
Code Versioning
Olivier Mattelaer (CISM/CP3)

based on slides from
Damien Francois (CISM)
Juan Cabrera (NAMUR)

Jonathan Lambrechts (IMMC)
Scott Chalcon (git)

What is code versioning

 3

Notions of code versioning

Versions have existed for almost as long as writing has existed

Goal of code versioning

1. History of modification

1. Mission 1->6

2. Workflow

1. Mission 7->11

3. Team Work

1. Mission 12-> 16

• An history: Is a succession of snapshot of your
files at key time of their development
• Each snapshot is called COMMIT

• Commit is
• All the files at a given time
• A unique name (SLHA1)
• MetaData (who created/when/info)

1. Commit

C2

C1 • Pointer to previous(es) commit

1. Commit

C1
File 1 version 1

 File 2 version 1

C2
File 1 version2

File 2 Version 1

C3
File 1 version 2

Edit file 1

Remove file 2

1. Commit

C1

C3

C2

1. Simplify representation
of commit/history

Git Three area
Workspace Index Repository

./WORKDIR .git/index .git/

C1

C3

C2

Staging area

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

Modifying file A
-> add a line

Action:

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

git add A
-> modify file moves to the index
-> inside the box
-> ready for a commit

Action:

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

git commit -m "change color"
-> save the index current status
 Into a new commit inside the
 Repository

Action: A B

C4

1. Commit

C1

C3

C2

Head: latest committed version

Head~1

Head~2

Head: place where the new commit will be attach

Let's play

Exercise #1
Stop at mission #7
You have ~45 min

Game installed on lemaitre3 and manneback
module load gitshell

Basic command of the game
gsh goal

gsh check

Messed a level: restart it with
gsh reset

Workflow

branch in git

• Branch is pointer to a commit (represent an
history) which represent a line of development

• A branch can point at other commit, it can move!
• A branch is a way to organise your work and

working histories

branches
• default branch: master (or main)

• When doing a commit, the branch moves to the new commit

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx
git commit

• creating a new branch: add a pointer (git switch -c by)

• only selected branch affected by commit!
Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx

by

git commit

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx

by

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

merging
• The interest of branch is that you can merge them

• Include in one (branch) file the modification done
somewhere else

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

bx

by

git merge bx

merging
• merging two different modifications

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

bx

by

git merge bx

Do it yourself

• Mission #7-13

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

Conflict
• Multiple version of files are great

• Not always easy to know how to merge them
• Conflict will happen (same line modify by both user)

• Conflict need to be resolved manually!
• Boring task
• need to understand why a conflict is present!

• Do not be afraid of conflict! Do not try to avoid them
at all cost!

• stay in sync as most as possible and keep line short

Team Work

GitHub/Gitlab

Remote Branches

My Machine The Server

C1

master

C0

cloneC1

origin/master

C0

master

This is a remote

branch

origin is just a name

for a “remote”

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

C1

C0

master

C2
C1

origin/master

C0

masterC2

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

C1

C0

master

C2C1

origin/master

C0

masterC2

Can

merge!

LO
C
A
L

R
E
M
O
TE

git merge

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

C1

C0

master

C2

C1

origin/master

C0

master

C2
Now

merged

(fast

forward in

this case)

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches

• Reminder - Remote branches represent a

branch on a remote repository

• The branch origin/master for example is a

local pointer to the “master” on “origin”

• It re�ects what the local repository currently

knows about the state of “master” on “origin”

• You cannot change them, but you can

“checkout” to get a “remote tracking branch”

LO
C
A
L

R
E
M
O
TE

Do it yourself

• Mission #12-16

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

Working
directory Staging Remote branch

tracking

Remote

Local
Repository

Stash

git fetch git merge

git restore

git pull

git add git commit git push

git stash

git stash
apply

Local

Information
• On cluster, use "module load git"

• The command you learned need version 2.22

• Be careful with "restore" (no safety net)

• Restrict yourself to edit the history of commit
(especially when shared)

• Git reset # especially with --hard

• Git rebase (only useful case is git pull --rebase)

Conclusion
• Versioning is crucial both for small/large project

• Avoid dropbox for paper / project

• make meaningful commit

• logical block

• meaningful message

• Be safe avoid

More information

• Why an index: http://gitolite.com/uses-of-index.html

• technical tutorial on git (details on storage
structure): https://www.youtube.com/watch?
v=xbLVvrb2-fY

• https://git-scm.com/doc

https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY

