
Introduction to Python

I’m good at Fortran/C, why do I need Python ?

Goal of this session:

Help you decide if you want to use python for (some of) your projects

What is Python

Python is object-oriented (not covered today)
Python is Interpreted (executed line by line)

High portability
Usually lower performance than compiled languages

Python is High(er)-level (than C or Fortran)
Lots of high-level modules and functions

Python is dynamically-typed and strong-typed
no need to explicitly define the type of a variable
variable types are not automatically changed (and should not)

Why Python ?

Easy to learn
Python code is usually easy to read, syntax tends to be short and simple
The Python interpreter lets you try and play
Help is included in the interpreter
Huge community

Straight to the point
Many tasks can be delegated to modules, so that you only focus on things
specific to your needs

Fast
A lot of Python modules are written in C, so the heavy lifting is fast
Python itself can be made faster in many ways (there’s a session on that)

Hugely popular

Wooclap

In this sessions we will use wooclap. You can connect now at this url:

www.wooclap.com/CECIPYTHON

Or use this QR code:

Keep a tab open there, questions should automatically appear when relevant.

Basics

Run your first program

For this tutorial you can use :

1. Go to
2. Enter your CISM credentials or ask for a temporary account in the chat
3. Click 'New' -> 'Python 3'
4. Enter print("Hello, World !")
5. Press Shift + Enter
6. Voilà !

You can use Python on the CECI clusters by loading the appropriate module:

You can also work on your laptop if you have Python installed.

Jupyter

https://jupyterhub.cism.ucl.ac.be

module load Python

python

https://jupyter.org/
https://jupyterhub.cism.ucl.ac.be/

Putting it in a file

you can use your favourite text editor and enter this:

then save it as name_i_like.py . make it executable with:

and run it with:

#!/usr/bin/env python #tell the system which interpreter to use

print("hello world")

chmod u+x name_i_like.py

./name_i_like.py

Python syntax 101

Assignment:

Note the absence of type specification (dynamic typing)

And you can do:

help(str) : shows the help
dir(word) : lists available methods
word : displays the content of the variable

number = 35

floating = 1.3e2

word = 'something'

other_word = "anything"

sentence = 'sentence with " in it'

Help

Getting the help on strings:

In [1]: help(str)

Help on class str in module builtins:

class str(object)

 | str(object='') -> str

 | str(bytes_or_buffer[, encoding[, errors]]) -> str

 |

 | Create a new string object from the given object. If encoding or

 | errors is specified, then the object must expose a data buffer

 | that will be decoded using the given encoding and error handler.

 | Otherwise, returns the result of object.__str__() (if defined)

 | or repr(object).

 | encoding defaults to sys.getdefaultencoding().

 | errors defaults to 'strict'.

 |

 | Methods defined here:

 |

 | __add__(self, value, /)

 | Return self+value.

 |

 | __contains__(self, key, /)

 | Return key in self.

 |

 | __eq__(self, value, /)

 | Return self==value.

 |

 | __format__(self, format_spec, /)

 | Return a formatted version of the string as described by format_sp

ec.

 |

 | __ge__(self, value, /)

 | Return self>=value.

 |

 | __getattribute__(self, name, /)

 | Return getattr(self, name).

 |

 | __getitem__(self, key, /)

 | Return self[key].

 |

 | __getnewargs__(...)

 |

 | __gt__(self, value, /)

 | Return self>value.

 |

 | __hash__(self, /)

 | Return hash(self).

 |

 | __iter__(self, /)

 | Implement iter(self).

 |

 | __le__(self, value, /)

 | Return self<=value.

 |

 | __len__(self, /)

 | Return len(self).

 |

 | __lt__(self, value, /)

 | Return self<value.

 |

 | __mod__(self, value, /)

 | Return self%value.

 |

 | __mul__(self, value, /)

 | Return self*value.

 |

 | __ne__(self, value, /)

 | Return self!=value.

 |

 | __repr__(self, /)

 | Return repr(self).

 |

 | __rmod__(self, value, /)

 | Return value%self.

 |

 | __rmul__(self, value, /)

 | Return value*self.

 |

 | __sizeof__(self, /)

 | Return the size of the string in memory, in bytes.

 |

 | __str__(self, /)

 | Return str(self).

 |

 | capitalize(self, /)

 | Return a capitalized version of the string.

 |

 | More specifically, make the first character have upper case and th

e rest lower

 | case.

 |

 | casefold(self, /)

 | Return a version of the string suitable for caseless comparisons.

 |

 | center(self, width, fillchar=' ', /)

 | Return a centered string of length width.

 |

 | Padding is done using the specified fill character (default is a s

pace).

 |

 | count(...)

 | S.count(sub[, start[, end]]) -> int

 |

 | Return the number of non-overlapping occurrences of substring sub

in

 | string S[start:end]. Optional arguments start and end are

 | interpreted as in slice notation.

 |

 | encode(self, /, encoding='utf-8', errors='strict')

 | Encode the string using the codec registered for encoding.

 |

 | encoding

 | The encoding in which to encode the string.

 | errors

 | The error handling scheme to use for encoding errors.

 | The default is 'strict' meaning that encoding errors raise a

 | UnicodeEncodeError. Other possible values are 'ignore', 'replac

e' and

 | 'xmlcharrefreplace' as well as any other name registered with

 | codecs.register_error that can handle UnicodeEncodeErrors.

 |

 | endswith(...)

 | S.endswith(suffix[, start[, end]]) -> bool

 |

 | Return True if S ends with the specified suffix, False otherwise.

 | With optional start, test S beginning at that position.

 | With optional end, stop comparing S at that position.

 | suffix can also be a tuple of strings to try.

 |

 | expandtabs(self, /, tabsize=8)

 | Return a copy where all tab characters are expanded using spaces.

 |

 | If tabsize is not given, a tab size of 8 characters is assumed.

 |

 | find(...)

 | S.find(sub[, start[, end]]) -> int

 |

 | Return the lowest index in S where substring sub is found,

 | such that sub is contained within S[start:end]. Optional

 | arguments start and end are interpreted as in slice notation.

 |

 | Return -1 on failure.

 |

 | format(...)

 | S.format(*args, **kwargs) -> str

 |

 | Return a formatted version of S, using substitutions from args and

kwargs.

 | The substitutions are identified by braces ('{' and '}').

 |

 | format_map(...)

 | S.format_map(mapping) -> str

 |

 | Return a formatted version of S, using substitutions from mapping.

 | The substitutions are identified by braces ('{' and '}').

 |

 | index(...)

 | S.index(sub[, start[, end]]) -> int

 |

 | Return the lowest index in S where substring sub is found,

 | such that sub is contained within S[start:end]. Optional

 | arguments start and end are interpreted as in slice notation.

 |

 | Raises ValueError when the substring is not found.

 |

 | isalnum(self, /)

 | Return True if the string is an alpha-numeric string, False otherw

ise.

 |

 | A string is alpha-numeric if all characters in the string are alph

a-numeric and

 | there is at least one character in the string.

 |

 | isalpha(self, /)

 | Return True if the string is an alphabetic string, False otherwis

e.

 |

 | A string is alphabetic if all characters in the string are alphabe

tic and there

 | is at least one character in the string.

 |

 | isascii(self, /)

 | Return True if all characters in the string are ASCII, False other

wise.

 |

 | ASCII characters have code points in the range U+0000-U+007F.

 | Empty string is ASCII too.

 |

 | isdecimal(self, /)

 | Return True if the string is a decimal string, False otherwise.

 |

 | A string is a decimal string if all characters in the string are d

ecimal and

 | there is at least one character in the string.

 |

 | isdigit(self, /)

 | Return True if the string is a digit string, False otherwise.

 |

 | A string is a digit string if all characters in the string are dig

its and there

 | is at least one character in the string.

 |

 | isidentifier(self, /)

 | Return True if the string is a valid Python identifier, False othe

rwise.

 |

 | Call keyword.iskeyword(s) to test whether string s is a reserved i

dentifier,

 | such as "def" or "class".

 |

 | islower(self, /)

 | Return True if the string is a lowercase string, False otherwise.

 |

 | A string is lowercase if all cased characters in the string are lo

wercase and

 | there is at least one cased character in the string.

 |

 | isnumeric(self, /)

 | Return True if the string is a numeric string, False otherwise.

 |

 | A string is numeric if all characters in the string are numeric an

d there is at

 | least one character in the string.

 |

 | isprintable(self, /)

 | Return True if the string is printable, False otherwise.

 |

 | A string is printable if all of its characters are considered prin

table in

 | repr() or if it is empty.

 |

 | isspace(self, /)

 | Return True if the string is a whitespace string, False otherwise.

 |

 | A string is whitespace if all characters in the string are whitesp

ace and there

 | is at least one character in the string.

 |

 | istitle(self, /)

 | Return True if the string is a title-cased string, False otherwis

e.

 |

 | In a title-cased string, upper- and title-case characters may only

 | follow uncased characters and lowercase characters only cased one

s.

 |

 | isupper(self, /)

 | Return True if the string is an uppercase string, False otherwise.

 |

 | A string is uppercase if all cased characters in the string are up

percase and

 | there is at least one cased character in the string.

 |

 | join(self, iterable, /)

 | Concatenate any number of strings.

 |

 | The string whose method is called is inserted in between each give

n string.

 | The result is returned as a new string.

 |

 | Example: '.'.join(['ab', 'pq', 'rs']) -> 'ab.pq.rs'

 |

 | ljust(self, width, fillchar=' ', /)

 | Return a left-justified string of length width.

 |

 | Padding is done using the specified fill character (default is a s

pace).

 |

 | lower(self, /)

 | Return a copy of the string converted to lowercase.

 |

 | lstrip(self, chars=None, /)

 | Return a copy of the string with leading whitespace removed.

 |

 | If chars is given and not None, remove characters in chars instea

d.

 |

 | partition(self, sep, /)

 | Partition the string into three parts using the given separator.

 |

 | This will search for the separator in the string. If the separato

r is found,

 | returns a 3-tuple containing the part before the separator, the se

parator

 | itself, and the part after it.

 |

 | If the separator is not found, returns a 3-tuple containing the or

iginal string

 | and two empty strings.

 |

 | replace(self, old, new, count=-1, /)

 | Return a copy with all occurrences of substring old replaced by ne

w.

 |

 | count

 | Maximum number of occurrences to replace.

 | -1 (the default value) means replace all occurrences.

 |

 | If the optional argument count is given, only the first count occu

rrences are

 | replaced.

 |

 | rfind(...)

 | S.rfind(sub[, start[, end]]) -> int

 |

 | Return the highest index in S where substring sub is found,

 | such that sub is contained within S[start:end]. Optional

 | arguments start and end are interpreted as in slice notation.

 |

 | Return -1 on failure.

 |

 | rindex(...)

 | S.rindex(sub[, start[, end]]) -> int

 |

 | Return the highest index in S where substring sub is found,

 | such that sub is contained within S[start:end]. Optional

 | arguments start and end are interpreted as in slice notation.

 |

 | Raises ValueError when the substring is not found.

 |

 | rjust(self, width, fillchar=' ', /)

 | Return a right-justified string of length width.

 |

 | Padding is done using the specified fill character (default is a s

pace).

 |

 | rpartition(self, sep, /)

 | Partition the string into three parts using the given separator.

 |

 | This will search for the separator in the string, starting at the

end. If

 | the separator is found, returns a 3-tuple containing the part befo

re the

 | separator, the separator itself, and the part after it.

 |

 | If the separator is not found, returns a 3-tuple containing two em

pty strings

 | and the original string.

 |

 | rsplit(self, /, sep=None, maxsplit=-1)

 | Return a list of the words in the string, using sep as the delimit

er string.

 |

 | sep

 | The delimiter according which to split the string.

 | None (the default value) means split according to any whitespa

ce,

 | and discard empty strings from the result.

 | maxsplit

 | Maximum number of splits to do.

 | -1 (the default value) means no limit.

 |

 | Splits are done starting at the end of the string and working to t

he front.

 |

 | rstrip(self, chars=None, /)

 | Return a copy of the string with trailing whitespace removed.

 |

 | If chars is given and not None, remove characters in chars instea

d.

 |

 | split(self, /, sep=None, maxsplit=-1)

 | Return a list of the words in the string, using sep as the delimit

er string.

 |

 | sep

 | The delimiter according which to split the string.

 | None (the default value) means split according to any whitespac

e,

 | and discard empty strings from the result.

 | maxsplit

 | Maximum number of splits to do.

 | -1 (the default value) means no limit.

 |

 | splitlines(self, /, keepends=False)

 | Return a list of the lines in the string, breaking at line boundar

ies.

 |

 | Line breaks are not included in the resulting list unless keepends

is given and

 | true.

 |

 | startswith(...)

 | S.startswith(prefix[, start[, end]]) -> bool

 |

 | Return True if S starts with the specified prefix, False otherwis

e.

 | With optional start, test S beginning at that position.

 | With optional end, stop comparing S at that position.

 | prefix can also be a tuple of strings to try.

 |

 | strip(self, chars=None, /)

 | Return a copy of the string with leading and trailing whitespace r

emoved.

 |

 | If chars is given and not None, remove characters in chars instea

d.

 |

 | swapcase(self, /)

 | Convert uppercase characters to lowercase and lowercase characters

to uppercase.

 |

 | title(self, /)

 | Return a version of the string where each word is titlecased.

 |

 | More specifically, words start with uppercased characters and all

remaining

 | cased characters have lower case.

 |

 | translate(self, table, /)

 | Replace each character in the string using the given translation t

able.

 |

 | table

 | Translation table, which must be a mapping of Unicode ordinals

to

 | Unicode ordinals, strings, or None.

 |

 | The table must implement lookup/indexing via __getitem__, for inst

ance a

 | dictionary or list. If this operation raises LookupError, the cha

racter is

 | left untouched. Characters mapped to None are deleted.

 |

 | upper(self, /)

 | Return a copy of the string converted to uppercase.

 |

 | zfill(self, width, /)

 | Pad a numeric string with zeros on the left, to fill a field of th

e given width.

 |

 | The string is never truncated.

 |

 | --

 | Static methods defined here:

Lists

Python list : ordered set of heterogeneous objects

Assignment:

Access:

Slicing:

Note: slicing works like : it does not include the right boundary. The example above
only includes elements 1 and 2.

my_list = [1, 3, "a", [2, 3]]

element = my_list[2] (starts at 0)

last_element = my_list[-1]

short_list = my_list[1:3]

[a, b[

Dictionaries

Python dict: ordered heterogeneous list of (key -> value) pairs

Assignment:

Access:

Missing key raises an exception:

my_dict = { 1:"test", "2":4, 4:[1,2] }

my_var = my_dict["2"]

In [2]: my_dict = { 1:"test", "2":4, 4:[1,2] }

my_dict["4"]

--

-

KeyError Traceback (most recent call las

t)

<ipython-input-2-134682133941> in <module>

 1 my_dict = { 1:"test", "2":4, 4:[1,2] }

----> 2 my_dict["4"]

KeyError: '4'

Exercise

What's the result of this slicing:

my_var = [1, 2, 3, 4, 5, 6, 7, 8, 9]

print(my_var[-5: 8])

Flow control and blocks

An if block:

Notes:

Control flow statements are followed by colons
Block limits are defined by indentation (4 spaces by convention)
Conditionals can use the and , or and not keywords

test = 0

if test > 0:

 print("it is bigger than zero")

elif test < 0:

 print("it is below zero")

else:

 print("it is zero")

The for loop

The most common loop in python:

Notes:

the syntax is for <variable> in <iterable thing>:

In [3]: animals = ["dog", "python", "cat"]

for animal in animals:

 if len(animal) > 3:

 print (animal, ": that's a long animal !")

 else:

 print(animal)

dog

python : that's a long animal !

cat

For loops, continued

What if i need the index ?

What about dictionaries ?

(More on string formatting very soon)

In [4]: animals = ["dog","cat","T-rex"]

for index, animal in enumerate(animals):

 print("animal {} is {}".format(index,animal))

animal 0 is dog

animal 1 is cat

animal 2 is T-rex

In [5]: my_dict = {"first": "Monday", "second": "Tuesday", "third": "Wednesday"}

for key, value in my_dict.items():

 print("the {} day is {}".format(key,value))

the first day is Monday

the second day is Tuesday

the third day is Wednesday

Other flow control statements

While:

Break and continue (exactly as in C):

break gets out of the closest enclosing block
continue skips to the next step of the loop

In [6]: a, b = 0, 1

while b < 100:

 print(b, end=" ")

 a, b = b, a+b # multiple assignment, more on that later

1 1 2 3 5 8 13 21 34 55 89

Exercise

When will this code print "second":

if test > 0:

 print("first")

print("second")

Functions

Notes:

function keyword is def
functions can have a return value, given after the return keyword
arguments can have default values
arguments with default values should always come after the ones without
when called, arguments can be given by position or name
named arguments should always come after positional arguments

In []: def my_function(arg_1, arg_2=0, arg_3=0):

 print ("arg1:", arg_1, ", arg_2:", arg_2, ", arg_3:", arg_3)

 return str(arg_1)+"_"+str(arg_2)+"_"+str(arg_3)

my_output = my_function("a string",arg_3=7)

print("my_output:", my_output)

String formatting basics

Basic concatenation:

Join from a list:

Stripping and Splitting:

In [7]: my_string = "Hello, " + "World"

print(my_string)

Hello, World

In [8]: my_list = ["cat","dog","python"]

my_string = " + ".join(my_list)

print(my_string)

cat + dog + python

In [9]: my_sentence = " cats like mice \n ".strip()

my_sentence = my_sentence.split() #it is now a list !

print(my_sentence)

['cats', 'like', 'mice']

Strings, continued

Templating:

Better templating:

The python way, with dicts:

In [10]: my_string = "the {} is {}"

out = my_string.format("cat", "happy")

print(out)

the cat is happy

In [11]: my_string = "the {animal} is {status}, really {status}"

out = my_string.format(animal="cat", status="happy")

print(out)

the cat is happy, really happy

In [12]: my_dict = {"animal":"cat", "status":"happy"}

out = my_string.format(**my_dict) #dict argument unpacking

print(out)

the cat is happy, really happy

f-strings

Since Python 3.6:

You can use Python code inside the {} :

In [13]: animal = "cat"

status = "happy"

print(f"the {animal} is {status}, so {status}")

the cat is happy, so happy

In [14]: print(f"the {animal} is {status*3}, so {status.upper()}")

the cat is happyhappyhappy, so HAPPY

Strings, final notes

You can specify additional options (alignment, number format)

The legacy syntax for string formatting is

You'll probably see it a lot if you read older codes.

In [15]: print("this is a {:^30} string in a 30 spaces block".format('centered'))

print("this is a {:>30} string in a 30 spaces block".format('right aligned'))

print("this is a {:<30} string in a 30 spaces block".format('left aligned'))

this is a centered string in a 30 spaces block

this is a right aligned string in a 30 spaces block

this is a left aligned string in a 30 spaces block

In [16]: print("this number is printed normally: {}".format(3.141592653589))

print("this number is limited to 2 decimal places: {:.2f}".format(3.141592653589))

print("this number is forced to 6 characters: {:06.2f}".format(3.141592653589))

this number is printed normally: 3.141592653589

this number is limited to 2 decimal places: 3.14

this number is forced to 6 characters: 003.14

"this way of formatting %s is %i years old" % ("strings", 100)

Now you know Python !

Ready for some more ?

make your life better: iPython

iPython is a shell interface to help you use python interactively. You ca use it instead of the
Python interpreter in your terminal.

It offers:

tab completion
history (as in bash)
advanced help
magic functions (for instance %timeit for benchmarking)
calling system commands from the shell

and many other things. These are also included in Jupyter.

make your life even better : use an IDE

If you plan to work on bigger projects in Python, you should consider tools to help you code
faster and in a cleaner way. You should probably pick an integrated development
environment (IDE). Some good (free) tools for Python are:

Spyder
Visual Studio Code
PyCharm
Sublime text

If you use VIM/Emacs, these can also be configured for most programming languages.

These tools can include:

syntax highlight
syntax check
completion
refactoring
debugging
versioning
...

Unpacking

Bundle function arguments into lists or dictionaries:

It allows to create functions with unknown number of arguments (like print):

Here args is an unmutable list (tuple) and kwargs is a dictionary.

my_list = ["dog","cat"]

my_fun(*my_list) # equivalent to 'my_fun("dog", "cat")'

my_dict = {"animal":"dog", "toy":"bone"}

my_fun(**my_dict) # equivalent to my_fun(animal="dog", toy="bone")

In [17]: def my_fun(*args, **kwargs):

 print("args:", args)

 print("kwargs:", kwargs)

my_fun("pos_arg1", 34, named_arg="named")

args: ('pos_arg1', 34)

kwargs: {'named_arg': 'named'}

exercise

What are the valid calls for the function:

my_function("CECI", 42, day_time="afternoon")

my_function("CECI", day_time="afternoon", 42)

my_function("CECI", day_time="afternoon")

my_function(**d, *l)

my_function(*l)

my_function(*l, **d)

l = [42, "CECI"]

d = {"session": "Python"}

def my_function(arg1, arg2, session="C++", day_time="morning"):

 pass

In []: l = [42, "CECI"]

d = {"session": "Python"}

def my_function(arg1, arg2, session="C++", day_time="morning"):

 print("OK")

In []: my_function("CECI", 42, day_time="afternoon")

In []: my_function("CECI", day_time="afternoon", 42)

In []: my_function("CECI", day_time="afternoon")

In []: my_function(**d, *l)

In []: my_function(*l)

In []: my_function(*l, **d)

List comprehensions

Building lists:

Mapping and filtering:

Merging with zip :

In [18]: [x*x for x in range(10)]

Out[18]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

In [19]: beasts = ["cat","dog","Python"]

print([beast.upper() for beast in beasts])

print([beast for beast in beasts if "o" in beast])

['CAT', 'DOG', 'PYTHON']

['dog', 'Python']

In [20]: toys = ["ball","frisbee","dead animal"]

my_string ="the {} plays with a {}"

[my_string.format(a, b) for a, b in zip(beasts, toys)]

Out[20]: ['the cat plays with a ball',

 'the dog plays with a frisbee',

 'the Python plays with a dead animal']

List comprehensions

Using an else clause:

Double loops work too:

Dict comprehensions work too:

In [21]: [x*x if x%3 else x for x in range(10)]

Out[21]: [0, 1, 4, 3, 16, 25, 6, 49, 64, 9]

In [22]: ["{}_{}".format(a, b) for a in ["blue", "red"] for b in ["car", "balloon"]]

Out[22]: ['blue_car', 'blue_balloon', 'red_car', 'red_balloon']

In [23]: {x: x**2-1 for x in range(10)}

Out[23]: {0: -1, 1: 0, 2: 3, 3: 8, 4: 15, 5: 24, 6: 35, 7: 48, 8: 63, 9: 80}

Exercise

Given the following code:

which comprehension will give the dictionary:

{a: b for a in la for b in lb}

{b: a for a in la for b in lb}

{a: b for a, b in zip(lb, la)}

{a: b for b, a in zip(lb, la)}

{a: b for a, b in zip(la, lb)}

la = [1, 2, 3, 4, 5]

lb = ["a", "b", "c", "d", "e"]

{"a": 1, "b": 2, "c": 3, "d": 4, "e": 5}

Reading files (basics)

open a text file for reading:

f is a file descriptor

Reading one line at a time:

readling the whole file to a list of lines:

f = open("myfile.txt")

line = f.readline()

lines = f.readlines()

Dealing with files : the proper way

Python offers a nicer way to read a file line by line:

Explanation:

the with keyword starts a context manager: it deals with opening the file and
executes the block only if it succeeds, then closes the file.
file descriptors are iterable (line by line)

In [24]: with open("houses.csv") as f:

 for line in f:

 print(line)

"uid","house"

4,"kitch world"

0,"dog house"

1,"hope of getting rid of you"

5,"upside down"

2,"grass"

3,"Cretaceous"

My favourite python tricks

Simple way to search strings:

this works on lists too:

and on dictionary keys:

In [25]: my_string = "The cat plays with a ball"

if "cat" in my_string:

 print("found")

found

In [26]: my_list = [1,1,2,3,5,8,13,21]

if 8 in my_list:

 print("found")

found

In [27]: my_dict = {"cat":"ball", "dog":"bone"}

if "python" in my_dict:

 print("found")

Favourites 2

Everything is True or False:

In general, empty iterables are False, non-empty are True

The useful and very readable ternary operator:

In [28]: my_list = []

if my_list:

 print("Not empty")

my_string = ""

if my_string:

 print("Not empty")

In [29]: test = 10

my_var = "dog" if test > 15 else "cat"

print(my_var)

cat

Favourites 3

Not sure if a key exists in a dictionary ? use get()

Multiple assignment works as expected:

You can use it to make functions that return multiple values:

In [30]: my_dict = {"cat":"ball", "dog":"bone"}

print(my_dict.get("python","default toy"))

default toy

In [31]: a = "python"

b = "dog"

a, b = b, "cat"

print(a, b)

dog cat

In [32]: def my_function():

 return "cat", "dog"

var_a, var_b = my_function()

print(var_a, var_b)

cat dog

Favourites 4: on lists

Sort and reverse lists:

note: sorted takes an optional "key" argument to tell it how to sort.

quick checks on lists:

In [33]: animals = ["dog","cat","python"]

for animal in reversed(animals):

 print(animal, end=" ")

print("\n---")

for animal in sorted(animals):

 print(animal, end=" ")

python cat dog

cat dog python

In [34]: list = ["cat", "dog", 0, 6]

print(any(list)) # if at least one element is "True"

print(all(list)) # if all elements are "True"

True

False

Python variables explained

All Python variables are references a.k.a labels to objects.

When you do:

then a and b are both references for the same in-memory object (the [1,2,3] list). So
if you do:

then you have changed the object labelled by both a and b !

a = [1, 2, 3]

b = a

In [35]: a = [1, 2, 3]

b = a

a[1] = 5

print(b)

[1, 5, 3]

Python variables

Be cautious though: assignment (using =) creates a new label and replaces any existing
label with that name:

This does not make b = [3, 4] , as the b label is still attached to [1, 2] . It only
creates a new label a attached to [3, 4] .

In [36]: a = [1, 2]

b = a

a = [3, 4]

print("a =", a, "and b =", b)

a = [3, 4] and b = [1, 2]

Python variables: pitfalls

The combination of this and the local scope of variables in functions can lead to unintuitive
behaviours:

modifies the input parameter as expected. However:

this assignment defines a local my_list variable which overrides the reference in the
scope of the function: it has no effect on the my_list argument.

In [37]: def my_func(mlist):

 mlist[0] = 3

my_list = [0, 1, 2]

my_func(my_list)

print(my_list)

[3, 1, 2]

In [38]: def my_func(mlist):

 mlist = mlist + [3]

my_func(my_list)

print(my_list)

[3, 1, 2]

Modules and Packages

Modules

Modules allow you to use external code (think "libraries")

use a module:

or just part of it:

just don't import everything blindly:

import csv

help(csv.reader)

from csv import reader

help(reader)

from csv import * # this is dangerous

Python files are modules

If you have a file called my_module.py with the content:

You can simply do from another file in the same folder:

The alternative syntax works too:

my_var = "CECI"

def do_something(argument):

 pass

from my_module import my_var, do_something

new_var = my_var + " Python"

do_something(new_var)

import my_module

my_module.do_something("test_variable")

Making packages

Python packages are just groups of modules. To make them, you need to:

create a folder with the name of your package
add an empty file there called __init__.py
add your module files there

For instance if I create a folder called my_package and add three files __init__.py ,
first_module.py , second_module.py , I can then do:

providing that you have objects my_first_var and my_function in the respective
modules.

from my_package import first_module, second_module

print(first_module.my_first_var)

print(second_module.my_function)

Module example : csv

csv is a core module: it is distributed by default with Python

DictReader is an object from the csv package
reader is an iterator built by DictReader
reader gives dictionaries, for instance {"animal":"dog", "toy":"bone"}
and affects them to the row reference
keys names are taken from the first line of the csv file

In [39]: import csv

with open('my_file.csv') as csvfile:

 reader = csv.DictReader(csvfile)

 for row in reader:

 print("row:", row)

 print("the {animal} plays with a {toy}".format(**row))

row: {'animal': 'dog', 'toy': 'bone'}

the dog plays with a bone

row: {'animal': 'cat', 'toy': 'ball'}

the cat plays with a ball

writing csv files

Writing is similar:

In [40]: import csv

with open('my_file_2.csv', 'w') as csvfile: # open in write mode

 writer = csv.DictWriter(csvfile, fieldnames=['animal', 'toy'])

 writer.writeheader()

 writer.writerow({'animal': 'cat', 'toy': 'laptop'})

 writer.writerow({'animal': 'dog', 'toy': 'cat'})

In [41]: ! cat my_file_2.csv # linux command to show content of file

! rm my_file_2.csv

Installing modules

The standard package manager is pip:

Search for a package:

Install a package:

Upgrade to latest version:

Remove a package:

pip search BeautifulSoup # famous html parser

pip install BeautifulSoup # use "--user" to install in home

pip install --upgrade BeautifulSoup

pip uninstall BeautifulSoup

Working in a protected environment

Sometimes you need specific versions of modules, and these modules have dependencies,
and these dependencies conflict with system-wide packages, etc.

In these cases you should use the virtualenv package:

You can then use pip to install anything you need in this virtualenv and do your work.
Finally:

closes the virtualenv session. Packages you have installed in it are not visible anymore.

pip install virtualenv # install the package, only once

virtualenv my_virtualenv

source my_virtualenv/bin/activate

deactivate

Exceptions

Exceptions handling

Basics: try and except

Note: there's a far better solution for this specific problem

In [42]: my_var = "default animal"

my_dict = {}

try:

 my_var = my_dict["animal"]

except KeyError as err:

 print("a key error was raised for key : {}".format(err))

 print("the key 'animal' is not present")

a key error was raised for key : 'animal'

the key 'animal' is not present

Ask forgiveness, not permission

Python styling recommends to avoid "if" and use exception handling instead.

Here is an (exaggerated) ugly and dangerous example:

(We'll discuss the "os" module later)

In []: import os

if (os.path.isfile("file_1.txt")):

 f1 = open("file_1.txt")

 if(os.path.isfile("file_2.txt")):

 f2 = open("file_2.txt")

Ask forgiveness, not permission (II)

The Python way of dealing with this would be:

The code is more flat/readable
Errors are well-separated and handled together
Errors are reported properly

In []: try:

 f1 = open("my_file.csv")

 f2 = open("my_file2.csv")

except IOError as io:

 print("Input file error : {}".format(io))

else:

 pass # do some stuff with f1 and f2

Coding for the future

Commenting your code

The basic comment is simply

But if you think it's useful, you should make it public like this:

this way I can do:

this is a comment

In [43]: def my_function():

 """

 This is the help for my_function:

 it does stuff

 """

 pass

In [44]: help(my_function)

Help on function my_function in module __main__:

my_function()

 This is the help for my_function:

 it does stuff

Including self-tests

the simplest way to include checks is the doctest package: let's say you have:

in "my_file.py". You just need to write a "my_file_test.txt" file with:

and then you can do:

It will run the lines in the test.txt file and check the outputs.

In []: def plusone(x):

 """ add 1 to input parameter """

 return x+1

>>> from my_file import plusone

>>> plusone(4)

5

python -m doctest test.txt # use -v for detailed output

Proper logging

Your program will have different levels of verbosity depending if you are in test, beta or
production phase. In order to avoid commenting and uncommenting "print" lines, use
logging:

You can also redirect the output to a file with:

import logging

logging.basicConfig(level=logging.WARNING)

logging.warning('something unexpected happened')

logging.info('this is not shown because the level is WARNING')

logging.basicConfig(filename='example.log')

Importing scripts

You know you can import any file as a module. This allows to debug in the interpreter by
using:

to access functions and objects. But doing this runs the whole content of my_file.py
which is not what you want.

You can avoid that by putting the code to be executed only when the script is run (not
imported) inside a block like this:

That way the "print" will not be called when you import my_file, only when you run python
my_file.py

import my_file

def my_function():

 ...

if __name__ == '__main__': # that's two underscores

 print(my_function()) # put main code here

Write good code

Have a look at PEP8 too to make your code pretty and readable:

Read the Zen of Python:

https://www.python.org/dev/peps/pep-0008

In [45]: import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

https://www.python.org/dev/peps/pep-0008

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Modules you need

Interacting with the OS and filesystem:

sys:
provides access to arguments (argc, argv), useful sys.exit()

os:
access to environment variables
navigate folder structure
create and remove folders
access file properties

glob:
allows you to use the wildcards * and ? to get file lists

argparse:
easily build command-line arguments systems
provide script usage and help to user

Enhanced versions of good things

itertools: advanced iteration tools
cycle: repeat sequence ad nauseam
chain: join lists or other iterators
compress: select elements from one list using another as filter
…

collections: smart collections
defaultDict: dictionary with default value for missing keys (powerful!)
Counter: count occurrences of elements in lists
...

re: regular expressions
because honestly "in" is not always enough

Utilities

copy:
sometimes you don't want to reference the same object with a and b

time:
manage time and date objects
deal with timezones and date/time formats
includes time.sleep()

pickle:
allows to save any python object as a string and import it later

json:
read and write in the most standard data format on the web

requests:
access urls, retrieve remote files

Basics for science

numpy:

linear algebra
fast treatement of large sets of numbers

matplotlib:

standard library for plotting
scipy:

optimization
integration
differential equations
statistics
...

pandas:

data analysis

Python 2(.7) vs python 3(.10)

Python 3+ is now recommended but many codes are based on python 2.7, so here are the
main differences (2 vs 3):

print "cat" vs print("cat")
1 / 2 = 0 vs 1 / 2 = 0.5
range is a list vs range is a generator
all strings are unicode in python 3

There's a lot more, but that's what you will need the most

Exercise

you will find 3 csv files in /home/cp3/jdf/training (Jupyterhub users) or
/CECI/home/ucl/cp3/jdefaver/training (CECI users):

1. List files
2. read each file using the csv module
3. as you read, build a dictionary of dictionaries using the id as a key, in the form:

1. write one line per id with the format:

{

 0: { 'animal':'dog', 'toy':'bone', 'house':'dog house' },

 1: { 'animal':'cat', ... },

 ...

}

"the <> plays with a <> and lives in the <>"

Exercise: going deeper

Pick any exercise below:

write the result in a csv file
what if one csv file was on a website ?
write output to screen as a table with headers
allow to switch to a html table using arguments
How could you make your script shorter / faster ?

In []: # 1: list csv files

import glob

print(glob.glob('*.csv'))

In []: # 2 read a file with csv, see that there are uids to cleanup

import csv

with open('animals.csv') as afile:

 reader = csv.DictReader(afile)

 for row in reader:

 print(row)

In []: # 3 put file content in a dictionary of dictionaries

my_dict = {}

with open('animals.csv') as afile:

 reader = csv.DictReader(afile)

 for row in reader:

 uid = row['uid'].strip()

 my_dict[uid] = {'animal': row['animal'].strip()}

print(my_dict)

In []: # 4 join a second file by adding to each dict with the same uid

my_dict = {}

with open('animals.csv') as afile:

 reader = csv.DictReader(afile)

 for row in reader:

 uid = row['uid'].strip()

 my_dict[uid] = {'animal': row['animal'].strip()}

with open('toys.csv') as afile:

 reader = csv.DictReader(afile)

 for row in reader:

 uid = row['uid'].strip()

 my_dict[uid]['toy'] = row['toy'].strip()

print(my_dict)

In []: # 5 DRY

my_dict = {}

csv_files = ['toys.csv', 'houses.csv', 'animals.csv']

for csv_file in csv_files:

 with open(csv_file) as cfile:

 reader = csv.DictReader(cfile)

 for row in reader:

 uid = row['uid'].strip()

 key = csv_file[:-5]

 if uid not in my_dict:

 my_dict[uid] = {}

 my_dict[uid][key] = row[key].strip()

print(my_dict)

In []: # 6 avoid additional checks

from collections import defaultdict

my_dict = defaultdict(dict)

csv_files = ['toys.csv', 'houses.csv', 'animals.csv']

for csv_file in csv_files:

 with open(csv_file) as cfile:

 reader = csv.DictReader(cfile)

 for row in reader:

 uid = row['uid'].strip()

 key = csv_file[:-5]

 my_dict[uid][key] = row[key].strip()

template = "the {animal} plays with a {toy} and lives in the {house}"

for _, value in my_dict.items():

 print(template.format(**value))

In []:

