

 Introduction to Scientific Software
Deployment and Development

damien.francois@uclouvain.be
November 2023

http://www.ceci-hpc.be/training.html

https://xebialabs.com/periodic-table-of-devops-tools/

“Promote the tools
the professionals are using for

developing and deploying programs,
to make them correct, maintainable, shareable, and fast,

efficiently.”

Goal of this session:

 “...to make them correct and maintainable, …, efficiently”

Paul F. Dubois. 1999. Ten Good Practices in Scientific Programming. Computing in Science and Eng. 1,
1 (January 1999), 7-11. DOI=10.1109/MCISE.1999.743610 http://dx.doi.org/10.1109/MCISE.1999.743610

Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. (2014) Best Practices for
Scientific Computing. PLoS Biol 12(1): e1001745. doi:10.1371/journal.pbio.1001745

Dubois PF, Epperly T, Kumfert G (2003) Why Johnny can't build (portable scientific software).
Comput Sci Eng 5: 83–88. doi: 10.1109/mcise.2003.1225867

Prlić A, Procter JB (2012) Ten Simple Rules for the Open Development of Scientific Software. PLoS
Comput Biol 8(12): e1002802. doi:10.1371/journal.pcbi.1002802

Victor R. Basili, Jeffrey C. Carver, Daniela Cruzes, Lorin M. Hochstein, Jeffrey K. Hollingsworth, Forrest
Shull, Marvin V. Zelkowitz, "Understanding the High-Performance-Computing Community: A
Software Engineer's Perspective," IEEE Software, vol. 25, no. 4, pp. 29-36, July/August, 2008

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK (2017) Good enough practices in
scientific computing. PLoS Comput Biol 13(6): e1005510. https://doi.org/10.1371/journal.pcbi.1005510

Koehler Leman J et al “Better together: Elements of successful scientific software development in a
distributed collaborative community. PLoS Comput Biol. 2020 doi: 10.1371/journal.pcbi.1007507.

https://doi.org/10.1371/journal.pcbi.1005510

Follow programming good practices:

1. Write for humans, not for computers
2. Use the appropriate language
3. Organize for change and make incremental changes
4. Follow good coding principles
5. Plan for mistakes, automate testing
6. Use modern source-code management system
7. Document the design and purpose, not the implementation
8. Optimize only when it works already
9. Debug cleverly

 “...to make them correct and maintainable, …, efficiently”

 1. Write for humans, not for computers

Robert C. Martin Clean code A Handbook of Agile Software Craftsmanship, 2009

 1. Write for humans, not for computers

https://towardsdatascience.com/data-scientists-your-variable-names-are-awful-heres-how-to-fix-them-89053d2855be

vs

Structure clear but goal not obvious

Goal clear but structure less obvious

Sweet spot in-between...

 1. Write for humans, not for computers

Arnaoudova, et al. Linguistic antipatterns: what they are and how developers perceive them. Empir Software Eng 21, 104–158 (2016).

Avoid naming anti-patterns:

 1. Write for humans, not for computers

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

 1. Write for humans, not for computers

https://stackoverflow.com/questions/7825055/what-does-the-operator-do-in-c

if (ErrorHasOccured())
 HandleError();

 2. Use the appropriate language

are all valid choices in a scientific context.

 2. Use the appropriate language

What they have in common:

 Computation-efficiency concern
 Optimized libraries available for linear algebra, signal processing, learning, etc.
 Support for parallel computing
 Extensions/libraries for using accelerators (GPUs)

 2. Use the appropriate language

“Functional programming”

Very close to mathematical formulation

Imposes constraints that make code less
prone to bugs and easier to make parallel

Not very popular in HPC (yet)

 https://madhadron.com/programming/seven_ur_languages.html

Scientific software specifications are always changing:

 Work from working state to another working state

 Document the changes and why they were made

 Refactor upon “code smell”

Keyword: modularity: small independent interchangeable
building blocks (e.g. functions)

 3. Organize for change and make incremental changes

 3 ½ . Avoid “code smells” / anti-patterns

https://pragmaticways.com/31-code-smells-you-must-know/

 3 ½ . Avoid “code smells” e.g. nested if’s

https://refactoring.com/catalog/replaceNestedConditionalWithGuardClauses.html

function getSign(x) {
 result = NULL;
 if (x == 0)
 result = “zero”;
 else {
 if (x > 0)
 result = “positive”;
 else {
 if (x < 0)
 result = “negative”
 else
 result = “NaN”;
 }
 }
 return result;
}

function getSign(x) {
 if (x == 0)
 return “zero”;
 if (x > 0)
 return “positive”;
 if (x == 0)
 return “negative”;
 return “Nan”;
}

don’t do

 4. Follow good coding principles

Clean Code: A Handbook of Agile Software Craftsmanship, R. C. Martin, Prentice Hall, 2008

 Don't repeat yourself (DRY)
 Keep it simple (KISS)
 One level of abstraction
 Single responsibility principle
 Separation of concern
 Avoid premature optimization
 Follow style guidelines
 Many others...

 4. Follow good coding principles and style

https://stackoverflow.com/questions/1642028/what-is-the-operator-in-c

 4. Follow good coding principles and style

https://stackoverflow.com/questions/1642028/what-is-the-operator-in-c

while(x-- > 0)

 4. Follow good coding principles and style

 4. Follow good coding principles and style

 4. Follow good coding principles : gracefully handle user errors

https://andreabergia.com/blog/2023/05/error-handling-patterns/

Use error handling techniques:
 Return codes

 Exceptions

 Callbacks

 “Result” structs

Be informative in the error messages.

 “r no good” vs “Error: Input argument Rate (r) must be positive”

 Grade errors: “Warning”, “Error”, “Fatal”

 5. Plan for mistakes, automate testing; Test-driven development

https://stratoflow.com/types-of-software-testing/

 5. Plan for mistakes, automate testing; Test-driven development

https://en.wikipedia.org/wiki/Test-driven_development

Write the tests before you even write the code

 for your code, papers, thesis, etc.

 6. Use modern source-code management system

 7. Document the purpose and design, not the implementation

vs

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006561

 7. Document the purpose and design, not the implementation

vs

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006561

 7. Document the purpose and design, not the implementation

Learn Markdown

https://daringfireball.net/projects/markdown/

 Do not try to make it fast when it is not working yet

 (focus on data structures, organization, etc. rather than on micro-optimizations)

 Do not try to make it universal for all possible future needs
at the beginning “YAGNI” (do not close doors either)

 8. Optimize only when it works already

https://xkcd.com/974/

 8. Optimize only when it works already

Use a profiler

Incorporate
benchmarks in your

tests

 9. Debug cleverly

Use a debugger

 9. Debug cleverly

Use a method

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Describe out loud to an imaginary
rubber duck (or a willing colleague)
each line in your code in simple
terms and why it is obviously
correct.

At some point, if you get hesitant,
that is probably where the bug is!

Dig that part of the code until you
are confident again that it works.

Or discover that it does actually not
work as expected ...

 9. Debug cleverly

Use a method

The Mikado Method, O. Ellnestam & D. Brolund, Manning, 2014

1. Automate the compiling process
2. Learn about containers
3. License your code

 “… to make them … shareable …, efficiently”

 1. Automate the compiling process

Making sure it
compiles on

your laptop is
not enough

It has to
compile on all
the clusters...

 1. Automate the compiling process

https://docs.gitlab.com/ee/ci/introduction/

 2. Learn about containers

 3. License your code: Why?

 Commercial reason :
– you want to make money out of it – control distribution

 – forbid reverse engineering

 Scientific reason :
– you want to it to be used and get citations

– you need to allow usage, and/or modification, etc.
– you require others to cite your work

– you want to protect yourself from liability claims

 3. License your code: e.g. MIT

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Softwarre.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Reproduced from https://tldrlegal.com

 3. License your code: e.g. BSD, GPL

Reproduced from https://tldrlegal.com

BSD

GPL

 3. License your code: finding help

Slide credit: Sébastien ADAM

 3 ½. GitHub CITATION files

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files

1. Use optimized libraries
2. Choose the right storage system
3. Think parallel from the start
4. Integrate checkpoint/restart from the start

 “… to make them … fast …, efficiently”

 1. Use optimized libraries

https://csantill.github.io/RPerformanceWBLAS/

~
tim

e

 2. Choose the right storage system

 3. Think parallel from the start

1. Identify data flows and independent tasks
2. Make data decomposition easy
3. Make work decomposition easy

 4. Integrate checkpoint/restart from the start

1. Allow starting from a non-initial state
2. Save variables to disk frequently

1. Perform “multi-host” SSH
2. Master configuration management
3. Use terminal multiplexing
4. Install software like a boss
5. Avoid the boilerplate
6. BACKUPS!

 “ …, efficiently”

 1. Perform “multi-host” SSH

https://clustershell.readthedocs.io/en/latest/

 2. Master configuration management

https://www.ansible.com

 2. Master configuration management

https://www.ansible.com

 2. Master configuration management

https://www.ansible.com

 3. Use terminal multiplexing

https://github.com/tmux/tmux/wiki

Do not let SSH
disconnections harm
your workflow
(and much more)

 4. Install software like a boss

https://easybuild.readthedocs.io/en/latest/

 4. Install software like a boss (module tips)

https://github.com/direnv/direnv/

Setup your $PS1 as [\u@\h \W] (${LOADEDMODULES##*:}) \$ to see latest loaded module

Use direnv to automatically load modules
based on the current working directory

Create module collections with module save

Write and use your own modules with
module use PATH

help([[Setup env so that Slurm commands
operate on Debug partition]])

local partition='debug'

setenv("SQUEUE_PARTITION", partition)
setenv("SINFO_PARTITION", partition)
setenv("SBATCH_PARTITION", partition)
setenv("SRUN_PARTITION", partition)

 5. Avoid the boilerplate

https://cookiecutter.readthedocs.io/en/stable/
https://github.com/search?q=cookiecutter&type=Repositories

https://cookiecutter.readthedocs.io/en/stable/

 6. BACKUPS!!!

https://securityboulevard.com/2020/05/3-2-1-backup-rule-the-rule-of-thumb-to-solve-your-data-loss-problems/

 6. BACKUPS!!!

 6. BACKUPS!!!

https://rdiff-backup.net

“A short catalog of tools
the professionals are using for

developing and deploying programs,
to make them correct, maintainable, shareable, and fast,

efficiently.”

This was:

 good practices
 important choices
 useful tools
 practical references

We discussed:

12 simple questions
ordered by 'difficulty'
measures quality of organization
for research programming

If you do not score at least a 7
there is room for improvement
using the tools presented here

 The “Phillip test” (by Philip Guo)

Work faster & more reliably

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

