Efficient use of Python on the clusters

Ariel Lozano and Nicolas Potvin

CECl training

November 16, 2023

Excercise to experiment: profile a python code

» From a CECI cluster copy this folder to your home directory

cp -r /CECI/proj/training/python4hpc ~/
» Follow the instructions on the readme file
~/python4hpc/exercises/README.md

You will find a Python implementation to solve the 2D diffusion equation

https://scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/

Numpy library

» Provides a new kind of array datatype

» Contains methods for fast operations on entire arrays avoiding to define
(inneficient) explicit loops

» They are basically wrappers to compiled C/Fortran/C++ code

» Their methods runs almost as fast as C compiled code

» It is the foundation of many other higher-level numerical tools

» Compares to MATLAB in functionality

» Check the use of slice indexing to iterate

>>> import numpy as np

>>> a = np.array([[5, 1,31,
L1, 1,11,
L1, 2,11D

>>> b = np.array([1, 2, 3])

>>> ¢ = a.dot(b)

array([16, 6, 8])

https://numpy.org/doc/stable/user/basics.indexing.html#basics-indexing

Python Bindings

We saw that interfacing python with compiled code can provide huge performance
gains. There are two main approaches to achieve this:

» Compile python (or python-like) code
» Link python to use existing libraries written in other languages

Compile Python

» Just in time (JIT) compilers: compile and run a python code in real time
»> Numba: jit compiler supporting numpy code
» Ahead of time (AOT) compilers: creation of a compiled library in your machine
(this would provide what is called a binding)

» Cython: compile a python-like C code or a pure C library
» f2py: tool part of numpy project allowing to compile and wrap Fortran code

Compile Python: Fibonacci example

The Fibonacci series is defined by the recurrence relation

Fn=Fn1+Fn2

startingwithFp =0and F, = 1.
A basic pure python implementaion:

def fibonacci(num):
fn=290
fnl =1
while num-1:
fn, fn1 = fn1, fn + fnl
num -= 1
return fn1

if __name__ == "__main__":

print(fibonacci(15))

Compile python: Cython
You must annotate your code using a new syntax in between python and C.
Example fibonacci function in cython’

def fibonacci(int num):

cdef int fn

cdef int fnl

fn=290

fnl =1

while num-1:
fn, fn1 = fn1, fn + fnl
num -= 1

return fn1l

To build it is required a sort of makefile, typically called setup. py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

setup(ext_modules = cythonize("fibolib.pyx"))

Tcode files on python4hpc/examples/compiling/fibo-cython

Compile python: Cython

The build will produce a binary . so object for the library

$ python setup.py build_ext --inplace

Having this lib on the same directory, it can be imported as a module on a pure
python code

from fibolib import fibonacci

print(fibonacci(15))

Python bindings: C libraries

» Cython allows also to wrap C libraries to provide bindings for Python

» Check the example in python4hpc/examples/compiling/fibo-wrap-c to see
how wrapping works for a C function providing the ny, Fibonacci number.

» Steps for building and running the example:
$ make

$ python fibonacci.py
The 15th Fibonacci number is: 610

Python Bindings: f2py example

» To wrap Fortran code the f2py tool from numpy provides a straighforward

approach?
function fibonacci(n) import fibolib
implicit none
integer, intent(in) :: n print(fibolib.fibonacci(15))
integer :: fibonacci, fseries(@:n), i

fseries(Q) = @
fseries(1) =1

doi=2,n
fseries(i) = fseries(i - 1) + fseries(i - 2)
end do
fibonacci = fseries(n)
end function fibonacci

$ f2py -c -m fibolib fibolib.f90 $ python fibonacci.py
610

2code files on python4hpc/examples/compiling/fibo-fortran

	Main

