
Introduction to Cuda

Olivier Mattelaer
UCLouvain
CP3 & CISM

CECI training: Cuda 2022

Program of this lecture

• Difference between CPU and GPU
➡ Why and when to use a GPU?

• What is CUDA?
➡ When/where can I use cuda?

• Structure of a GPU program
➡ Nomenclature

• First example of CUDA programming

• First step in optimisation of a CUDA program
➡ Managing memory transfer

2

CECI training: Cuda 2022

CPU versus GPU

3

CECI training: Cuda 2022

Speed versus Latency

• Speed: number of operation per second

• Latency: delay in the first operation
➡ T = L + vD

4

• How amazon transfer data from one cluster to
another

• Speed: Large bandwidth

• Fiber connection: Gb

• Latency: time of the
travel between the two
cluster.

• Latency is “reactivity”

CECI training: Cuda 2022

GPU versus CPU
• CPU minimizes latency

• GPU hides latency by overlapping computation

5

➡ T = L + NvD

CECI training: Cuda 2022

GPU versus CPU
• CPU minimizes latency

• GPU hides latency by overlapping computation

5

➡ T = L + NvD

CECI training: Cuda 2022

GPU versus CPU
• CPU minimizes latency

• GPU hides latency by overlapping computation

5

• Transit

• Moving data • Moving data

➡ T = L + NvD

CECI training: Cuda 2022

Amdahl’s law

6

• A cpu has 8 core a GPU 2056 core
➡ Should my code should be 200 faster?

• It depends which
fraction of your code
can use parallelism

• This is Amdahl’s law
given theoretical
speed-up of your code

CECI training: Cuda 2022

Speed-up in practise

• Comparing speed of code between cpu and gpu
are not really fair
➡ Cost of the GPU/CPU
➡ Huge speed-up typically means “bad” denominator

• A “normal” is around 5-20
➡ Much higher number reported in some cases.

• GPU clock is slower than CPU clock
➡ GPU ~ mhz
➡ CPU ~ Ghz

7

CECI training: Cuda 2022

Real case example

• CPU

• 95%

8

Matched 95%

CECI training: Cuda 2022

Real case example

• CPU

• 95%

8

Matched 95%

• GPU

• 5%

CECI training: Cuda 2022

Stream computing

• The idea of GPU are
➡ “multiple data”
➡ SAME operation

• Same as vectorisation on CPU (but different scale)

9

• You can have synchronisation between threads

CECI training: Cuda 202210

• As for CPU, you do not want to code at assembler
level

• First released in 2006
➡ Restricted to nvidia GPU
➡ Expose the raw computation power

✦ No need of graphical knowledge

CECI training: Cuda 2022

Do you need cuda?

11

CUDA

https://youtu.be/nIo_8x54Syo?t=1304

C++26 ??

CECI training: Cuda 2022

GPU availability

• Dragon 2:
➡ Two machines with two Nvidia V100

• Namur
➡ Gaming GPU

• Manneback (UCL only)
➡ Nvidia V100/ A100
➡ Bunch of gaming GPU

• (Future) Lumi European computer (EUROHPC)
➡ Not Nvidia GPU machine
➡ Cuda code need to be converted to HIP

✦ Alternative: OpenACC, OneAPI, Sycl, kokos,…

12

CECI training: Cuda 2022

SLURM FOR GPU

• Check ressource
➡ sinfo --format="%N %.6D %P %G"

• First run interactively
➡ srun -p gpu --gres=gpu:TeslaV100:1 --pty bash

• Check module on the machine
➡ module av

• Check that you have access to the GPU
➡ nvidia-smi

13

CECI training: Cuda 2022

SLURM FOR GPU

• Check ressource
➡ sinfo --format="%N %.6D %P %G"

• First run interactively
➡ srun -p gpu --gres=gpu:TeslaV100:1 --pty bash

• Check module on the machine
➡ module av

• Check that you have access to the GPU
➡ nvidia-smi

13

➡ srun -p gpu --gres=gpu:1 --pty bash

CECI training: Cuda 2022

Virtual GPU : MIG (A100)

• If you say “A100 is too big for me to fill it. I prefer
to have multiple small GPU”

• Then MIG is for you.
➡ MIG split your A100 in multiple virtual smaller GPU

that are seen as different independent GPU
➡ Many splitting are technically possible but we offer only

one (splitting in 7)
➡ Add in slurm “--comment=MIG”

• Only for A100 GPU (so not dragon2)

14

CECI training: Cuda 2022

Cuda Programming model

• A GPU needs to be controlled by a CPU.
➡ All programs start by the CPU
➡ Data are prepared on the CPU and moved to the GPU
➡ GPU is crunching data
➡ Data moved back to the cpu
➡ Programs end

15

CECI training: Cuda 2022

Cuda Programming model

• The cpu is called the “host”

• The gpu is called the “device”
➡ Viewed as a co-processor

• Function executed on gpu are called kernel
➡ Executed in parallel on different data element

• Both the host/device have their own memory
➡ Memory management is handle by the host
➡ Automatic management is possible

16

CECI training: Cuda 2022

Multi-processor/block/thread

• Main component
➡ Memory
➡ Streaming Multiprocessor (84 of them here)

17

CECI training: Cuda 2022

Multi-processor/block/thread

• Main component
➡ Memory
➡ Streaming Multiprocessor (84 of them here)

17

CECI training: Cuda 2022

Multi-processor/block/thread

• Main component
➡ Memory
➡ Streaming Multiprocessor (84 of them here)

17

CECI training: Cuda 2022

Block

18

• Thread are grouped by block
➡ Collaboration of thread (syncronization, shared

memory)

• Up to 2048 thread per block

• Block are fully independent
➡ Can be executed in any order
➡ Can be executed on different GPU

CECI training: Cuda 2022

• Separation into block allow you to adapt to various
GPU in an easy way.

19

CECI training: Cuda 2022

Wrap

• block are organised in wrap of 32 thread
➡ Correspond to an hardware configuration

• Those 32 threads are working in lock step
➡ Run the same command at the same time
➡ If statement slows down the code

20

CECI training: Cuda 2022

Let’s port this function to GPU

21

CECI training: Cuda 2022

Let’s port this function to GPU

21

• ⃗y = a ⃗x + ⃗y

CECI training: Cuda 2022

Let’s port this function to GPU

21

• ⃗y = a ⃗x + ⃗y

• float* is used here for
passing an array

CECI training: Cuda 2022

Let’s port this function to GPU

21

• ⃗y = a ⃗x + ⃗y

• float* is used here for
passing an array

• that array is assigned
dynamically (malloc)

CECI training: Cuda 2022

Let’s port this function to GPU

21

• ⃗y = a ⃗x + ⃗y

• float* is used here for
passing an array

• that array is assigned
dynamically (malloc)

• We explicitly loop over
the data element

CECI training: Cuda 202222

https://youtu.be/nIo_8x54Syo

The limitation here is the time to move data, all parallelism
language are efficient for this.
 -> Fast code can be achieved with StdPar

CECI training: Cuda 2022

Cuda version: kernel

• No loop anymore !!
➡ Each thread will take care of one data
➡ Need to compute which element each thread has to handle.
➡ Various variable defined for that

✦ blockIdx.x (.y/ .z if 2D and 3D): id of the current block

✦ blockDim.x: number thread in Block (for that dimension)

✦ threadIdx.x: id of the current thread inside the block

23

CPU GPU

CECI training: Cuda 2022

Index

• Let’s give an example:

24

• Super Important - coalesced memory:

• Reading (global) memory should be from
adjacent memory address for the threads

CECI training: Cuda 2022

Index

• Let’s give an example:

24

• Super Important - coalesced memory:

• Reading (global) memory should be from
adjacent memory address for the threads

6

CECI training: Cuda 2022

Kernel call

• How do you call a kernel?
➡ saxpy<<<numblock, blocksize>>>(d_x, d_y, a, n)

25

Blocksize

#Numblock

• blocksize: number of thread in a block

• Should be multiple of 32 (due to wrap)

• Maximum of 2048

• depends of the GPU capabilities

CECI training: Cuda 2022

A complete GPU code

1. Initialise GPU

2. Initialise variable on the host (cpu)

3. Allocate memory on the device (gpu)

4. Move data from host to device

5. Execute kernel on device

6. Move back results

7. Clean up (deallocation)

26

• Code steps in more details:

CECI training: Cuda 2022

A complete GPU code
1. Initialise GPU

2. Initialise variable on the host (cpu)

27

• cuInit(0) is NOT required for the code to work

• Will be called automatically at first cuda function call

• Nice to use for profiling

• Otherwise first call much slower than expected

CECI training: Cuda 2022

A complete GPU code

3. Allocate memory on the device (gpu)

28

• cudaMalloc does NOT follow the exact same syntax as a
malloc:

• The cuda rule for any function is to return an error
code

• So the cuda malloc does not return a pointer but has
one more argument (pointer of pointer)

• Here we use “d_” prefix to indicated device pointer.

• Useful convention for code clarity

CECI training: Cuda 2022

A complete GPU code
4. Move data from host to device

29

CECI training: Cuda 2022

A complete GPU code
4. Move data from host to device

29

Device pointer

CECI training: Cuda 2022

A complete GPU code
4. Move data from host to device

29

Device pointer Host pointer

CECI training: Cuda 2022

A complete GPU code
4. Move data from host to device

29

Device pointer Host pointer Transfer direction

CECI training: Cuda 2022

A complete GPU code
4. Move data from host to device

29

• Quite slow transfer but 2 tricks:

1. For simple initialisation/value

➡ cudaMemSet(d_x, 0, N*sizeof(xxxxx))

2. Used hosted pinned memory for host

➡ cudaMallocHost(&&x_host, size)

➡ Slower allocation on host

Device pointer Host pointer Transfer direction

CECI training: Cuda 2022

A complete GPU code
5. Execute kernel on device

30

CECI training: Cuda 2022

A complete GPU code
5. Execute kernel on device

30

• Computing the number of block needed

• Special <<<A, B, C, D >>> syntax

• A: number of block

• B: number of thread per block

• C: dynamically allocated shared memory

• D: which stream to use

CECI training: Cuda 2022

A complete GPU code
5. Execute kernel on device

30

• Computing the number of block needed

• Special <<<A, B, C, D >>> syntax

• A: number of block

• B: number of thread per block

• C: dynamically allocated shared memory

• D: which stream to use

• __global__ to use for kernel called from the host

• __device__ for GPU function call from a kernel

CECI training: Cuda 2022

A complete GPU code

6. Move back results

7. Clean up (deallocation)

31

CECI training: Cuda 2022

A complete GPU code

6. Move back results

7. Clean up (deallocation)

31

Device pointer

CECI training: Cuda 2022

A complete GPU code

6. Move back results

7. Clean up (deallocation)

31

Device pointerHost pointer

CECI training: Cuda 2022

Full code

• How to compile it?

32

CECI training: Cuda 2022

Compilation of cuda code

• Module load CUDA

• nvcc -arch=sm_70 saxpy.cu -o saxpy
➡ You can have additional flags for C++ par of the code

(library linking, -O3,…)
➡ Arch allows to have a minimum target gpu
➡ No dedicated flag for additional GPU optimisation
➡ GPU does support multiple file source code

✦ But seriously limit optimisation

• Cuda11 starts supports for that but still limited.

33

CECI training: Cuda 2022

Is GPU always faster?

• GPU

34

• CPU

• The gpu initialisation is large for simple problem
like this one

• You need to optimise your GPU code to hide the
latency, data transfer, …

• This GPU code can be speed-up quite a lot

• 10 kernel • 100 kernel • 10 kernel • 100 kernel

CECI training: Cuda 2022

Type of Memory available
• You have to manage memory: Plenty of type of

memory on the GPU

35

• Inside each SM:

CECI training: Cuda 2022

Type of Memory available
• You have to manage memory: Plenty of type of

memory on the GPU

35

• Register

• Fastest memory

• Thread specific

• Very limited amount

• Overflow goes to L1

• Inside each SM:

CECI training: Cuda 2022

Type of Memory available
• You have to manage memory: Plenty of type of

memory on the GPU

35

• Register

• Fastest memory

• Thread specific

• Very limited amount

• Overflow goes to L1

• Shared memory

• Limited amount

• Block wide memory

• __shared__

• Inside each SM:

CECI training: Cuda 2022

Type of Memory available
• You have to manage memory: Plenty of type of

memory on the GPU

36

• Global memory

• High bandwidth (900Gb/s) but High latency

• High number of thread need to hide this latency

• Default memory for cpu/gpu pointer

• Outside the SM

Global Memory

L2 cache

Memory requested

High Latency but high bandwidth

CECI training: Cuda 2022

Type of Memory available
• You have to manage memory: Plenty of type of

memory on the GPU

36

• Global memory

• High bandwidth (900Gb/s) but High latency

• High number of thread need to hide this latency

• Default memory for cpu/gpu pointer

• Outside the SM

Global Memory

L2 cache

Memory requested

High Latency but high bandwidth

CECI training: Cuda 2022

Type of Memory available
• You have to manage memory: Plenty of type of

memory on the GPU

36

• Global memory

• High bandwidth (900Gb/s) but High latency

• High number of thread need to hide this latency

• Default memory for cpu/gpu pointer

• Outside the SM

Global Memory

L2 cache

Memory requested

High Latency but high bandwidth

CECI training: Cuda 2022

Type of Memory available
• You have to manage memory: Plenty of type of

memory on the GPU

36

• Global memory

• High bandwidth (900Gb/s) but High latency

• High number of thread need to hide this latency

• Default memory for cpu/gpu pointer

• Outside the SM

Global Memory

L2 cache

Memory requested

High Latency but high bandwidth

Efficiency in memory transfer = maximise the usage of the data transfer, need to use all data in a block before
needing a new block transfer

CECI training: Cuda 2022

Index

• This is how the memory should be read/write by
the various thread

37

• You need to be careful with 2D array to be sure
that you follow that pattern

CECI training: Cuda 2022

Index

• This is how the memory should be read/write by
the various thread

37

6

• You need to be careful with 2D array to be sure
that you follow that pattern

CECI training: Cuda 2022

Uncoalesced Memory

38

CECI training: Cuda 2022

Uncoalesced Memory

38

CECI training: Cuda 2022

Uncoalesced Memory

38

CECI training: Cuda 2022

Uncoalesced Memory

38

CECI training: Cuda 2022

Uncoalesced Memory

38

CECI training: Cuda 2022

Uncoalesced Memory

38

CECI training: Cuda 2022

Uncoalesced Memory

38

Computation

CECI training: Cuda 2022

Uncoalesced Memory

38

Computation
Time to move
from global
memory to
register
4 times the
latency

CECI training: Cuda 2022

Uncoalesced Memory

39

Computation

CECI training: Cuda 2022

Uncoalesced Memory

39

Computation

Likely not in
cache anymore
-> need to extract
-> four times the
latency

CECI training: Cuda 2022

Uncoalesced Memory

39

Computation

Likely not in
cache anymore
-> need to extract
-> four times the
latency

Computation

CECI training: Cuda 2022

Coalesced memory

40

CECI training: Cuda 2022

Coalesced memory

40

CECI training: Cuda 2022

Coalesced memory

40

CECI training: Cuda 2022

Coalesced memory

40

Computation

CECI training: Cuda 2022

Coalesced memory

40

Computation

CECI training: Cuda 2022

Coalesced memory

40

Computation

Computation

CECI training: Cuda 2022

Coalesced memory

41

Computation first line
Computation second line

CECI training: Cuda 2022

Structure of array

42

Better for GPU/ vectorised CPU

Better for non-vectorised operation for CPU

CECI training: Cuda 2022

Coalesced access
• Coalesced access not possible?

➡ Use shared memory as a cache

43

Global Memory

Shared Memory

Thread

CECI training: Cuda 2022

CUDA profiler

• nv-nsight-cu-cli -o profile --target-processes all ./
saxpy
➡ Executable is also sometimes “ncu”
➡ The more convenient is to download back that profile

on your laptop and use “nsight compute” to visualise
the data (do not need a GPU on that machine)

• On cluster mode, you need to be sudo to run
those command. Contact us if needed.

44

CECI training: Cuda 2022

What is the limitation of your kernel?

• Here two metric
➡ How much the code compute (here 10%)
➡ How much memory you use (here 90%)

• This indicates what limit your computation
➡ Here we are Memory bound

45

CECI training: Cuda 2022

What is the limitation of your kernel?

• Ideal case: compute AND memory bound

• If you are latency bound you need to allow more
parallelism

46

COMPUTE

MEMORY

COMPUTE BOUND MEMORY BOUND LATENCY BOUND

CECI training: Cuda 2022

Effect of occupancy

47

• Hide latency with other wrap

CECI training: Cuda 2022

Occupancy
• Occupancy is limited

➡ Each SM has limited ressources
✦ Maximum number of wrap (64)

✦ Maximum number of block (32)

✦ Register usage (256Kb)

✦ Shared memory usage (64Kb)

48

CECI training: Cuda 2022

Checking memory
• You should also check where your memory

bottleneck are

49

CECI training: Cuda 2022

Nice series of tutorial:

• https://developer.nvidia.com/blog/even-easier-
introduction-cuda/
➡ At the bottom of the page you have a list of quite

progressive tutorial

• Nice video on Cuda 5: https://www.youtube.com/watch?
v=irvhW7oSNeQ&list=PLGvfHSgImk4aAt3R3XKvUMIv_RFOzSnWz&index=2

• Nice presentation: https://cac-staff.github.io/
summer-school-2018/files/
cuda_day1_summer_school_2018.pdf

50

https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/

CECI training: Cuda 202251

CECI training: Cuda 2022

Conclusion

• GPU is a high throughput
➡ High latency

• Various level of parralelism
➡ thread/wrap/block

• Various type of memory
➡ register/shared memory/global memory

• Optimization for the hardware is key
➡ Coalesced memory ->Array of structure
➡ Shared memory

52

