resources you need for those operations

e.g. 1 core, 2GB RAM
for 1 hour

e.g. launch program 'myprog'

Job parameters

Job steps

How to submit a job >

... then write a submission script...

It is a shell
script (Bash)

Regular Bash
comment

Bash sees
these as
comments

Slurm takes
them as

parameters

Job step
creation

Regular Bash
commands

How to submit a job >

... then write a submission script...

It is a shell
script (Bash)

Regular Bash
comment

Bash sees
these as
comments

Slurm takes
them as

parameters

Job step
creation

Regular Bash
commands

No Bash variables
allowed in

parameters

How to submit a job >

... then write a submission script...

It is a shell
script (Bash)

Regular Bash
comment

Bash sees
these as
comments

Slurm takes
them as

parameters

Job step
creation

Regular Bash
commands

No Bash
commands

allowed between
parameters

How to submit a job >

... then write a submission script...

It is a shell
script (Bash)

Regular Bash
comment

Bash sees
these as
comments

Slurm takes
them as

parameters

Job step
creation

Regular Bash
commands

srun commands
will run on all
nodes of the

allocation and will
be monitored
specifically

How to submit a job >

non-srun
commands will
run on the first

node of the
allocation, and will
not be monitored

... and submit it with sbatch

Slurm gives
me the JobID

submit with
sbatch

One more
job parameter

How to submit a job >

Job parameters can be specified by:

- #SBATCH directives in the submission script ;
- environment variables ;
- parameters on the sbatch command line.

Most of the parameters have default values and can be omitted.

The job ID is used later on to uniquely identify the job.

The submission
script

Submit your first job!

1. Connect to a cluster

2. Open a text editor and write the script for a
job that will run the “hostname” command

– No parameter needed in this simple test
– hostname will write the name of the computer
– Do not forget the Shebang (#!...) line

3. Submit the job

4. Look for files created in the directory

Monitor jobs with squeue command

How to monitor jobs >

man squeue

Monitor jobs with squeue command

How to monitor jobs >

JOBID

PARTITION

NAME

USER

ST

TIME

NODES

NODELIST

(REASON)

the job ID assigned by Slurm

set of nodes the job was submitted to

name of the job as specified with --job-name

username of the user who submitted the job

State of the job: Running, PenDing, ...

Running time of the job

Number of nodes requested (--nodes)

Nodes assigned to the job by Slurm
 node[001-004] = node001, node002, node003, and node004

Reason why the job is pending
(Resources): your job is next, (priority): you need to wait, ...

Monitor jobs with squeue command

How to monitor jobs >

Get all information Slurm has about
a job with scontrol show <jobid>

How to inspect jobs >

man scontrol

Cancel jobs with ... scancel

How to control jobs >

man scancel

Modify jobs with scontrol update
jobid=<id> <parameter>=<value>

How to control jobs >

man scontrol

Most parameters can only be changed
for PENDING jobs

Part . You will learn how to:

discover cluster features (resources),
target specific features and tune your jobs,

choose suitable resource values, and
get job actual resource usage.

in your submission scripts for

Use sinfo to find out about the
nodes and the partitions

How to discover cluster resources
>

PARTITION

AVAIL

TIMELIMIT

NODES

STATE

NODELIST

Partition name

State of the partition (Up, Down, ...)

Maximum run time for jobs submitted to that partition

Number of nodes in the partition

State of nodes in partition

List of compute nodes in said state in the partition

Use sinfo to find out about the
nodes and the partitions

How to discover cluster resources
>

NODES

PARTITION

AVAIL_FEATURES

CPUS

MEMORY

GRES

Number of nodes with displayed characteristics

Partition in which nodes reside

“Features” of the node, chosen by the admins to characterise them

Numer of “compute units” or “slots” offered by the nodes e.g. core

Amount of memory (RAM in MB) offered by the nodes

“Generic resources” offered by the nodes, e.g. GPUs

Use sacctmgr and scontrol to find
out about QOSes and licences

How to discover cluster resources
>

QOS: Quality of Service: used by sysadmin to organize/prioritize jobs
License: used to organise software license distribution to jobs
 often used also for other cluster-wise resources

Target resources with
#SBATCH parameters

You want You ask

To choose a specific feature (e.g. a
processor type or a network type)

--constraint

To use a generic resources (e.g. a GPU) --gres (or --gpu)

To access a specific licensed software --licenses

To chose a partition --partition

To use a specific QOS --qos

To choose the CPU distribution on nodes --nodes
--ntasks-per-nodes
--cpus-per-tasks

How to target specific resources >

You want You ask

To set a job name --job-name

To attach a comment to the job --comment=”Some comment”

To get emails --mail-type=BEGIN|END|FAILED|ALL|TIME_LIMIT_90
--mail-user=my@mail.com

To set the name of the output file --output=result-%j.txt
--error=error-%j.txt

To enquiry when it would start --test-only

To specify an ordering --dependency=after(ok|notok|any):jobids
--dependency=singleton

How to tune a job >

Tune your jobs with
 #SBATCH parameters

Full list of options in sbatch manpage

Try to get the cluster info!

1. Connect to a cluster

2. run the “sinfo” command

3. run the “sinfo -Nl” command

4. run the “sinfo -R” command

run “type sinfo” to know if sinfo is
the stock sinfo or a modified version

run “command sinfo” to get the stock version

How to discover limits >

A word about limits

- Natural limits: the hardware specifications

- Admin-defined limits: to ensure fair access for everyone

 e.g. max job time

How to discover limits >

View limits with sacctmgr

Limits that can be set :
– number of running, or submitted jobs
– size of a job
– duration of a job
– CPU usage of all jobs of a user
– cluster usage of an account
– ...

How to discover limits >

View limits with sacctmgr

Limits can be set :
● globally for all users: sacctmgr show cluster
● globally for a specific user: sacctmgr list user $USER withassoc
● at the QOS level: sacctmgr list qos
● at the Account (project) level: sacctmgr list account MyAccount

withassoc where user=$USER

● on partitions: scontrol show partitions

How to discover limits >

View limits with sacctmgr

man sacctmgr

How to discover limits >

View limits with sacctmgr

https://support.ceci-hpc.be/doc/_contents/SubmittingJobs/SlurmLimits.html

How to discover reasons for pending >

View reason for which your job is pending
with squeue -l -j <JOBID>

https://slurm.schedmd.com/squeue.html#SECTION_JOB-REASON-CODES

[dfr@lemaitre3 ~]$ squeue --me -l
Wed Aug 24 11:00:30 2022
CLUSTER: lemaitre3
 JOBID PARTITION USER STATE TIME TIME_LIMI NODES NODELIST(REASON)
 70786661 batch dfr PENDING 0:00 6:00 50 (Resources)
 70786672 batch dfr PENDING 0:00 6:00 50 (Priority)
 70786664 batch dfr PENDING 0:00 6:00 1 (BeginTime)
 70786673 batch dfr PENDING 0:00 6:00 1 (ReqNodeNotAvail)
 70786670 batch dfr PENDING 0:00 6:00 1 (Dependency)
 70786657 batch dfr PENDING 0:00 6:00 1 (JobHeldUser)
 70786658 debug dfr PENDING 0:00 6:00 5 (PartitionNodeLimit)

Submit your second job!

1. Connect to a cluster

2. Open a text editor and write the script for a
job that will run the “sleep 3000” command
and request a 5 minutes run time .

3. Submit the job (on a debug partition)

4. Look for files created in your directory

Let
● t be the requested time,
● m the requested memory,
● n the requested number of CPUs, and
● ε the risk for your job to be killed due to limit trespassing

The problem is:

subject to:

with ----------- the job waiting time in the queue

--------------- the job running time

--------------- the job memory usage

A word about resource requests.

There is not magic solution to finding the
optimal resource request for a given job

Too much -> idle resources -> waste of resources
Too few -> job killed -> waste of resources

How to choose suitable resource values >

More CPUs ->
less running time

More CPUS ->
more waiting time

How to choose suitable resource values >

Practical approach

Run a sized-down problem on your laptop or the
frontend and observe memory usage and CPU
usage for several values of the number of CPUs
with the top command.

How to choose suitable resource values >

Practical approach

● You can also use /usr/bin/time -v
 (use full path not just “time”)

How to choose suitable resource values >

Pragmatic approach
● Use guesstimates for the first job
● Then analyze the accounting information
● Extrapolate for next jobs

How to choose suitable resource values >

Use the sstat command
for running steps (started with srun)

How to get job actual resource usage >

Use the sacct command
for completed jobs

How to get job actual resource usage >

Use the sacct command
for completed jobs

How to get job actual resource usage >

JobID

ReqMem

MaxRSS

Timelimit

Elapsed

AllocCPUs

 CPUTime

TotalCPU

Job ID . Step ID of the job step

Requested memory (Gc: GigaByte per core)

Actually-used memory (Resident Set Size)

Time limit requested for the job with --time

Actual time used by the job

Number of allocated CPUs to the job
CPUtime allocated to the job (Elapsed * AllocCPUs)

Actual CPU time consumed by the job

Use --profile for detailed
information

How to get job actual resource usage >

- Time series for CPU usage, memory, etc.

- Might not be available on all clusters

- Self service alternative : sps

 creates .csv files

https://github.com/OxfordCBRG/sps

Look at your jobs!

1. Connect to a cluster

2. run the sacct command to see your job
history

Best approach

Use profiling tools...

How to choose suitable resource values >

Part . You will learn how to:

understand priorities, fairshare,
and scheduling

in

 https://slurm.schedmd.com/priority_multifactor.html

Priority is weighted sum of
multiple job/account caracteristics

How to understand priorities >

Use sprio to get the details

How to understand priorities >

Check the priority settings!

1. Connect to a cluster

2. Run sprio -w

3. Run scontrol show conf|grep ^Priority

4. Look for the meaning of the items with man
slurm.conf | grep Priority

The “faireshare” factor helps
everyone getting access to resources

● A share is allocated to you: 1/#users
● If your actual usage is above that share, your

fairshare value is decreased towards 0.
● If your actual usage is below that share, your

fairshare value is increased towards 1.
● The actual usage taken into account decreases

over time; usage two months ago has less impact
on the fairshare than usage two days ago.

How to understand fairshare >

How to understand fairshare >

How to understand fairshare >

Get your current share with sshare

How to understand fairshare >

Get your current share with sshare

How to understand fairshare >

Normalised share for CÉCI 1000000/(1000000+1+1) = 0,999998

Normalised share for a CÉCI user 0,999998 * 1/4037 = 0,0002477081992

RawUsage User1 = 672111

NormalisedUsage User1 = 672111 / 823547414 = 0,0008161169455

EffectiveUsage User1 = 0,0008161169455 + (1,000000 - 0,0008161169455)*0,0002477081992/0,999998 = 0,001063623481

FairShare User1 = 2**(-0,001063623481/ 0,0002477081992 /5) = 0,5514219814

Resources are “reserved” for top job
but small jobs can be “backfilled”

A job with a lower priority can start before a job with a
higher priority if it does not delay that job's start time.

resources

time

100

80

70

A job is a number of cpus times duration

job's priorityjob

How to understand scheduling >

resources

time

90
100

80

70

10

Two more jobs to schedule

job's priorityjob

A job with a lower priority can start before a job with a
higher priority if it does not delay that job's start time.

How to understand scheduling >

Resources are “reserved” for top job
but small jobs can be “backfilled”

resources

time

90

100

80

70

This job must wait until job with priority 70 is finished because it needs its resources

job's priorityjob

10

A job with a lower priority can start before a job with a
higher priority if it does not delay that job's start time.

How to understand scheduling >

Resources are “reserved” for top job
but small jobs can be “backfilled”

resources

time

90

100

80

70

10

Low priority job has short max run time and less requirements ; it starts before larger priority job

job's priorityjob

A job with a lower priority can start before a job with a
higher priority if it does not delay that job's start time.

How to understand scheduling >

Resources are “reserved” for top job
but small jobs can be “backfilled”

Part . You will learn how to write
submission scripts for :

 Multi-node SPMD programs (e.g. MPI)
Single-node shared memory programs (e.g. OpenMP)

 Master/slave programs
 Embarrassingly parallel workloads

Accelerators (GPUs)

Clusters are parallel machines.
They work best with parallel jobs.

Types of parallel jobs:
- shared memory, multi-core
- distributed memory, multi-node
- accelerators (GPU)
- embarrasingly parallel

Depends on the sofware !
No magic unfortunately

Example scripts in /CECI/proj/training/slurm

Code (program.c)

Binary (program.exe)

Process (PID 1235)

Compiler

Loader

Executable file

Text file

Running instance

One execution thread

Computer

Code (program.c)

Binary (program.exe)

Process (PID 1235)

Compiler

Loader

Executable file

Text file

Running instance

One execution thread
is assigned by slurm
one CPU core

Computer

Code (program.c)

Binary (program.exe)

Multiple Processes

Compiler

Loader, called
multiple times

Executable file

Text file

Running instances

Computer

Forking Code

Single binary

Multiple Processes

Compiler

Loader, called
once

Executable file

Text file

Running instances

parent child

Computer

IPC – Inter-process communication

Multithreaded Code

Single binary

Multithread process

Compiler

Loader, called
once

Executable file

Text file

Running instance

Computer

Code (program.c)

Binary (program.exe)

Compiler

srun, called
once

Executable file

Text file

Running instances

Computer

Multiple Processes
possibly on multiple
nodes

Computer

Computer

N
et

w
or

k

A multi-node job
is possible only if

- all processes are
independent ; or

Embarrasingly parallel

- processes communicate
through files on a common
filesystem/DB ; or

e.g. Master/slave setup

- processes communicate
through the network
thanks to a dedicated
library

e.g. SPMD setup with MPI

F
ile

sy
st

em

Computer

Computer

Computer

srun, --ntasks, --ncpus-per-task

A parallel job typically comprises a sequence of steps,
each made of multiple parallel tasks.

A step is a single invocation of srun
A task is a process started by srun

A single task can be assigned multiple CPUs
A single task cannot be spread across multiple nodes

Multiple steps can run in parallel if they use a subset of the allocation

Single-node job:
Specify a number of “CPUs”

You want You ask

N CPUs to launch N threads or processes on
the same node (=single task)

--cpus-per-task=N

#! /bin/bash
#SBATCH --cpus-per-task=3

module load GCC
gcc -fopenmp /CECI/proj/training/slurm/omp_hello_world.c -o omp_hello_world
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

./omp_hello_worlds
u
b
m
i
t
-
o
m
p
.
s
h

How to submit a shared-memory job >

or

You want You ask

All the CPUs on the node and all the memory --nodes=1
--exclusive
--mem=0

Or request a full node

How to submit a shared-memory job >

#! /bin/bash
#SBATCH --nodes=1
#SBATCH --exclusive
#SBATCH --mem=0

module load GCC
gcc -fopenmp /CECI/proj/training/slurm/omp_hello_world.c -o omp_hello_world
export OMP_NUM_THREADS=$SLURM_CPUS_ON_NODE

./omp_hello_world

s
u
b
m
i
t
-
o
m
p
.
s
h

You want You ask

N CPUs, to launch N MPI processes --ntasks=N

#! /bin/bash
#SBATCH --ntasks=4

module load OpenMPI
mpicc /CECI/proj/training/slurm/mpi_hello_world.c -o mpi_hello_world

#mpirun ./mpi_hello_world
srun ./mpi_hello_worldsu
b
mi
t-
mp
i.

s
h

How to submit an distributed memory job >

Multi-node job:
Specify a number of “tasks”

You want You ask

N CPUs --ntasks=N

N CPUs spread across distinct nodes --ntasks=N --nodes=N
or
--ntasks=N --ntasks-per-node=1

N CPUs spread across distinct nodes and nobody else
around

--nodes=N --exclusive

N CPUs spread across N/2 nodes --ntasks=N --ntasks-per-node=2

N CPUs on the same node --ntasks=N --ntasks-per-node=N
or
--ntasks=N --nodes=1

N CPUS spread accross as many nodes as possible --ntasks=N --spread-job

Between 8 and 16 CPUs based on what is available --nodes=4-8 --ntasks-per-node=2

How to submit an MPI job >

Specify a number of “tasks”
and optionally a number of “nodes”

You want You ask

N CPUs to launch N processes --ntasks=N

Use srun --multi-prog

#! /usr/bin/env bash
#SBATCH --ntasks=3

cp /CECI/proj/training/slurm/coordinator.sh .
cp /CECI/proj/training/slurm/worker.sh .
cp /CECI/proj/training/slurm/multi.conf .

srun --multi-prog multi.conf

su
bm
it

-
ma
st

e
rs

la
v
e.

sh

multi.conf for --multi-prog
0 ./coordinator.sh
1-2 ./worker.sh

mu
lt
i.

co
n
f

How to submit a master/slave job >

Request a GPU with --gres or --gpu

#! /bin/bash

#SBATCH --cpus-per-task=3
#SBATCH --mem-per-cpu=1g
#SBATCH --gres=gpu:2

module load CUDA # or cuda on some clusters
nvidia-smi

su
bm
i
t.

s
h

You want You ask

N GPUs
N GPUs per node

--gpus=N
--gres=gpu:N

1 specific GPU (e.g. TeslaV100) --gpus=TeslaV100:1
--gres=gpu:TeslaV100:1

How to submit a GPU job >

Hybrid jobs

with for instance MPI and OpenMP
#! /bin/bash
#
#SBATCH --ntasks=2
#SBATCH --ncpus-per-task=3

module load OpenMPI
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun ./hello_world_mpi

s
u
b
m
i
t
.
s
h

Create job arrays with --array

You want You ask

N CPUs to launch N completely independent jobs --array=1-N

#! /usr/bin/env bash
#SBATCH --array=1-4

[! -f ./array_hello.sh] && \
 cp /CECI/proj/training/slurm/array_hello.sh .

./array_hello.sh $SLURM_ARRAY_TASK_IDsu
bm
it

-
a
rr
ay
.
sh

How to submit an embarrasingly parallel workload >

Using --array=1-4, one submission of the script will generate 4 jobs managed as a
whole by Slurm.

[dfr@lemaitre3 ~] $ sbatch /CECI/proj/training/slurm/submit-array.sh
[dfr@lemaitre3 ~] $ squeue --me
CLUSTER: lemaitre3
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 72772281_[1-4] batch array_he dfr PD 0:00 1 (Priority)

Each job will “see” a different value for $SLURM_ARRAY_TASK_ID

Set job dependencies with
--dependency

You want You ask

Job B to start after Job A --dependency=afterok:<JOBID>

How to chain jobs >

Using --dependecy=afterok:12345, the submitted job will only start after job
12345 successfully completed

[dfr@lemaitre3 ~] $ sbatch /CECI/proj/training/slurm/job-dependee.sh
Submitted batch job 72772285 on cluster lemaitre3
[dfr@lemaitre3 ~] $ sbatch --dependency=afterok:72772285 /CECI/proj/training/slurm/job-
dependent.sh
Submitted batch job 72772286 on cluster lemaitre3
[dfr@lemaitre3 ~] $ squeue --me
CLUSTER: lemaitre3
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 72772286 batch dependen dfr PD 0:00 1 (Dependency)
 72772285 batch dependee dfr PD 0:00 1 (Priority)

Dependent jobs will wait for dependee.

Part . You will learn how to:

create an interactive Bash session
launch JupyterLab or Rstudio

with

Use salloc to test multi-node setups

e.g. salloc –-ntasks=4 --nodes=2

How to get an interactive allocation >

Use salloc to test multi-node setups

How to get an interactive allocation >

Use srun for a shell on a compute node

How to get an interactive allocation >

srun --pty bash -l

Get an interactive job!

1. Connect to a cluster

2. Run srun --pty bash -l

3. Use hostname to find out which node was
allocated to your job

Get an interactive job!

1. Connect to a cluster

2. Run srun --pty bash -l

3. Use hostname to find out which node was
allocated to your job

On more recent versions of Slurm
the salloc command can be configured
to start the shell on the first node
of the allocation automatically.

1. Use srun for shell on compute node

How to start a Jupyterlab instance >

2. Load module and start service

Use the --ip option to get the right URL

How to start a Jupyterlab instance >

3. Create SSH tunnel (SOCK proxy)

Run ssh -D in a new terminal and leave it open

How to start a Jupyterlab instance >

4. Configure browser

How to start a Jupyterlab instance >

4. Configure browser

Setup same port you chose in Step 3.

How to start a Jupyterlab instance >

4. Configure browser

This will probably prevent you from browsing the web.
Consider creating a specific profile
or using another browser alongside.

Other browsers can be configured the same way
The keywords are “Proxy” and “SOCKS”

How to start a Jupyterlab instance >

5. Connect to URL

Paste URL you got in Step 2 in address bar

How to start a Jupyterlab instance >

0. Install helper script

How to start an Rstudio instance >

https://raw.githubusercontent.com/nickjer/singularity-rstudio/master/
rstudio_auth.sh

chmod +x rstudio_auth.sh

1. Use srun for shell on compute node

How to start an Rstudio instance >

2. Load module and start service

1. Run hostname to get the IP address
2. Choose a pasword and a port

3. Run the server

How to start an Rstudio instance >

3. Create SSH tunnel (SOCK proxy)

Run ssh -D in a new terminal and leave it open

How to start an Rstudio instance >

4. Configure browser

How to start an Rstudio instance >

4. Configure browser

Setup same port you chose in Step 3.

How to start an Rstudio instance >

5. Connect to URL built at Step 2

How to start an Rstudio instance >

Enter your CECI login
and the password you chose in Step 2.

5. Connect to URL

How to start an Rstudio instance >

Get an interactive job!

1. Connect to a cluster

2. Start a web service

3. Connect to it

Final words...

before you go...

Good practice ; some advice...

 Choose the cluster wisely
 Understand the levels of parallelism required by your job
 Understand the I/O patterns of your jobs ; choose storage
 Do not compute on the login node
 Do not leave interactive sessions idle
 Tests arrays with 2 tasks before running the full array
 Double check the email options
 Do not waste resources ; split job if necessary
 Do not submit micro (<1 minute) jobs ; pack jobs
 Do not run squeue every second
 Do not wait for the cluster load to decrease to submit jobs

Checkpointing
when your jobs are toooooo loooooong

compared with the cluster maximum walltimes

Worfklow management systems
when your job dependencies and

parameters are too complex
to handle by hand

https://support.ceci-hpc.be/doc/_contents/SubmittingJobs/
WorkflowManagement.html

Write the submission script
for your use case

• Which program will you use?

• What type of parallelism? Is the program able
• to use GPUs?
• to use multiple nodes?
• to use multiple cores?

• How many at the same time?
• What module(s) to load?

• What data will the job consume or produce?

• Where is the input data located?
• Where will the output data be located?

• How much disk does the job need?
• How much memory does the job need?

Write the submission script
for your use case

• For how long should the job run?
• What should the output file be named?
• Do you want email notifications?
• Do you want to refer to the job by some name rather than

ID?
• Which cluster is the most appropriate?
• Which partition should you target?
• Are there specific hardware types you want to avoid?
• What are the limits in place?

T
yp

ic
al

 s
ke

le
to

n

• Resources

• Targets

• Parameters

• Environment

• Data in

• Compute

• Data out

Final words...

Write and submit submission scripts
Explore the clusters

Read the man pages of Slurm commands
Use the resources you request

Beware of limits
Build workflows

Submit jobs !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	page0
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

