

Program of this lecture

® Programation Style

® Definition of many concept

= Obiject, instance, class, attribute, ...

® Dataclass

= Equivalent of Fortran Structure
® Class
® |nheritance
® super function

® Multiple inheritance

CECI training: object oriented programming

Programming paradigm

(Paradigm = style of computer programming)

® Procedural languages:

= Describe step by step the procedure that should be followed to
solve a specific problem.

® Object-oriented programming:

= Data and methods of manipulating data are kept as single unit called
object

= A user can access the data via the object’s method

= The internal working of an object maybe changed without affecting
any code that uses the object

CECI training: OOP with C ++ 3 2021

Procedural Example

score = ldea: a program doing some trivia
questionl = """What is the meaning of HPC: test
1. High Performance Computing
2. Higgs Portal Channel
3. High Portability Cluster Pretty Simple and very readable
4. Hello Peter Charles?""" COde

answer = input(questionl)

1if answer "1
score 1

question2 = """What is the meaning of CECI:
1. Centre des equipes de calcul interactifs
2. Consortium des Equipements de calculs intensifs
3. This is the french word for "this"
4. Cool Equipe Connaissant Ipython?"""

answer = input(question2)

if answer == "2":
score += 1

print("You have %d/2 correct answer" % score)

CECI training: object oriented programming

Procedural Example

score = 0

questionl = """What is the meaning of HPC:
1. High Performance Computing
2. Higgs Portal Channel
3. High Portability Cluster
4. Hello Peter Charles?"""

answer = input(questionl)

1if answer "1
score 1

question2 = """What is the meaning of CECI:
1. Centre des equipes de calcul interactifs
2. Consortium des Equipements de calculs intensifs
3. This is the french word for "this"
4. Cool Equipe Connaissant Ipython?"""

answer = input(question2)

if answer == "2":
score += 1

print("You have %d/2 correct answer" % score)

ldea: a program doing some trivia
test

Pretty simple and very readable
code

Issue:

- formatting of the question is done

by hand

- some repetition in the logic
(Does not really hurt here)

CECI training: object oriented programming

Better Procedural Example

In procedural case, those Issues are solved with Function:
This avoid to repea vhen adding functionality like

- check that answer is a valid number

- consistent formatting ot the questions

def ask(question, answers):

ans = "\n".join([f"{1+1}: {a}" for 1, a in enumerate(answers)])
valid = [str(1+1) for 1 1in range(lenCanswers))]

print_valid = ",".join(valid)

text = f”{questlon}\n{ans}\nReply by {print_valid}\n>"

while True]
receive = i1nput(text)
1f receive 1in valid:
return int(receive)

else:
print(f"invalid answer: Please Retry. Valid answer are {print_valid}")

CECI training: object oriented programming

Better Procedural Example

In procedural case, those issues are solved with Function:
This avoid to repeat itself when adding functionality like
- check that answer is a valid number

- consistent tormatting ot the questions

def ask(question, answers):

ans = "\n".join([f"{1+1}: {a}" for 1, a in enumerate(answers)])
valid = [str(1+1) for 1 1in range(lenCanswers))]

print_valid = ",".join(valid)

text = f"{question}\n{ans}\nReply by {print_valid}\n>"

while True:
receive = 1nput(text)
1f receive 1in valid:
return int(receive)

else:
print(f"invalid answer: Please Retry. Valid answer are {print_valid}")

CECI training: object oriented programming

Better Procedural Example

Better code:
- a function allows to avoid to repeat itself
- data are a bit more structured

1f __name__
score = 0
1f ask("What is the meaning of HPC", ["High Performance Computing",
"Higgs Portal Channel"”,
"High Portability Cluster”,
"Hello Peter Charles"]) == 1:

score += 1
1f ask("What is the meaning of CECI", ["Centre des equipes de calcul interactifs”
"Consortium des Equipements de Calculs 1nten51f5
"This 1s the french word for \"this\"
"Cool Equipe Connaissant Ipython"]) ==
score += 1
print("You have %d/2 correct answer" % score)

Issue:
- Data is not well structured... (correct answer check)
- still repetition for the score handling
(problematic if this move to a more complex handling)

CECI training: object oriented programming

Let’s create a data structure

class Question:

def __init__(self, question, answers, correct):
self.question = question
self.answers = answers

= correct

self.correct

”is a class/data structure

= jnit__ is the “constructor”

q = Question("what is my name?",

[2] v/ 0.1s

g.correct

[3] v/ 0.2s

1

> v
g.correct = 2
print(q.correct)

[4] v/ 0.2s

P

4‘.

It is called after an *

+ Allow to setup initial value

["Olivier",

CECI training: object oriented programming

IIHalII -

"Damien"',

"Bernard"],

"’ (named self) is created

correct=1)

Let’s create a data structure

class Question:

def __init__(self, question: strf answerj: list[str], correci:int)
self.question = question
self.answers = answers
self.correct = correct

”is a class/data structure

= init__is the “constructor”

+ ltis called after an“ ” (named self) is created

+ Allow to setup initial value

q = Question("what is my name?", ["Olivier", "Hal", "Damien", "Bernard"], correct=1)

[2] v/ 0.1s

g.correct

[3] v/ 0.2s

1

> v
g.correct = 2
print(q.correct)

[4] v/ 0.2s

P

CECI training: object oriented programming

Naming convention

sl ©® Question is called a class
® g is named object or instance of the class
Question
® “correct” is an attribute of the class/object
self ® This is the current instance

= Convention is to use self (but not enforced)

CECI training: object oriented programming

Function can take data-structure

def ask(question, answers):

ans = "\n".join([f"{1+1}: {a}" for 1, a in enumerate(answers)])
valid = [str(i+1) for 1 in range(len(answers))]

print_valid = ",".join(valid)

text = f"{question}\n{ans}\nReply by {print_valid}\n>"

while True:
receive = input(text)
1f receive 1in valid:
return int(receive)
else:
print(f"invalid answer: Please Retry. Valid answer are {print_valid}")

Style comment:
- typically do not put shortcut at the beginning of the
function but directly call object.attribute

CECI training: object oriented programming

Function can take data-structure

def ask(onequestion):

question = onequestion.question
answers = onequestion.answers

ans = "\n".join([f"{1+1}: {a}" for 1, a in enumerate(answers)])
valid = [str(i+1) for 1 in range(len(answers))]
print_valid = ",".join(valid)

text = f"{question}\n{ans}\nReply by {print_valid}\n>"

while True:
receive = input(text)
1f receive 1in valid:
return int(receive)
else:
print(f"invalid answer: Please Retry. Valid answer are {print_valid}")

Style comment:
- typically do not put shortcut at the beginning of the
function but directly call object.attribute

CECI training: object oriented programming

Example code

creation of the data-structure (now ready to be read from external file/ database/...)

all_questions

gl = Question("What 1s the meaning of HPC", ["High Performance Computing",
"Higgs Portal Channel",
"High Portability Cluster",

"Hello Peter Charles"],
correct=1)

g2 = Question("What 1s the meaning of CECI", ["Centre des equipes de calcul interactifs”,
"Consortium des Equipements de calculs intensifs",
"This is the french word for \"this\"",
"Cool Equipe Connaissant Ipython"],

correct=2)

all_questions = [gl,q2]

Running the code

score = 0
for g in all_questions:
1f ask(gq) == q.correct:
score +=1
else:
print(f"No the correct answer was {q.correct}")
print("You have %d/2 correct answer" % score)

Quite nice encapsulation

CECI training: object oriented programming

Function and object

print(q.correct)

def change_correct(question, new_correct):
question.correct = new_correct

change_correct(q, 3)

print(q.correct)

VRS

® Remember that you can modify any attribute of an
object within a function (python specific)

CECI training: object oriented programming

Dataclass

® | et assume, we want to avoid the issue and be sure
that the data are untouched during the all program

= This is a perfect example for using the “dataclass” of
python

import dataclasses
from dataclasses import dataclass

@dataclass(frozen=True)
class Question:
"""Class for keeping track of one question"""
question: str
answers: list[str] = dataclasses.field(default_factory=list)
correct: int =1

@ is called a decorator, that allow to define “for you”, the __init__, _ str__,
__repr___ of the class for you.
The frozen=True allows to ensure that data are readonly

CECI training: object oriented programming

Dataclass example

change_correct(q, 3)

® 0.6s

Traceback (most recent call last)
change_correct(q, 3)
, 1n

def (question, new_correct):

B3 R TE S l= M s e
, 1n
: cannot assign to field ‘correct'
print(q)
v/ 0.2s

Question(question='what is my name?', answers=['Olivier', 'Hal', 'Damien', 'Bernard'], correct=1)

Before (hand made data-structure) was:

print(q)
v/ 0.2s

<__main__.Question object at 0x106605ff0>

CECI training: object oriented programming

Class

® A Class is a data-structure with function/method

@dataclass(frozen=True)

class Question:

Class for keeping track of one question
question: str

answers: list[str] = dataclasses.field(default_factory=list)

mmn mmn

correct: int =1

def ask(onequestion):

question = onequestion.question
answers = onequestion.answers

Content of the function

CECI training: object oriented programming

Class

® A Class is a data-structure with function/method

@dataclass(frozen=True)
class Question:
Class for keeping track of one question

question: str
answers: list[str] = dataclasses.field(default_factory=list)

mmn mmn

correct: int =1

def ask(self):

question = self.question
answers = self.answers

Content of the function

CECI training: object oriented programming

Class

® A Class is a data-structure with function/method

@dataclass(frozen=True)
class Question:
Class for keeping track of one question

question: str
answers: list[str] = dataclasses.field(default_factory=list)

mmn mmn

correct: int =1

def ask(self):

question = self.question
answers = self.answers

Content of the function

Note:

- the indentation
- this is now a function of the class
- gain in clarity

CECI training: object oriented programming

Class

® A Class is a data-structure with function/method

@dataclass(frozen=True)
class Question:
Class for keeping track of one question

question: str
answers: list[str] = dataclasses.field(default_factory=list)

mmn mmn

correct: int =1

def ask(self):

question|= self.question
answers = self.dnswers

Content of the function

Note:

- the indentation
- this is now a function of the class
- gain in clarity

- the use of self
- the first attribute of ALL class function is the instance itself (self)

CECI training: object oriented programming

Class

You can have many function/method, with additional argument

def print_correct(self, prefix=""):
1f not prefix:
t: HTH

else:
t="t"
print(f"{prefix} {t}he correct answer was {self.correct}: {self.answers[self.correct-1]}")

CECI training: object oriented programming

Class

You can have many function/method, with additional argument

def print_correct(self, prefix=""):
1f not prefix:
t: HTH

else:
t:”t”
print(f"{prefix} {t}he correct answer was {self.correct}: {self.answers[self.correct-1]}")

Main code was before:

score = 0
for g in all_questions:
1f ask(g) == q.correct:
score +=1
else:
print(f"No the correct answer was {q.correct}")

CECI training: object oriented programming

Class

You can have many function/method, with additional argument

def print_correct(self, prefix=""):
1f not prefix:
— HTH

else:
t:”t”
print(f"{prefix} {t}he correct answer was {self.correct}: {self.answers[self.correct-1]}")

Main code was before:

score = 0
for g in all_questions:
1f ask(g) == q.correct:
score +=1
else:
print(f"No the correct answer was {q.correct}")

Syntax change from ask(q) -> g.ask()

CECI training: object oriented programming

Class

You can have many function/method, with additional argument

def print_correct(self, prefix=""):
1f not prefix:
t: HTH

else:
t:”t”
print(f"{prefix} {t}he correct answer was {self.correct}: {self.answers[self.correct-1]}")

Main code was before:

score = 0
for g in all_questions:
1f ask(g) == q.correct:
score +=1
else:
print(f"No the correct answer was {q.correct}")

Syntax change from ask(q) -> g.ask()

score = 0
for q in_all _guestions:
1fl g.ask() == g.correct:
score +=1
else:

q.print_correct(prefix="No,")

CECI training: object oriented programming

Advance possibility

® Allow to sum object

from __future__ import annotations

import dataclasses
from dataclasses import dataclass

@dataclass
class Color:
"""Class for keeping track of one question
red: float = 0.
green: float = 0.
blue: float = 0.

mwn

def __add__(self, other: Color) -> Color:
r = (self.red+other.red)/2
g = (self.green+other.green)/2
b = (self.blue+other.blue)/2
return Color(r,g,b)

blue = Color(blue=1)
red = Color(red=1)
print(blue+red)

® You can customise all python operator (assighment,
addition, multiplication, ...)

CECI training: object oriented programming 18

Class inheritance

® Extend what a class can do by inheritance

Bloss QuestionStatus(Question):

Mother
Child

® An object of type QuestionStatus is also of type
Question

® By default all attributes/functions/method of the
mother class are present in the child class.

 The child can overwrite the mother behaviour

class QuestionStatus(Question):

def 1init (self. *aras. **opts): Overwrite the constructor ..
O[VTCESy i KoTo DU o b B IR TSN R ale I EOa A d D But explicitly call the it to expand it

self.attempt = 0
self.success = 0

CECI training: object oriented programming

Multiple Class inheritance

e Mulitiple class inheritance possible

Class B:
Class C: ® If both B and C defines a function
Class A (B,C):
« UsetheoneinB
® Mainly use for cooperative feature
* |n that case do not use
« A init__ (self,...)
* But super().__init__ (—no self—)

~

super().xxx with self of type A will call B.xxxx

super().xxx with self of type A will call A.xxxx

o
—

CECI training: object oriented programming

Conclusion

® Structuring your data is Essential

= Both in procedural / object-oriented programming

® Dataclasses allows simple and powerful way to
create data-structure (read-only, slots,...)

® A class is a data-structure with functions
= A function is associated to the data-structure

® |nheritance allows to recycle code between
different class
= A class should do one (and only one) task

= Then you can compose object

CECI training: object oriented programming

