
Efficient use of Python on the clusters

Ariel Lozano and Nicolas Potvin

CÉCI training

November 16, 2023

Excercise to experiment: profile a python code

▶ From a CECI cluster copy this folder to your home directory

cp -r /CECI/proj/training/python4hpc ~/

▶ Follow the instructions on the readme file

~/python4hpc/exercises/README.md

You will find a Python implementation to solve the 2D diffusion equation

https://scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/

Numpy library
▶ Provides a new kind of array datatype
▶ Contains methods for fast operations on entire arrays avoiding to define

(inneficient) explicit loops
▶ They are basically wrappers to compiled C/Fortran/C++ code
▶ Their methods runs almost as fast as C compiled code
▶ It is the foundation of many other higher-level numerical tools
▶ Compares to MATLAB in functionality
▶ Check the use of slice indexing to iterate

>>> import numpy as np
>>> a = np.array([[5, 1 ,3],

[1, 1 ,1],
[1, 2 ,1]])

>>> b = np.array([1, 2, 3])
>>> c = a.dot(b)
array([16, 6, 8])

https://numpy.org/doc/stable/user/basics.indexing.html#basics-indexing

Python Bindings

We saw that interfacing python with compiled code can provide huge performance
gains. There are two main approaches to achieve this:
▶ Compile python (or python-like) code
▶ Link python to use existing libraries written in other languages

Compile Python

▶ Just in time (JIT) compilers: compile and run a python code in real time
▶ Numba: jit compiler supporting numpy code

▶ Ahead of time (AOT) compilers: creation of a compiled library in your machine
(this would provide what is called a binding)

▶ Cython: compile a python-like C code or a pure C library
▶ f2py: tool part of numpy project allowing to compile and wrap Fortran code

Compile Python: Fibonacci example
The Fibonacci series is defined by the recurrence relation

Fn = Fn−1 + Fn−2 (1)

starting with F0 = 0 and F1 = 1.
A basic pure python implementaion:

def fibonacci(num):
fn = 0
fn1 = 1
while num-1:

fn, fn1 = fn1, fn + fn1
num -= 1

return fn1

if __name__ == "__main__":

print(fibonacci(15))

Compile python: Cython
You must annotate your code using a new syntax in between python and C.
Example fibonacci function in cython1

def fibonacci(int num):
cdef int fn
cdef int fn1
fn = 0
fn1 = 1
while num-1:

fn, fn1 = fn1, fn + fn1
num -= 1

return fn1

To build it is required a sort of makefile, typically called setup.py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

setup(ext_modules = cythonize("fibolib.pyx"))

1code files on python4hpc/examples/compiling/fibo-cython

Compile python: Cython

The build will produce a binary .so object for the library

$ python setup.py build_ext --inplace

Having this lib on the same directory, it can be imported as a module on a pure
python code

from fibolib import fibonacci

print(fibonacci(15))

Python bindings: C libraries

▶ Cython allows also to wrap C libraries to provide bindings for Python
▶ Check the example in python4hpc/examples/compiling/fibo-wrap-c to see

how wrapping works for a C function providing the nth Fibonacci number.
▶ Steps for building and running the example:

$ make
$ python fibonacci.py
The 15th Fibonacci number is: 610

Python Bindings: f2py example
▶ To wrap Fortran code the f2py tool from numpy provides a straighforward

approach2

function fibonacci(n)
implicit none
integer, intent(in) :: n
integer :: fibonacci, fseries(0:n), i
fseries(0) = 0
fseries(1) = 1

do i = 2, n
fseries(i) = fseries(i - 1) + fseries(i - 2)

end do
fibonacci = fseries(n)

end function fibonacci

$ f2py -c -m fibolib fibolib.f90

import fibolib

print(fibolib.fibonacci(15))

$ python fibonacci.py
610

2code files on python4hpc/examples/compiling/fibo-fortran

	Main

