
Exascale: A User’s Perspec0ve
Paul Fischer University of Illinois Urbana-Champaign Computer Science; Mechanical Science & Engineering

Argonne Na=onal Laboratory Mathema6cs and Computer Science

Stefan Kerkemeier – K2 / ANL
Yu-Hsiang Lan – ANL
James LoFes– ANL (Google)
Elia Merzari – Penn State/ANL
Misun Min – ANL
Aleks Obabko – ANL
Malachi Phillips – UIUC
Thilina Rathnayake – UIUC
Ananias Tomboulides – ATU/ANL
Tim Warburton – Virginia Tech

Supported by the Center for Efficient
Exascale Discretizations (CEED) under
the DOE Exascale Computing Project.

Turbulence in a vascular access device.
Aleks Obabko, ANL

Example: Compressed Turbulence (Nek5000-CPU)

G. Giannakopoulos, K.Keskinen, J.Kochand, M.Bolla, C.E.Frouzakis, Y.M. Wright, K. Boulouchos, M. Schmidt, B. Böhm and A. Dreizler, Characterizing the evoluEon of boundary layers in
IC engines by combined laser-opEcal diagnosEcs, direct numerical and large-eddy simulaEons, Flow, Turbulence and Combus3on.

Spectral Element Methods for Turbulence Chapter | 2 39

FIGURE 2.9 DNS of compression in an optical engine. Iso-contours of heat flux along
the cylinder walls at 15o bTDC, left-to-right: bird’s eye view, cylinder head, piston.

Zurich-based study is to investigate the evolution of the momentum and thermal
boundary layers [78]. Figure 2.9 depicts isocontours of the wall heat flux on
the cylinder liner, head and piston surfaces towards the end of compression.
A strong correlation between the flow and heat flux structures is observed with
finer structures generated as the Reynolds number increases during compression.
In agreement with previous observations [79], higher heat fluxes were noted at
regions where the flow is predominantly impinging/stagnating, as evidenced by
the higher values at the right part of the piston surface compared to the left
(Fig. 2.9, right), where the tumble vortex impinges on the piston. For the same
reason, the heat flux is higher on the left part of the cylinder head. Significant
heat flux values are seen at the entrance of the large crevice volume of the optical
engine (Fig. 2.9, left) as a result of the intense, hollow jet flow that is formed in
this region. The study of crevice flows is of interest also with respect to unburned
fuel and pollutant emmissions.

These spectral element simulations were performed using Nek5000 [80] on
802 1.3 GHz Intel KNL nodes (51328 cores, one MPI rank per core) of the
ALCF supercomputer, Theta, at Argonne National Laboratory (n/P=13.8K).
Second-order, single-stage, characteristics timestepping was used with a target
CFL of 2.5. Roughly 40 pressure iterations per step were required when using
the Nek5000 default additive Schwarz preconditioner described in [81]. The
time-per-step is 2.25 seconds.

BIBLIOGRAPHY
[1] S. Orszag, Spectral methods for problems in complex geometry, J. Comput. Phys. 37 (1980)

70–92.
[2] D. Gottlieb, S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications,

SIAM-CBMS, Philadelphia, 1977.
[3] B. Metivet, Y. Morchoisne, in: Proc. of the 4th GAMM Conf. on Numerical Methods in Fluid

Mechanics, Paris, 1981.
[4] A. Patera, A spectral element method for fluid dynamics : laminar flow in a channel expansion,

61-Pin Wire-Wrap Bundle with Blockage E. Merzari, PSU

E=4.46M, N=7, n = 1.55B
P=480 V100s, n/P = 3.24M
tstep = 0.586 s/step

q 36000 steps in a 6-hour run
q 60 hours on 10% of Summit
q Pressure:

q 85% of run:me
q PMG with Chebyshev-Schwarz smoothing
q Boomer AMG coarse-grid (34% run:me)

q Advection:
q 2nd-order characteristics: CFL=1.5 (10% runtime)

Run:me Stats:

Incompressible Navier-Stokes EquaCons

• Key algorithmic / architectural issues:

– Unsteady evolu.on implies many .mesteps, significant reuse of precondi.oners,
data par..oning, etc.

– div u = 0 implies long-range global coupling at each :mestep
à communica.on intensive itera.ve solvers

– Small dissipa.on à large number of scales, large number of .mesteps
à large number of grid points for high Reynolds number, Re

Exascale Challenges - Scalability

P-fold speed-up

P=1 Million. Why not?

DOI 10.1007/s00450-009-0095-3

S P E C I A L I S S U E P A P E R

CSRD (2009) 24: 11–19

Toward message passing for a million processes:
characterizing MPI on a massive scale blue gene/P

Pavan Balaji · Anthony Chan · Rajeev Thakur · William Gropp · Ewing Lusk

Published online: 14 August 2009
© Springer-Verlag 2009

Abstract Upcoming exascale capable systems are expected
to comprise more than a million processing elements. As
researchers continue to work toward architecting these sys-
tems, it is becoming increasingly clear that these systems
will utilize a significant amount of shared hardware between
processing units; this includes shared caches, memory and
network components. Thus, understanding how effective
current message passing and communication infrastructure
is in tying these processing elements together, is critical to
making educated guesses on what we can expect from such
future machines. Thus, in this paper, we characterize the
communication performance of the message passing inter-
face (MPI) implementation on 32 racks (131 072 cores) of
the largest Blue Gene/P (BG/P) system in the United States
(80% of the total system size) and reveal various interesting
insights into it.

P. Balaji (✉) · A. Chan · R. Thakur · E. Lusk
Mathematics and Computer Science,
Argonne National Laboratory,
Argonne, USA
e-mail: balaji@mcs.anl.gov

A. Chan
e-mail: chan@mcs.anl.gov

R. Thakur
e-mail: thakur@mcs.anl.gov

E. Lusk
e-mail: lusk@mcs.anl.gov

W. Gropp
University of Illinois,
Urbana-Champaign, USA
e-mail: wgropp@illinois.edu

1 Introduction

Modern HEC systems no longer exclusively rely on the per-
formance of single processing units, but rather try to extract
parallelism out of a massive number of processing elements.
Today, large systems such as the IBM Blue Gene/L and Blue
Gene/P (BG/P) [5] already scale to hundreds of thousands of
processing elements. With plans underway for exascale sys-
tems to emerge within the next decade, it is expected that we
will soon have systems that comprise more than a million
processing elements. As researchers work toward architect-
ing these enormous systems, it is becoming increasingly
clear that these systems will utilize a significant amount of
shared hardware. This includes shared caches, shared mem-
ory and memory management devices, and shared network
infrastructure.

One of the primary challenges in such architectures, that
use a massive quantity of modestly powerful processing
units instead of a few very powerful processing units, is
their capability to tie these units together into a tightly
coupled network fabric that allows them to appear as one
fast supercomputer. This challenge is even more formidable
given the increasing amount of shared hardware in such
systems. Thus, understanding how effective the current mes-
sage passing and communication infrastructure is in tying
these processing elements together is critical to making ed-
ucated guesses on what we should expect from future exas-
cale machines that follow a similar architecture.

In this paper, we characterize the communication per-
formance of the Message Passing Interface (MPI) on 32
racks (131 072 cores) of the largest BG/P system in the
United States (80% of the total system size). Our studies
include tests that stress the shared hardware in the system.
The paper documents several interesting observations in-
cluding the impact of swap-free memory, impact of multiple

1 3

ECP-NASA mee:ng last year:
• 1000s of CPUs
• Weeks à Months of run:me
• Need larger P (or GPUs?)

• Key point:

– Performance, SP = ⌘ P S1

– Just definition of ⌘.

• Main things are to:

– Boost S1

– Keep ⌘ from falling as P is increased

• Scalability of an application:

– Nature of problem/algorithm

– Code

– Platform

– Size of problem, n (number of spatial grid points)

• General rule of thumb for PDEs:

– If you double n, you can double P

�! key parameter is size of problem per MPI rank = n/P

• Bottom line:

At strong-scale limit (where users generally run),

time-to-solution ⇠ W
0.8

n0.8

S1

W = number of flops per grid point

n0.8 = n/P, where ⌘ ⇡ 0.8
S1 = processing rate (GFLOPS) on a single rank

• To reduce time-to-solution, must not let the ratio (n0.8/S1) in-

crease.

• It’s clear, for example, that GPUs o↵er significant increases in

S1.

• Questions going into this project:

– How to maximize S1? (All in approach.)

– What happens to n0.8?

(ideally, code doesn’t maCer - Bake-Offs)

Parallelism: Stong-Scaling, Time to SoluCon, and Energy ConsumpCon

Observa.ons:
1. Time-to-solu-on goes down with increasing P, par-cularly for h = 1.
2. For h = 1, energy consump-on ~ P x tsol = constant — no penalty for increased P.
3. The red curve can use more processors than the blue. WHY?
4. Why (for a problem of any size), do we find h < 1?

- What is the root cause of the fall-off, and can we do something about it??

Parallelism: Stong-Scaling, Time to SoluCon, and Energy ConsumpCon

• These results suggest the idea of “n-scaling,”
in which we keep P fixed and alter the problem
size, n.

• This approach was taken in our CEED Bake-Off
problems so that we could “strong-scale”
without having to use enormous processor
counts.

• Idea is to fix P and monitor performance as
funcLon of (n/P) - performance is weakly
dependent on P.

Fischer, Min, Rathnayake, Dutta, Kolev, Dobrev, Camier, Kronbichler,
Warburton, Swirydowicz, and Brown. Scalability of high-performance
PDE solvers. Int. J. of High Perf. Comp. Appl., 34(5):562–586, 2020.

Parallelism: Stong-Scaling, Time to Solution, and Energy Consumption

• As part of CEED, we looked at six “bake-off”
problems (BPs)

• Nek5000 / MFEM / deal.ii

• Up and to the leX is beYer:
• High throughput, low n/P

• Each code excelled on at least one BP

• These became standard figures of merit as
new pla[orms / algorithms were introduced

Exascale Challenges - Scalability

Influenced by OLCF
Titan experience

• Key point:

– Performance, SP = ⌘ P S1

– Just definition of ⌘.

• Main things are to:

– Boost S1

– Keep ⌘ from falling as P is increased

• Scalability of an application:

– Nature of problem/algorithm

– Code

– Platform

– Size of problem, n (number of spatial grid points)

• General rule of thumb for PDEs:

– If you double n, you can double P

�! key parameter is size of problem per MPI rank = n/P

• Bottom line:

At strong-scale limit (where users generally run),

time-to-solution ⇠ W
0.8

n0.8

S1

W = number of flops per grid point

n0.8 = n/P, where ⌘ ⇡ 0.8
S1 = processing rate (GFLOPS) on a single rank

• To reduce time-to-solution, must not let the ratio (n0.8/S1) increase.

• It’s clear, for example, that GPUs o↵er significant increases in S1.

• Questions going into this project:

– How to maximize S1? (All in approach.)

– What happens to n0.8?

Scalability: CPU vs GPU? ? How should we assess performance?9

(a) (b) (c)

Figure 5. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1,000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

(a) (b) (c)

Figure 6. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1,000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 and N = 7.

To understand the data in Figures 5 and 6, we first note
that a column of dots corresponds to classic strong scaling.
As one moves down a vertical line, the problem size n is
fixed, and P doubles from curve to curve. On the other hand,
a row of dots corresponds to weak scaling. Starting from the
left and moving right, the processor counts and problem sizes
double. If the points are on the same horizontal line (i.e.,
have the same runtime), then we have perfect weak scaling,
as is the case for n/P > 105 in Figure 5(a). We see that the
largest problems (large, fixed, n) realize a twofold reduction
in solution time with each doubling of processor count over
the range of P considered. We have indicated a strong-scale
limit line where the strong-scale performance starts to fall
off when n/P is too small. For the GPU-only (i.e., P = 1)
case, the strong-scale limit corresponds to n/P ⇡ 105 for
both the N = 7 and N = 14 cases. We note that the strong-
scale limit is not observed for the CPU-only cases (graphs (b)
and (c) in Figures 5–6). They continue to have good strong
scaling down to the point of one element per core, which is
the natural granularity limit for the SEDG formulation. Their
lower-bound runtime is thus set by the granularity-limit line
indicated in the plots.

We now focus on the single-GPU performance in
Figures 5(a) and 6(a), which involves no interprocessor
communication. Moving from right to left on the blue (GPU
1) curve, the number of elements decreases by a factor of 2
for each point. The time decreases linearly until n ⇡ 105, at
which point there is insufficient work to saturate the GPU
work queue. Thus, even in the absence of communication,

Figure 7. Single-GPU performance on OLCF Titan, based on
1000 timestep runs with number of grid points n = E(N + 1)3

for N = 7 and 14, and varying E.

we can recognize that n/P ⇡ 105 is an approximate lower
bound for effective utilization of the GPU. If we attempt to
strong-scale the problem at this size by increasing P from 1
to 2, say, then each GPU is moving away from its saturated
performance state because the local problem size is reduced.
To further quantify this behavior, we plot Gflop/s vs n for the
single-GPU case in Figure 7. An estimate of the flops rate
is derived from (9) and (10)–(15). The present simulations
use a 5-stage Runge-Kutta (RK) integrator to advance (9).

Prepared using sagej.cls

Titan GPU Titan CPU Vesta BG/Q

q GPU (K20) is faster than CPU, but performance falls off if GPU problem
size is too small, even for P=1

q Here, N=14th order elements - “coarse granularity”
Otten, Gong, Mametjanov, Vose, Fischer, and Min, Hybrid MPI/OpenACC implementation for a high order electromagnetic solver
on GPUDirect communication, International Journal of High Performance Computing Applications, 30, No. 3, pp. 320–334, 2016.

P=1

E/P=1

9

(a) (b) (c)

Figure 5. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1,000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and N = 14.

(a) (b) (c)

Figure 6. Timings on different number of GPUs and CPU cores on OLCF Titan and ALCF BG/Q Vesta; 1,000 timestep runs with
the number of grid points n = E(N + 1)3 increased with E = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 and N = 7.

To understand the data in Figures 5 and 6, we first note
that a column of dots corresponds to classic strong scaling.
As one moves down a vertical line, the problem size n is
fixed, and P doubles from curve to curve. On the other hand,
a row of dots corresponds to weak scaling. Starting from the
left and moving right, the processor counts and problem sizes
double. If the points are on the same horizontal line (i.e.,
have the same runtime), then we have perfect weak scaling,
as is the case for n/P > 105 in Figure 5(a). We see that the
largest problems (large, fixed, n) realize a twofold reduction
in solution time with each doubling of processor count over
the range of P considered. We have indicated a strong-scale
limit line where the strong-scale performance starts to fall
off when n/P is too small. For the GPU-only (i.e., P = 1)
case, the strong-scale limit corresponds to n/P ⇡ 105 for
both the N = 7 and N = 14 cases. We note that the strong-
scale limit is not observed for the CPU-only cases (graphs (b)
and (c) in Figures 5–6). They continue to have good strong
scaling down to the point of one element per core, which is
the natural granularity limit for the SEDG formulation. Their
lower-bound runtime is thus set by the granularity-limit line
indicated in the plots.

We now focus on the single-GPU performance in
Figures 5(a) and 6(a), which involves no interprocessor
communication. Moving from right to left on the blue (GPU
1) curve, the number of elements decreases by a factor of 2
for each point. The time decreases linearly until n ⇡ 105, at
which point there is insufficient work to saturate the GPU
work queue. Thus, even in the absence of communication,

Figure 7. Single-GPU performance on OLCF Titan, based on
1000 timestep runs with number of grid points n = E(N + 1)3

for N = 7 and 14, and varying E.

we can recognize that n/P ⇡ 105 is an approximate lower
bound for effective utilization of the GPU. If we attempt to
strong-scale the problem at this size by increasing P from 1
to 2, say, then each GPU is moving away from its saturated
performance state because the local problem size is reduced.
To further quantify this behavior, we plot Gflop/s vs n for the
single-GPU case in Figure 7. An estimate of the flops rate
is derived from (9) and (10)–(15). The present simulations
use a 5-stage Runge-Kutta (RK) integrator to advance (9).

Prepared using sagej.cls

Scalability: CPU vs GPU? ? How should we assess performance?

q GPU (K20) is faster than CPU, but performance falls off if GPU problem
size is too small, even for P=1

q Here, N=7th order elements: fine-grained, Titan CPU is faster
q Perfect scaling à use CPUs. (WHY?)

P=1

E/P=1

Titan GPU Titan CPU Vesta BG/Q

Strong Scaling to a Million Ranks (Mira, BG/Q)

qn = 2 billion
qn0.8 = 2 B/(½ M) = 4000 points per rank

qFollow the prac.ce of “user perspec.ve” in
presen.ng metrics, e.g.,

q AMD-250X has 2 GCDs à 2 MPI ranks per 250X

q Other architectures similar…

A: Whatever the user would do…
(i.e., 2-rank/core, because it’s faster)

qQ: Do we use the 1-rank/core or 2-rank/
core curve for strong-scale study?

Strong-Scaling Example: ExaSMR Test Case on FronCer and Crusher

Table 2: Problem setup for strong/weak scaling studies.

Strong Scaling Test Sets
E n rank, P

Case 1 277000 95M 8–64

Case 2 470900 161M 14-128

Case 3 4709000 1.6B 128–16320

Figure 2: Strong-scaling on Frontier and Crusher for 17⇥ 17 rod bundles with 10, 17 and 170 layers
with total number of grid points of n = 95M , 161M , 1.6B. Average time-per-step vs. rank, P (left)
and average time-per-step vs. n/P (right). Frontier is set with (cray-mpich/8.1.17, rocm/5.1.0)
and Crusher with (cray-mpich/8.1.19, rocm/5.2.0).

thousand spectral elements of order N = 7, for a total of n = .27M ⇥73 = 95M grid points, 471
thousand spectral elements of order N = 7, for a total of n = .47M ⇥73 = 161M grid points, and
4.7 million spectral elements of order N = 7, for a total of n = 4.7M ⇥73 = 1.6B grid points,
respectively. Table 2 summarizes the configuration of the testing cases.

Figure 2 compares the scaling performance of Frontier to that of Crusher. Simulations are
performed for 2000 steps and the average time-per-step, tstep, is measured in seconds for the last
1000 steps. The third-order backward-di↵erence formula (BDF3) combined with the third-order
extrapolation (EXT3) [16] is used for timestepping and the timestep size is �t = 3.0e-04 (CFL=0.82).

Figure 2, left, shows the classic strong scaling for the problem sizes of n= 95M, 161M, and
1.6B, demonstrating the average time-per-step vs. the number of MPI ranks, P . We run a single
MPI rank per GCD and there are 8 GCDs per node. The dashed lines in skyblue represent ideal
strong-scale profiles for each case. The solid lines in red are for Frontier and the solid lines in black
are for Crusher. We observe that Frontier is consistently slightly faster than Crusher for these three
problem sizes. For larger problem sizes and processor counts, the Frontier advantage is increased.

Figure 2, right, shows the average time-per-step vs. the number of points per MPI rank, n/P ,
where n is the total number of grid points. tstep based on n/P is quite independent of the problem

6

Table 2: Problem setup for strong/weak scaling studies.

Strong Scaling Test Sets
E n rank, P

Case 1 277000 95M 8–64

Case 2 470900 161M 14-128

Case 3 4709000 1.6B 128–16320

Figure 2: Strong-scaling on Frontier and Crusher for 17⇥ 17 rod bundles with 10, 17 and 170 layers
with total number of grid points of n = 95M , 161M , 1.6B. Average time-per-step vs. rank, P (left)
and average time-per-step vs. n/P (right). Frontier is set with (cray-mpich/8.1.17, rocm/5.1.0)
and Crusher with (cray-mpich/8.1.19, rocm/5.2.0).

thousand spectral elements of order N = 7, for a total of n = .27M ⇥73 = 95M grid points, 471
thousand spectral elements of order N = 7, for a total of n = .47M ⇥73 = 161M grid points, and
4.7 million spectral elements of order N = 7, for a total of n = 4.7M ⇥73 = 1.6B grid points,
respectively. Table 2 summarizes the configuration of the testing cases.

Figure 2 compares the scaling performance of Frontier to that of Crusher. Simulations are
performed for 2000 steps and the average time-per-step, tstep, is measured in seconds for the last
1000 steps. The third-order backward-di↵erence formula (BDF3) combined with the third-order
extrapolation (EXT3) [16] is used for timestepping and the timestep size is �t = 3.0e-04 (CFL=0.82).

Figure 2, left, shows the classic strong scaling for the problem sizes of n= 95M, 161M, and
1.6B, demonstrating the average time-per-step vs. the number of MPI ranks, P . We run a single
MPI rank per GCD and there are 8 GCDs per node. The dashed lines in skyblue represent ideal
strong-scale profiles for each case. The solid lines in red are for Frontier and the solid lines in black
are for Crusher. We observe that Frontier is consistently slightly faster than Crusher for these three
problem sizes. For larger problem sizes and processor counts, the Frontier advantage is increased.

Figure 2, right, shows the average time-per-step vs. the number of points per MPI rank, n/P ,
where n is the total number of grid points. tstep based on n/P is quite independent of the problem

6

Figure 1: Full-core configuration on the left and a single 17⇥17 rod bundle on the right.

1 Introduction

As part of its Exascale Computing Project, the U.S. Department of Energy leadership computing
facilities will deploy platforms capable of reaching > 1 exaFLOPS (1018 floating point operations
per second) in 2022–2023. These highly parallel computers, and their pre-exascale predecessors,
feature ⇡ 103–104 nodes, each equipped with powerful CPUs and anywhere from 4 to 8 accelerators
(i.e., GPUs), which provide the bulk of the compute power. For reasons of e�ciency, a favored
programming model for these architectures is to assign a single process (i.e., MPI rank) to each
GPU (or GPU processing unit, such as a GCD on the AMD MI250X or a tile on the Intel PVC)
and execute across the GPUs using a private distributed-memory programming model. With
P = 103–105 MPI ranks, this approach a↵ords a significant amount of internode parallelism and
contention-free bandwidth with no increase in memory-access latency, save for the relatively sparse
internode communication that is handled by MPI.

This report describes performance results for the open source thermal-fluids simulation code,
Nek5000/RS [1, 2], on serveral of the the DOE’s recently-installed HPC platforms. Many of the
results are the outcome from participation of ALCF GPU Hackathon on Polaris, which was held on
7/19/22, and 7/26–7/28/22, where four members of Nek5000/RS team (M. Min, Y. Lan, P. Fischer,
T. Rathnayake), with Kris Rowe (ALCF) and Peng Wang (NVIDIA) as mentors, participated.
The results on Frontier are obtained in collaboration with John Holmen at OLCF. NekRS is a
GPU-oriented version of Nek5000 that was developed under DOE’s Center for E�cient Exascale
Discretizations (CEED). The principal developers are Stefan Kerkemeier (K2/ANL), Malachi Phillips
(UIUC), Thilina Rathnayake (UIUC), Misun Min (ANL), Yu-Hsiang Lan (UIUC/ANL), Paul Fischer
(UIUC/ANL), Ananias Tomboulides (AUT/ANL), and Elia Merzari (PSU). For portability, all
the GPU kernels are written in OCCA [3, 4], which was developed by Tim Warburton’s group

1

n0.8

qCri%cal parameter: n0.8 = number of points-per-rank to realize 80% efficiency.
qThis is where users will typically run and thus is the performance design point.

Addressing Efficiency Fall-Off

q From a User’s perspective, for most PDE solvers, efficiency fall-off for CPUs
and GPUs is generally different

q CPUs - MPI latency effects (not bandwidth… WHY?)

q GPUs - GPU scalability and MPI latency/bandwidth effects

Eearly Ping-Pong Tests

q Postal model: tc (m) = (a + b m) ta

1991

1996

2008 2012

words (64-bit) words (64-bit)

tim
e

 (s
ec

) tim
e

/t a

Message-Passing Costs Normalized Message Passing

35 Years of Ping-Pong Data

GPU Mitigation strategies:
• Increase n0.8
• Cover computation/comm
• Multiple messages in flight

(several NICs per device)
• Algorithmic changes

Scaling Limits for PDE-Based Simulation

Paul F. Fischer
⇤‡

Katherine Heisey
†

Misun Min
‡

ta = inverse MFLOPS

↵ta =
1
2 round-trip ping-pong time (m = 1)

�ta =
1
2 round-trip ping-pong time per word

↵ = latency, normalized by ta

� = inverse-bandwidth, normalized by ta

m2 = message size where tc(m) = 2tc(1)

⇤CS and MechSE Depts., Univ. of Illinois, Urbana-Champaign
†Dept. of Neurosience, Washington University of St. Louis
‡Mathematics and Computer Science Div., Argonne National Laboratory

1 of 2

American Institute of Aeronautics and Astronautics

Year ta (µs) ↵ta (µs) �ta (µs/wd) ↵ � m2 machine

1986 50 5960 64 119.2 1.28 93 Intel iPSC-1 (286)

1987 0.333 5960 64 17898 192 93 Intel iPSC-1/VX

1988 10 938 2.8 93.8 0.28 335 Intel iPSC-2 (386)

1989 0.25 938 2.8 3752 11.2 335 Intel iPSC-2/VX

1990 0.1 80 2.8 800 28 29 Intel iPSC-i860

1991 0.1 60 0.8 600 8 75 Intel Delta

1992 0.066 50 0.15 760 2.3 333 Intel Paragon

1995 0.02 60 0.27 3000 13.5 222 IBM SP2 (BU96)

1996 0.016 30 0.02 1875 1.25 1500 ASCI Red 333

1998 0.006 14 0.06 2333 10 233 SGI Origin 2000

1999 0.005 20 0.04 4000 8 500 Cray T3E/450

2005 0.002 4 0.026 2000 13 154 BGL/ANL

2008 0.0017 3.5 0.022 2060 13 160 BGP/ANL

2011 0.0007 2.5 0.002 3570 2.87 1250 Cray Xe6 (KTH)

2012 0.0007 3.8 0.0045 5430 6.43 845 BGQ/ANL

2015 0.0004 2.2 0.0015 5500 3.75 1467 Cray XK7

2021 0.000001 2.5 0.0005 2500000 500 5000 Summit

2 of 2

American Institute of Aeronautics and Astronautics

Latency-MiCgaCon Strategies - CPU

q Low-noise (convex) networks
q Hardware all-reduce
q …
q Not so much covering

communica.on/computa.on. (WHY)?

q Looked at several of the issues in an
SC17 effort led by Ken Raffenec (ANL)

Why Is MPI So Slow?
Analyzing the Fundamental Limits in Implementing MPI-3.1

Ken Ra�enetti
Argonne National

Laboratory
ra�enet@mcs.anl.gov

Abdelhalim Amer
Argonne National

Laboratory
aamer@anl.gov

Lena Oden
Argonne National

Laboratory
loden@anl.gov

Charles Archer
Intel Corporation

charlesarcher@gmail.com

Wesley Bland
Intel Corporation

wesley.bland@intel.com

Hajime Fujita
Intel Corporation

hajime.fujita@intel.com

Yanfei Guo
Argonne National

Laboratory
yguo@anl.gov

Tomislav Janjusic
Mellanox Technologies
tomislavj@mellanox.com

Dmitry Durnov
Intel Corporation

dmitry.durnov@intel.com

Michael Blocksome
Intel Corporation

michael.blocksome@intel.
com

Min Si
Argonne National

Laboratory
msi@anl.gov

Sangmin Seo
Argonne National

Laboratory
sseo@anl.gov

Akhil Langer
Intel Corporation

akhil.langer@intel.com

Gengbin Zheng
Intel Corporation

gengbin.zheng@intel.com

Masamichi Takagi
RIKEN Advanced Institute
of Computational Science
masamichi.takagi@riken.

jp

Paul Co�man
Argonne National

Laboratory
pco�man@anl.gov

Jithin Jose
Intel Corporation

jithinjose@gmail.com

Sayantan Sur
Intel Corporation

sayantan.sur@intel.com

Alexander Sannikov
Intel Corporation

alexander.sannikov@intel.
com

Sergey Oblomov
Intel Corporation

sergey.oblomov@intel.com

Michael Chuvelev
Intel Corporation

michael.chuvelev@intel.
com

Masayuki Hatanaka
RIKEN Advanced Institute
of Computational Science
mhatanaka@riken.jp

Xin Zhao
Mellanox Technologies
xinz@mellanox.com

Paul Fischer
University of Illinois
�scherp@illinois.edu

Thilina Rathnayake
University of Illinois
rbr2@illinois.edu

Matt Otten
Cornell University
mjo98@cornell.edu

Misun Min
Argonne National

Laboratory
mmin@mcs.anl.gov

Pavan Balaji
Argonne National

Laboratory
balaji@anl.gov

ABSTRACT
This paper provides an in-depth analysis of the software overheads
in the MPI performance-critical path and exposes mandatory per-
formance overheads that are unavoidable based on the MPI-3.1
speci�cation. We �rst present a highly optimized implementation
of the MPI-3.1 standard in which the communication stack—all the

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5114-0/17/11. . . $15.00
https://doi.org/10.1145/3126908.3126963

way from the application to the low-level network communication
API—takes only a few tens of instructions. We carefully study these
instructions and analyze the root cause of the overheads based
on speci�c requirements from the MPI standard that are unavoid-
able under the current MPI standard. We recommend potential
changes to the MPI standard that can minimize these overheads.
Our experimental results on a variety of network architectures and
applications demonstrate signi�cant bene�ts from our proposed
changes.

CCS CONCEPTS
•Computingmethodologies→Concurrent algorithms;Mas-
sively parallel algorithms;

All-Reduce Cost MiCgaCon

Unlike Jacobi iteration, the CG complexity depends on P as well as (n/P). Since we are interested in
exascale, we consider currently accessible values of P and those that could theoretically deliver exascale,
that is, P = 106 and 109. For these cases, we find the strong-scale limit (15) is realized with the BG/Q
parameters when

n/P � 12000, P = 106, (16)

n/P � 17000, P = 109. (17)

Here the nearly 3/2 increase in (n/P) results from the fact that log2 10
6 ⇡ 20 and log2 10

9 ⇡ 30.

Figure 3. BG/Q mpi allreduce
times in software and hardware,

along with 1/2 round-trip ping-

pong times.

The complexity increase resulting from the projective dot products in
conjugate gradient iteration can be avoided through the use of Chebyshev
iteration,8 which has the same asymptotic complexity as CG but elimi-
nates the need for vector reductions. In practice, however, we’ve found
that Chebyshev typically results in a 10 to 15 percent increase in iteration
count, even with optimally estimated eigenvalue ranges, and is therefore
not of interest unless one is running at the critical (n/P) value, that is, in
the range where all-reduce really dominates the total costs. Other choices,
such as low-communication CG variants,9 are also possible. On the BG se-
ries and some other forthcoming platforms, however, the log2 P overhead
is significantly reduced by having hardware support for all-reduce opera-
tions. Figure 3 shows the all-reduce times for processor counts P = 16, 32,
64, 128,. . ., 524288 (running one process per core) on the Argonne BG/Q,
Mira. The times are for mpi allreduce on vectors vp, which implements

v =
P�1X

p=0

v
p (18)

and redistributes v to each processor p for v and v
p 2 lRm. Figure 3

includes timings for (18) implemented in software and hardware. The
software times are close to the model (14). By contrast, the hardware times are bounded by 3 to 5 times
the ping-pong model (5). The dashed lines in the figure show this model (black) and this bracketing interval
(red). A reasonable complexity bound for all-reduce is thus to replace (14) by

Tall-reduce = Car ↵ ta, (19)

where Car=3–5.
If we use (19) in the CG complexity estimate, we arrive at new granularity bounds deriving from the

updated formula,

TcCG

TaCG
=

6(↵+ �(n/P)
2
3) + 2Car ↵

27n/P
 1, (20)

which is once again independent of P . For BG/Q-based parameters with Car = 5, we find the inequality
(20) is satisfied when

n/P � 2200, (21)

which is almost as low as the point-Jacobi granularity limit (12) and remarkably close to the Navier-Stokes
break-even point of Fig. 1.

3. Geometric Multigrid

Even with the best-fit property, CG iteration does not achieve order-independent convergence rates. A truly
scalable Poisson solver requires a multilevel strategy. Here, we consider geometric multigrid as a model
multilevel solver. In particular, we consider the following V-cycle.

6 of 10

American Institute of Aeronautics and Astronautics

q BG/Q (Mira, Sequoia, BG/P, BG/L)

q Isolated convex subnetworks - no traffic
compe%ng with User’s resources

q 18 cores per node - 16 compute,
one for System, one for Yield

q All-reduce performed on NIC:

à 4 X [½ ping-pong latency %me] !!

q Even so`ware all-reduce is reasonably fast

Actually, there is a problem with FronCer MPI (SC23 MPI BOF)

Fast Coarse Solvers

Table 2
Navier-Stokes solve times per timestep with different Chebyshev orders for 350K pebbles mesh with NekRS using P = 27648
processes with ˘ 2M grid points per process when using AMG and two level Schwarz solver as coarse grid solvers.

Solver Cheb. Order NS Time(s) Pres.Time(s) Coarse Time(s) Pres. Iter.

AMG 3 2.18e-01 1.61e-01 4.56e-02 4.80

AMG 2 2.60e-01 2.02e-01 7.02e-02 7.28

AMG 1 3.65e-01 3.04e-01 1.38e-01 14.50

Schwarz 3 2.17e-01 1.59e-01 1.70e-02 6.18

Schwarz 2 2.48e-01 1.89e-01 2.77e-02 9.78

Schwarz 1 3.31e-01 2.75e-01 5.68e-02 20.90

Figure 8: Frontier and Mira performance parameters. On the left are tabulated values of latency, ↵ (�s), inverse bandwidth,

� (�s/64-bit word), short-long message demarcation, m2 := ↵_� (64-bit words), and arithmetic time (inverse FLOPS,

�s/FP64-op). The communication parameters are derived from the ping-pong timings shown on the right, which also

includes MPI_allreduce performance. The vertical line corresponds to a message size of m = 400 64-bit words, which is

the largest message anticipated in the new coarse solver. The figure thus indicates that of the coarse-grid message traffic

is latency-dominated on Frontier and on a machine with network behavior similar to Mira.

for most of the range presents an opportunity for further optimizations which are discussed breifly in Section 6.3. Cost
of solving the reduced system A*1

r stays more or less the same as n_P decreases. This is not suprising since the size
of this system is not a�ected by n_P but fixed for the entire study. Althoug a slight decrease in the cost of solving A*1

r
is observed as n_P decreases which hints at the fact that it is the local part of XXT which is dominating the cost of
solving A*1

r .
Table 2 illustrate the importance of visiting the coarse grid system as few times as possible in order to reduce

the overall Navier-Stokes solve time. This is the strategy adapted in [26] in order to reduce the coarse grid overhead
indirectly by doing more Chebyshev smoothing steps in order to reduce the number of pressure solves. Increasing
number of Chebyshev smoothing steps from 1 to 3 decreases the number of pressure iterations by more than a factor
of three.

6. Discussion
Here we develop complexity models associated with each of the coarse-grid solve algorithms and compare them

with the performance measurements of the preceding section. We then use these models to analyze the impact of the
two-level Schwarz solver on strong-scaling in the context of Nek5000/RS. Finally, we discuss possible avenues for
improved performance of the coarse solver.

T. Ratnayaka, P. Fischer, L. Olson: Preprint submitted to arXiv.org Page 13 of 18

• Compare Fron-er MPI with home-grown f77 all-reduce
• ~ 1.5 X faster than mpich/8.1.23 at several points

(Discovered while developing a new coarse-grid solver…)

Exascale Challenges - Scalability & Portability

qWe opted to use OCCA for portability:

qTim Warburton (V. Tech) a key team member

qLong Mme developer of high performance
kernels, esp. for high-order methods

qSupport for CUDA, HIP, OpenCL, DPC++

qCS grad students are able to write backends

qIn an ideal world, we would have for accelerators
what MPI did for the SPMD distributed-memory
model - but not there yet.

Highly-Tuned Kernels for Tensor ContracCons, FP32 and FP64

q Pick opMmal kernel at runMme (e.g., for each pMG order, N=7, 5, 3)

Tuning Results for FP32 Fast-DiagonalizaGon-Method: T. Warburton

4

(a) (b) (c) (d)

Figure 2. Basis for NekRS: (a)–(b) Highly tuned OCCA-based Poisson kernel in libParanumal saturating the V100 roof-line, (b)
Poisson operator kernel performance (no communication) as a function of p (⌘ N) and n = Ep3, (c) Nek5000 strong scaling to > 1
million ranks, n0.8 ⇡ 4000 on Mira, (d) illustration of high-order benefits for the advection-dominated Walsh problem studied in
Fischer et al. (2017). At engineering accuracy, the 8th-order expansion is significantly more accurate than the 2nd-order expansion
for the same cost, n.

quadrature on Nq > N quadrature points Malm et al. (2013).
The characteristics approach allows for Courant numbers,
CFL:= maxx2⌦ �t|ui/�xi|, significantly larger than unity
(CFL=2–4 is typical), thus reducing the required number
of implicit Stokes (velocity-pressure) substeps per unit time
interval.

Each Stokes substep requires the solution of 3 Helmholtz
problems—one for each velocity component—which are
diagonally dominant and efficiently treated by using Jacobi-
preconditioned conjugate gradient iteration (Jacobi-PCG),
and a Poisson solve for the pressure, which bypasses the
need to track fast acoustic waves. Because of long-range
interactions that make the problem communication intensive,
the pressure Poisson solve is the dominant substep (⇡80%
of runtime) in the NS time-advancement. To address this
bottleneck, we use a variety of acceleration algorithms,
including p-multigrid (pMG) preconditioning, projection-
based solvers, and projection-based initial guesses.

The tensor-product structure of spectral elements makes
implementation of pMG particularly simple. Coarse-to-fine
interpolations are cast as efficient tensor contractions, uf =

(Ĵ ⌦ Ĵ ⌦ Ĵ)uc, where Ĵ is the 1D polynmial interpolation
operator from the coarse GLL points to the fine GLL
points. Like differentiation, interpolation is on the reference
element, so only a single Ĵ matrix (of size N + 1 or
less) is needed for the entire domain, for each pMG level.
Smoothers for pMG include Chebyshev-accelerated point-
Jacobi, additive Schwarz Lottes and Fischer (2005), and
Chebyshev-accelerated overlapping Schwarz. The Schwarz
smoothers are implemented by solving local Poisson
problems on domains extended into adjacent elements by
one layer. Thus, for an 8⇥ 8⇥ 8 brick (N = 7), one
solves a 10⇥ 10⇥ 10 local problem, Ãe

ũ
e = b̃

e
, using fast

diagonalization (FDM) Deville et al. (2002),

ũ
e = (Sz ⌦ Sy ⌦ Sx)⇤

�1(ST
z ⌦ S

T
y ⌦ S

T
x)b

e
, (3)

e = 1, . . . , E, where each 1D matrix of eigenvectors, S⇤,
is 10⇥ 10, and ⇤ is a diagonal matrix with only 1, 000
nonzeros. The leading complexity is ⇡ 12⇥ 104 operations
for the application of S⇤ and S

T
⇤ (implemented as dgemm),

with ⇡ 2, 000 loads per element (for b
e and ⇤). By

constrast, A
e, if formed, would have 1 million nonzeros

for each element, ⌦e, which would make work and storage
prohibitive. The fast low-storage tensor decomposition is

critical to performance of the SEM, as first noted in the
seminal paper of Orszag Orszag (1980). Note that the
communication for the Schwarz solves is also very low. We
exchange face data only to get the domain extensions—
meaning 6 exchanges per element instead of 26. This
optimization yields a 10% speedup in runs at the strong-
scale limit. (We have also implemented a restricted additive

Schwarz (RAS) variant, that does not require communication
after the local solve, which cuts communication of the
smoother by a factor of two.) Further preconditioner cost
savings are realized by performing all steps of pMG in 32-bit
arithmetic. On Summit, which has a limited number of NICs
per node, this approach is advantageous because it reduces
the off-node bandwidth demands by a factor of two.

Projection Is Key. For incompressible flows, the pressure
evolves smoothly in time, and one can leverage this
temporal regularity by projecting known components of
the solution from prior timesteps. For any n⇥ L subspace
of lRn with A-orthonormal‡ basis PL = [p̃

1
. . . p̃

L
], the

best-fit approximation to the solution of Ap
m = b

m is
p̄ = PLP

T
L b

m, which can be computed with a single all-
reduce of length L (. 30). The residual for the reduced
problem A�p = b

m �Ap̄ has a significantly smaller norm
such that relatively few GMRES iterations are required
to compute �p. We augment the space PL+1 = [PL �p]
after orthonormalizing �p against PL with one round of
classical Gram-Schmidt orthogonalization, which requires
only a single all-reduce. (This approach is stable because �p

is nearly A-orthogonal to PL.) In Sec. 7, we take Lmax = 30
before restarting the approximation space, which yields a 1.7
speedup in NS solution time compared to L=0.

We remark that this projection algorithm is one of the
few instances in distributed-memory computing where one
can readily leverage the additional memory that comes with
increasing the number of ranks, P . For low rank counts,
one cannot afford 30 vectors (each of size n/P per rank)
and must therefore take L < 30, which results in suboptimal
performance, as observed in the strong-scaling results of
Sec.5. With increasing P , this solution algorithm improves

because more memory is available for projection.

‡Here A is the discrete equivalent of �r2, which is symmetric positive
definite (SPD).

From NekRS logfile, PerlmuOer, SS10:SS10 logfile:
Ax: N=7 FP64 GDOF/s=13.2 GB/s=1260 GFLOPS=2184 kv0

Ax: N=7 FP64 GDOF/s=13.2 GB/s=1260 GFLOPS=2183 kv0

Ax: N=3 FP64 GDOF/s=12.6 GB/s=1913 GFLOPS=1883 kv5

Ax: N=7 FP32 GDOF/s=25.0 GB/s=1194 GFLOPS=4145 kv4

Ax: N=3 FP32 GDOF/s=18.0 GB/s=1368 GFLOPS=2693 kv2

fdm: N=9 FP32 GDOF/s=44.9 GB/s= 812 GFLOPS=7452 kv4

fdm: N=5 FP32 GDOF/s=34.1 GB/s= 825 GFLOPS=4301 kv1

flop/s 3.36729e+13 (701 GFLOPS/rank)

SS11 logfile:
Ax: N=7 FP64 GDOF/s=13.2 GB/s=1256 GFLOPS=2179 kv0

Ax: N=7 FP64 GDOF/s=13.2 GB/s=1257 GFLOPS=2180 kv0

Ax: N=3 FP64 GDOF/s=12.6 GB/s=1912 GFLOPS=1882 kv5

Ax: N=7 FP32 GDOF/s=25.0 GB/s=1194 GFLOPS=4144 kv5

Ax: N=3 FP32 GDOF/s=18.1 GB/s=1369 GFLOPS=2696 kv2

fdm: N=9 FP32 GDOF/s=44.9 GB/s= 812 GFLOPS=7444 kv4

fdm: N=5 FP32 GDOF/s=34.1 GB/s= 825 GFLOPS=4303 kv1

flop/s 1.00108e+13 (208 GFLOPS/rank)

In the table above, kv reflects the particular kernel version chosen out of the suite of available
kernels in NekRS for the particular operation. We see that the 64-bit Ax kernels (the matrix-vector
product with the Laplace operator for spectral element order N) realize ⇡ 2 TFLOPS per device,
while their 32-bit counterparts realize 3–4 TFLOPS. (32-bit arithmetic is used in the preconditioner
only.) The fast-diagonalization method (fdm) implements local tensor-product solves of the form
z = S⇤�1

S
T
r, where S = (St ⌦ Ss ⌦ Sr) is the orthogonal matrix of eigenvectors for the overlapped

Poisson problem in local (r� s� t) coordinates in the reference element, ⌦̂ = [�1, 1]3 [16]. This is a
fast operation and can be seen to sustain > 7 GFLOPS (FP32). Note that, as expected, the kernel
performance, which does not include any MPI overhead, is not dependent on the Slingshot version.
NekRS also reports the total observed GFLOPS, which is seen to by 701 GFLOPS/rank for SS10
and 208 GFLOPS/rank for SS11. We note that, for this particular case, P = 48 and n = 96790120,
for which n/P = 2.01M, which is close to (but below) the value of n0.8. We can anticipate that the
saturated floating-point performance for SS10 would thus be about 701/0.8 = 876 GFLOPS.

At present we do not know why the p-multigrid smoother time is an order-of-magnitude larger
on SS11 than SS10. That question is under investigation but has been hampered by downtime of
Perlmutter.

6 Conclusions

This study explores the performance of a highly-tuned incompressible flow code, NekRS, on current-
generation HPC architectures featuring accelerator-based nodes. The principal accelerators under
consideration are the NVIDIA V100, NVIDIA A100, and MI250X with eight GCDs per node. We
found that the raw performance of a single GCD is about 85% of a single A100. We also found that
the AMD-based Crusher platform had slower host-based communication than its Polaris/Perlmutter
counterpart, as witnessed by the relatively poor performance of the Hypre-based coarse-grid solver,
which runs on the host. This situation is significantly improved on Frontier.

What is critical to end-user performance is the ratio n0.8/P , which governs the time-to-solution
(5). Despite the pessismistic results in [7], where it appeared that GPU-based platforms might be
3⇥ slower than ANL’s IBM BG/Q, Mira, we are finding that NekRS is in 3⇥ faster than Nek5000
on Mira. This gain can be attributed to careful attention to reducing n0.8, to improved pressure
preconditioners tuned specifically for accelerator-based nodes, to the use of 32-bit precision in the
preconditioners, and to extensive use of overlapped communication and computation.

22

More Recent OCCA Tunings, A100 & H100. Peng Wang - NVIDIA

Advection Kernel (FP64)

New v16: use outer product for the advection operator to reduce SMEM access

• Performance improvement

• A100: 1.35X, 4717 Gflop/s => 6375 Gflop/s
• H100: 1.5X, 8312 Gflop/s =>12649 Gflop/s
• Added chemistry field to the kernel

More Recent OCCA Tunings, A100 & H100. Peng Wang - NVIDIA

New v7: make everything an outer product, which reduces SMEM traffic ellipticBlockPartialAxCoeffHex3D

• Added a v1 to reduce register pressure by utilizing multiple planes

A100 5 6 7 8 9 10

v0 2253.03 2782.43 3134.98 2996.22 3657.43 3684.28

v1 2943.87 3072.6 4129.65 3582.21 3465.56 3145.26

H100 5 6 7 8 9 10

v0 3015.31 3801.18 6114.79 4261.23 4587.07 5101.18

v1 5493.15 5937.82 7662.32 6683.8 6640.17 6090.34

Gflop/s

• NekRS picks fastest
kernel at setup

• Never have performance
regression

Tuned CommunicaCon OpCons, FP32 and FP64

q Following the developments in Nek5000’s gslib, there
is an OCCA-based equivalent with several op.ons for
the gather-scager communica.on.

qThese include
qPack on device + GPUDirect
qPack on device, communicate pairwise via host
qPack on host, communicate pairwise via host
qEtc.

qRun.me tests select the best op.on for each
communica.on topology and precision

qThe test output also provides useful diagnos.cs.

From NekRS logfile, PerlmuYer:

Inspection of the NekRS logfiles shows that the increase is all focused in one section of the code,
namely the non-local Schwarz-based smoother in the p-multigrid preconditioner for the pressure
Poisson problem. That section of code is running 10⇥ slower than its SS10 counterpart! Below, we
show the logfile content for the two simulations with P = 48 (which is the slowest case).

SS10 logfile:

name time % calls

setup 3.82904e+01s 0.38 1

loadKernels 1.03634e+01s 0.27 1

udfExecuteStep 4.79398e-03s 0.00 2001

elapsedStepSum 6.13724e+01s 0.62

solve 6.12031e+01s 0.61

min 2.31879e-02s

max 5.51687e-02s

flop/s 3.36729e+13

makef 5.59237e+00s 0.09 2000

udfUEqnSource 3.98969e-02s 0.01 2000

udfProperties 4.82886e-03s 0.00 2001

velocitySolve 1.73346e+01s 0.28 2000

rhs 2.29362e+00s 0.13 2000

pressureSolve 3.42052e+01s 0.56 2000

rhs 4.69203e+00s 0.14 2000

preconditioner 2.26178e+01s 0.66 2470

pMG smoother 1.51609e+01s 0.67 9880

coarse grid 5.33568e+00s 0.24 2470

initial guess 3.18958e+00s 0.09 2000

SS11 logfile:

name time % calls

setup 3.98696e+01s 0.16 1

loadKernels 8.86541e+00s 0.22 1

udfExecuteStep 4.79946e-03s 0.00 2001

elapsedStepSum 2.06042e+02s 0.84

solve 2.05867e+02s 0.84

min 5.50540e-02s

max 3.32500e-01s

flop/s 1.00108e+13

makef 5.57575e+00s 0.03 2000

udfUEqnSource 3.99624e-02s 0.01 2000

udfProperties 4.88246e-03s 0.00 2001

velocitySolve 1.72489e+01s 0.08 2000

rhs 2.29522e+00s 0.13 2000

pressureSolve 1.79243e+02s 0.87 2000

rhs 4.48683e+00s 0.03 2000

preconditioner 1.67813e+02s 0.94 2470

pMG smoother 1.49445e+02s 0.89 9880

coarse grid 5.53950e+00s 0.03 2470

initial guess 3.20173e+00s 0.02 2000

We also note that SS11 delivers higher bandwidth than SS10 in all of the set-up tests done by NekRS
when it is making a runtime selection of the best communication algorithm for each subproblem.
We list the logfile output for those below.

SS10 logfile:

pw+device (MPI: 7.37e-05s / bi-bw: 54.5GB/s/rank)

pw+device (MPI: 1.75e-04s / bi-bw: 23.0GB/s/rank)

pw+device (MPI: 1.77e-04s / bi-bw: 22.7GB/s/rank)

pw+device (MPI: 1.76e-04s / bi-bw: 22.8GB/s/rank)

pw+device (MPI: 7.29e-05s / bi-bw: 55.2GB/s/rank)

pw+device (MPI: 7.29e-05s / bi-bw: 55.1GB/s/rank)

pw+device (MPI: 5.50e-05s / bi-bw: 73.1GB/s/rank)

pw+device (MPI: 5.48e-05s / bi-bw: 73.4GB/s/rank)

pw+device (MPI: 5.37e-05s / bi-bw: 96.3GB/s/rank)

pw+device (MPI: 5.16e-05s / bi-bw: 100.2GB/s/rank)

pw+device (MPI: 4.64e-05s / bi-bw: 16.3GB/s/rank)

pw+device (MPI: 4.90e-05s / bi-bw: 15.4GB/s/rank)

pw+device (MPI: 3.84e-05s / bi-bw: 33.6GB/s/rank)

pw+host (MPI: 2.46e-05s / bi-bw: 3.6GB/s/rank)

SS11 logfile:

pw+device (MPI: 4.38e-05s / bi-bw: 91.8GB/s/rank)

pw+device (MPI: 8.45e-05s / bi-bw: 47.6GB/s/rank)

pw+device (MPI: 8.45e-05s / bi-bw: 47.6GB/s/rank)

pw+device (MPI: 8.58e-05s / bi-bw: 46.9GB/s/rank)

pw+device (MPI: 4.52e-05s / bi-bw: 89.0GB/s/rank)

pw+device (MPI: 4.48e-05s / bi-bw: 89.8GB/s/rank)

pw+device (MPI: 4.07e-05s / bi-bw: 98.7GB/s/rank)

pw+device (MPI: 3.97e-05s / bi-bw: 101.2GB/s/rank)

pw+device (MPI: 3.52e-05s / bi-bw: 146.7GB/s/rank)

pw+device (MPI: 3.47e-05s / bi-bw: 148.8GB/s/rank)

pw+device (MPI: 3.75e-05s / bi-bw: 20.1GB/s/rank)

pw+device (MPI: 3.58e-05s / bi-bw: 21.1GB/s/rank)

pw+device (MPI: 2.74e-05s / bi-bw: 47.2GB/s/rank)

pw+host (MPI: 1.66e-05s / bi-bw: 5.4GB/s/rank)

For completenes, we also include the kernel performance numbers as reported in the NekRS logfiles:

21

Inspection of the NekRS logfiles shows that the increase is all focused in one section of the code,
namely the non-local Schwarz-based smoother in the p-multigrid preconditioner for the pressure
Poisson problem. That section of code is running 10⇥ slower than its SS10 counterpart! Below, we
show the logfile content for the two simulations with P = 48 (which is the slowest case).

SS10 logfile:

name time % calls

setup 3.82904e+01s 0.38 1

loadKernels 1.03634e+01s 0.27 1

udfExecuteStep 4.79398e-03s 0.00 2001

elapsedStepSum 6.13724e+01s 0.62

solve 6.12031e+01s 0.61

min 2.31879e-02s

max 5.51687e-02s

flop/s 3.36729e+13

makef 5.59237e+00s 0.09 2000

udfUEqnSource 3.98969e-02s 0.01 2000

udfProperties 4.82886e-03s 0.00 2001

velocitySolve 1.73346e+01s 0.28 2000

rhs 2.29362e+00s 0.13 2000

pressureSolve 3.42052e+01s 0.56 2000

rhs 4.69203e+00s 0.14 2000

preconditioner 2.26178e+01s 0.66 2470

pMG smoother 1.51609e+01s 0.67 9880

coarse grid 5.33568e+00s 0.24 2470

initial guess 3.18958e+00s 0.09 2000

SS11 logfile:

name time % calls

setup 3.98696e+01s 0.16 1

loadKernels 8.86541e+00s 0.22 1

udfExecuteStep 4.79946e-03s 0.00 2001

elapsedStepSum 2.06042e+02s 0.84

solve 2.05867e+02s 0.84

min 5.50540e-02s

max 3.32500e-01s

flop/s 1.00108e+13

makef 5.57575e+00s 0.03 2000

udfUEqnSource 3.99624e-02s 0.01 2000

udfProperties 4.88246e-03s 0.00 2001

velocitySolve 1.72489e+01s 0.08 2000

rhs 2.29522e+00s 0.13 2000

pressureSolve 1.79243e+02s 0.87 2000

rhs 4.48683e+00s 0.03 2000

preconditioner 1.67813e+02s 0.94 2470

pMG smoother 1.49445e+02s 0.89 9880

coarse grid 5.53950e+00s 0.03 2470

initial guess 3.20173e+00s 0.02 2000

We also note that SS11 delivers higher bandwidth than SS10 in all of the set-up tests done by NekRS
when it is making a runtime selection of the best communication algorithm for each subproblem.
We list the logfile output for those below.

SS10 logfile:

pw+device (MPI: 7.37e-05s / bi-bw: 54.5GB/s/rank)

pw+device (MPI: 1.75e-04s / bi-bw: 23.0GB/s/rank)

pw+device (MPI: 1.77e-04s / bi-bw: 22.7GB/s/rank)

pw+device (MPI: 1.76e-04s / bi-bw: 22.8GB/s/rank)

pw+device (MPI: 7.29e-05s / bi-bw: 55.2GB/s/rank)

pw+device (MPI: 7.29e-05s / bi-bw: 55.1GB/s/rank)

pw+device (MPI: 5.50e-05s / bi-bw: 73.1GB/s/rank)

pw+device (MPI: 5.48e-05s / bi-bw: 73.4GB/s/rank)

pw+device (MPI: 5.37e-05s / bi-bw: 96.3GB/s/rank)

pw+device (MPI: 5.16e-05s / bi-bw: 100.2GB/s/rank)

pw+device (MPI: 4.64e-05s / bi-bw: 16.3GB/s/rank)

pw+device (MPI: 4.90e-05s / bi-bw: 15.4GB/s/rank)

pw+device (MPI: 3.84e-05s / bi-bw: 33.6GB/s/rank)

pw+host (MPI: 2.46e-05s / bi-bw: 3.6GB/s/rank)

SS11 logfile:

pw+device (MPI: 4.38e-05s / bi-bw: 91.8GB/s/rank)

pw+device (MPI: 8.45e-05s / bi-bw: 47.6GB/s/rank)

pw+device (MPI: 8.45e-05s / bi-bw: 47.6GB/s/rank)

pw+device (MPI: 8.58e-05s / bi-bw: 46.9GB/s/rank)

pw+device (MPI: 4.52e-05s / bi-bw: 89.0GB/s/rank)

pw+device (MPI: 4.48e-05s / bi-bw: 89.8GB/s/rank)

pw+device (MPI: 4.07e-05s / bi-bw: 98.7GB/s/rank)

pw+device (MPI: 3.97e-05s / bi-bw: 101.2GB/s/rank)

pw+device (MPI: 3.52e-05s / bi-bw: 146.7GB/s/rank)

pw+device (MPI: 3.47e-05s / bi-bw: 148.8GB/s/rank)

pw+device (MPI: 3.75e-05s / bi-bw: 20.1GB/s/rank)

pw+device (MPI: 3.58e-05s / bi-bw: 21.1GB/s/rank)

pw+device (MPI: 2.74e-05s / bi-bw: 47.2GB/s/rank)

pw+host (MPI: 1.66e-05s / bi-bw: 5.4GB/s/rank)

For completenes, we also include the kernel performance numbers as reported in the NekRS logfiles:

21

SS10:

SS11:

Pressure Solve Improvements

Algorithmic Impact on Pressure Solve Times, 1568-pebble case.

• Take-aways
• overlapping communication/computation yields ~ 15% in pressure time

• fp32 in preconditioner can yield 10-15%. Often, the fp32 advantage derives
from reduced bandwidth demand on the network. Q: Role of strong scaling?

Surprises - Part & Parcel of HPC Since Its IncepCon - SS10à SS11 Upgrade

	0

	0.05

	0.1

	0.15

	0.2

50 100	10

ti
m

e
/s

te
p

	(
s
e

c
)

#GPU

SS10	08/03/22

SS11	08/03/22

SS11	08/04/22

SS11	08/09/22

SS11	08/17/22

SS11	10/12/22

SS11	v23	10/02/23

rod1717_10	on	Perlmutter
qSS11 realized a 1.5X gain in bandwidth

qHowever, flakey but repeatable message-
passing costs yielded a 3X overall
slowdown in NS solu.on performance.

qIssue: a handful of short messages in
lowest levels of p-mul.grid

qWe were worried that Polaris (and other
SS11 systems) would be the same.

qThis issue resolved with later SS11 release

Navier-Stokes SoluGon Time - Strong Scaling, PerlmuOer

Strong-Scaling Example: ExaSMR on Frontier, Crusher, Polaris

8-6
-20

21

8-2
3-2

02
1

8-2
4-2

02
1

9-2
3-2

02
1

11
-19

-20
21

12
-16

-20
21

12
-16

-20
21

1-4
-20

22

1-1
6-2

02
2

1-1
9-2

02
2

12
-5-

20
22

4-1
4-2

02
3

4-1
5-2

02
3

4-1
5-2

02
3

4-1
5-2

02
3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

W
[n

eu
tr

on
s·s

�
1
]

MI250x

MI100

ROCm 4.2

ROCm 4.3

ROCm 4.5

ROCm 4.5.2

ROCm 5.1

ROCm 5.3

Figure 3: Performance timeline of Shift on AMD hardware. The
introduction of the Faddeeva polynomial approximation is indi-
cated by the diagonal hash, and the use of cell tallies are shown
using the horizontal hash.

Table 6: Shift register analysis of ROCm 5.1 and ROCm 5.3.

ROCm 5.1 ROCm 5.3

Kernel vgpr Occupancy vgpr Occupancy

dist_to_collision 168 3 222 2
calc_macro_rxn 182 2 258 1

5.1 performance was recovered.

7. Performance Results

7.1. NekRS

Single-Assembly on Polaris, Crusher, and Fron-
tier. We’ve performed a series of strong-scale stud-
ies on Polaris, which is an NVIDIA A100-based
platform at Argonne National Laboratory, and on
Crusher and Frontier, which are AMD MI250X-
based machines at Oak Ridge National Laboratory.
The scaling results are plotted as TFLOPS per rank
versus gridpoints per rank in Fig. 4. In this case,
the A100 sustains 870 GFLOPS for P = 104, while
Crusher and Frontier sustain respectively 593 and
577 GFLOPS for P = 128. If we take these values to
be Ssat, then we find from Fig. 4 n0.8 values of 4.7 M,
5.0 M, and 3.0 M for Polaris, Crusher, and Frontier,
respectively. The respective ratios of n0.8 to Ssat are
5411, 8383, and 5056, points-per-GFLOPS, which
implies that, at 80% parallel efficiency, Frontier will
have the minimum time to solution. Clearly, at al-
most every value of n/P > 1 M, Polaris outperforms
Frontier. However, Frontier strong scales better than
Polaris—its efficiency does not fall off as quickly and
one finds the rather surprising result that users who
obey some relatively strict efficiency rule will be able
to run this problem faster on Frontier than on Po-
laris.

There is a significant caveat to the preceding ar-
gument: it assumes that n/P is the only driver in

Figure 4: Strong-scaling results showing sustained TFLOPS per
rank for Navier-Stokes simulation of 17⇥17 rod bundle with
n=1.6B grid points as a function of n/P for Polaris, Crusher, and
Frontier. Horizontal dashed lines are at 80Vertical dashed lines
represent n0.8.

Figure 5: Full-core NekRS Navier-Stokes time-per-step on Fron-
tier for a 172 B (fluid) / 370 B (thermal) point simulation on 72000
ranks of Frontier: (left) time vs. step number, (right) histogram.

establishing efficiency. Remarkably, the efficiency
of Polaris improves as n is reduced, which is not the
case for Frontier and Crusher. (See Fig. 2, upper
left and right.) While we have yet to perform careful
analysis of full-scale Polaris runs, we have recently
undertaken a series of large runs on Frontier. Unfor-
tunately, the network on Frontier (particularly host-
to-host) behaves erratically when there are thou-
sands of ranks, and the sustained performance is
only 150 GFLOPS/rank. The issue is illustrated in
Fig. 5, which shows the NekRS time-per-step on
9000 nodes (P = 72000) of Frontier for a problem
with n = 172 B points for the fluid and nT = 370 B
for the thermal problem. We see the lower envelope
in red, with tstep ⇡ 0.3s , which is the performance
level we would expect, and a cloud of points above
that with tstep as high as 10s. The histogram bet-
ter illustrates the extent of current network issues,
which do not appear at lower node counts. We are
optimistic that the majority of the step sizes will
trend toward the values at the left of this figure as
network issues on Frontier are resolved.

8

A100

MI250X

qWhile the A100 has higher peak
performance, its n0.8 ~ 5M per GPU

qFor Fron%er (MI250X), n0.8 ~ 3M per GCD

q At 80% efficiency, %me to solu%on is
actually lower (0.84) on Fron%er than on
Polaris because Fron%er can use more
ranks.

qNote that if we try to run on Polaris at
~ 100% efficiency the %me to solu%on will
be > 3 x 0.8 = 2.4x longer.

- 2.4 days, instead of 1 day.

Insight about FronCer Performance M. Min et al. 2022

q Single GCD FLOP intensive kernels on par with A100

q Communica%on-intensive phases are on par with Summit

Figure 7: Strong-scaling on various GPU architectures for 17⇥17 rod bundle with 10 layers.

12

Fig. 2. Strong-scaling on Crusher and Summit.

Fig. 2. Strong-scaling on Crusher and Summit.

ExaSMR: Performance on Crusher (vs. A100, V100)

n/gpu= 2M @80% eff

n/gpu= 3M @80% eff
n/gpu= 2.5M &80% eff

S=1.0

S=1.5x

S=0.83

S=0.83 S=1.0

S=1.5x

q 17x17 rod bundle: n= 95M (Crusher: 7-37 GCDs, 1-5 nodes) max 5 ndoes (BDF3, CFL=0.69) iter (3,1)
q 17x17 rod bundle: n= 161M (Crusher: 8-420 GCDs, 1-52 nodes) max 192 ndoes (BDF3, CFL=0.69) iter (3,1)
q 17x17 rod bundle: n= 1.6B (Crusher: 88-1200 GCDs, 11-150 nodes) max 192 nodes (BDF3, CFL=0.69), iter (3,1)
q Singlerod: n= 2.4M (BDF2+CHAR, CFL=1.82), iter (4,1)
q Version: Tim’s latest kernel + NekRS 22.0

ExaSMR Timings
M.Min, Y.H. Lan, M. Phillips

qSummit
qCrusher
qThetaGPU
qPerlmutter

q Consider this hero calcula.on
from a few years ago.

Answering a Common QuesCon: How long will my job take?

Philipp Schlatter ETC-16 Stockholm, August 2017

43

Direct numerical simulation of flow over a
full NACA4412 wing at Rec = 400 000
� DNS with Nek5000
� Ret=400, Req=2800
� AoA=5 deg.
� zL=10% chord

Transition to
turbulence

Turbulence
on the wing

Flow separation
Wake turbulence

• 3.2 billion grid points
• 35 million CPU hours needed

for convergence of turbulence
• 75 TB data, 12 ETT

q How many A100s?

qHow many A100 hours?

qHow many node hours?

q 1000 A100s
qEach ~300X a CPU
q110K GPU hours
q110 wall clock hours

Pueng it all together:

q n0.8 ~ 2 M on V100
~ 3 M on AMD MI250X (single GCD)
~ 4-5 M on A100

q Did we improve n0.8 / S1 ??

Inquiring users want to know!

Summit-Mira Comparison Ramesh Balakrishnan ANL

E=3.14M, N=7, n = 1.08B

Mira: Nek5000
P=524288 ranks (262144 cores)
n/P = 2060
0.496 s/step (CFL ~ 0.45)
24 hour run (of several)

Summit: NekRS
P=528 ranks (528 V100s)
n/P = 2.05M
0.146 s/step (CFL ~ 0.45)
24 hour run (of several)

Summary:
At strong-scale limit (80% eff.)

- NekRS+Summit à 3.4X faster than Nek5000+Mira
- Requires about 10% of Summit resources vs. ½ Mira

(This result not a foregone conclusion…2020 BP Paper.)

Nek5000 DNS of flow past a periodic hill at Re=19,000 on ALCF Mira. Ramesh Balakrishnan, ANL

Cases cyl146 cyl1568 ann3344 cyl11k cyl49k ann127k ann350k
IO for Qhull 4.56E-01 1.10E+00 2.64E+00 6.36E+00 1.97E+01 5.13E+01 2.79E+02
Voronoi cells (Qhull) 1.70E-01 4.29E-01 1.07E+00 2.50E+00 8.77E+00 2.12E+01 7.98E+01
Facet generation 9.37E-01 6.79E+00 1.50E+01 5.71E+01 4.69E+02 3.41E+03 4.70E+04
Edge collapse 8.67E-02 2.34E-01 4.53E-01 1.26E+00 5.24E+00 1.30E+01 8.20E+01
Facet/edge clean-up 1.21E+00 6.57E+00 8.66E+00 2.75E+01 1.29E+02 3.47E+02 2.55E+03
Tessellation 2.37E+00 1.40E+01 2.78E+01 9.62E+01 7.30E+02 4.09E+03 2.62E+04
All-quad generation 1.67E-01 7.02E-01 1.34E+00 4.24E+00 1.74E+01 4.61E+01 1.20E+02
All-quad to all-hex 5.64E-02 2.48E-01 5.13E-01 2.42E+00 9.34E+00 2.52E+01 7.97E+01
Extrusion 1 4.99E-01 3.58E+00 8.60E+00 2.11E+01 8.58E+01 3.10E+02 1.63E+03
IO for smoothing 2.42E-01 4.99E+00 4.13E+00 1.30E+01 5.85E+01 1.96E+02 1.12E+03
Mesh smoothing (42 ranks) (42 ranks) (42 ranks) (84 ranks) (168 ranks) (336 ranks) (1008 ranks)

3.58E+00 4.12E+01 9.95E+01 3.99E+02 7.26E+02 3.19E+03 1.10E+03
Extrusion 2 1.01E+00 5.36E+00 1.08E+01 2.80E+01 1.10E+02 6.72E+02 2.12E+03
IO for projection 1.55E-01 7.71E-01 1.62E+00 5.13E+00 2.19E+01 1.62E+02 4.16E+02
Curve-side projection (42 ranks) (42 ranks) (42 ranks) (84 ranks) (168 ranks) (336 ranks) (25200 ranks)

4.00E+01 2.10E+02 1.80E+03 1.68E+03 4.20E+03 3.60E+03 7.20E+03
Total 6.71E+01 3.41E+02 2.05E+03 2.55E+03 7.51E+03 1.89E+04 1.88E+05

Table 2: Breakdown of meshing times (seconds, unless otherwise indicated). Most functions are running with serial
Matlab. The mesh smoothing and projection are running on OLCF/Summit’s CPU nodes, which introduce some I/O
time. Remarks: The ann350k case ran twice for the edge collapse tolerance adjustment, so the total time is much
higher. Projection for the ann350k case is done on the N=7 grid (512 points) while others are on N=2 (27 points).

Figure 8: Turbulent flow in an annular packed bed with N = 352625 spheres meshed with E = 98, 782, 067 spectral
elements of order N = 8 (n = 50 billion gridpoints). This NekRS simulation requires 0.233 seconds per step using
27648 V100s on Summit. The average number of pressure iterations per step is 6.

elements and n = 50.5 billion grid points.

Overall, the development has satisfied the objective of
allowing us to produce large-scale high-quality meshes
suitable for high-order spectral element simulations of
turbulence in packed beds. In particular, the 352K
case, which corresponds to a full reactor core, takes
only .233 seconds per step when running on 4608 nodes

(27648 V100s), which corresponds to 1.8 million points
per V100. This configuration would require only 6
hours to compute a single flow-through time on all
of Summit, implying that parameter studies will be
readily tractable on exascale platforms. The number of
pressure iterations is ⇡6 per step when using a tuned
version of the NekRS multigrid solver. Tuning was

Y. Lan, P. Fischer, E. Merzari, M. Min: All hex meshing strategies for densely-packed spheres. Int. Meshing Roundtable, 2021.

Extreme Scalability: Full-Core Pebble Bed SimulaCons
Y.Lan, PF., E. Merzari,M.Min

q 352,625 spherical pebbles
q E=99 M elements
q N=51 B gridpoints
q 1.4 TB per snapshot (FP32)
q P=27648 V100s (all of Summit)

q High quality all-hex mesh generated by
tessella6on of Voronoi facets that are
projected onto the sphere or domain
boundaries to yield hexahedral elements

q ~300 elements / sphere

q Turbulent flow in the inters66al region
between the randomly-packed spheres.

Net Improvements - Full Core SimulaCon

q Net reduc.on,

tstep : 0.68 s à 0.24 s (effec.ve 0.18 s)

qWith a 2X increase in step size (via
characteris.cs), able to solve a full flow-
through in just 6 hours on Summit, which is a
significant achievement compared to pre-ECP
capabili.es, both in size and speed.

qRecord problem size on Mira was E=15M
qHere, E=98M on Summit and new runs on

Fron.er are at E=1.6B (N=7 or 9)

All of FronCer: SMR Full-Core Model

• The Shi^ model includes the division of each fuel pin into three
radial rings as well as the modeling of gap and cladding regions.
– The model includes both a top plug region and a boIom plug

region a swell a a gas-filled plenum within each fuel pin.
– An axial reflector of water 20 cm in height is present above and

below the core.

• The assembly model in NekRS was created with a mesh that was
tuned to fully resolve the boundary layers for Re = 80,000 for a
polynomial order of N=7 (343 points/elem.)
– Each assembly comprises E = 27,700 fluid elements per two

dimensional layer and E = 31,680 solid elements per 2D layer. The
full core mesh comprises 37 assemblies.

– Coupled run was conducted with E = 1,098,530,000 element and
3.76 x 1011 grid points.

– Standalone runs were also conducted with 6.03x1011 grid points.

Temperature distribution in the core

Example of the fluid mesh

E. Merzari, S. Hamilton, T. Evans, P. Romano, P. Fischer, M. Min, S. Kerkemeier, Y.H. Lan, J. Fang, M.
Phillips, T. Rathnayake, E. Biondo, K. Royston, N. Chalmers, and T. Warburton. Exascale multiphysics
nuclear reactor simulations for advanced designs (Gordon Bell Prize Finalist paper). In Proc. of SC23:
Int. Conf. for High Performance Computing, Networking, Storage and Analysis. IEEE, 2023.

q Time per-step, 300 B points, on
72,000 GCds ~ 0.3 sec/step.

q Except, with system noise,
some=mes 10 sec/step!

q Many (difficult) trials isolated the
issue to conges=on in modestly
communica=on-intensive rou=nes.

37

Collabora'on with ExaSMR: 9000-Nodes Fron'er Runs (72,000 GCDs)ExaSMR

E. Merzari (PSU/ANL), Y. Lan, M. Min

Figure 5: Navier-Stokes time-per-step and time histogram for
large-scale runs on Frontier: (top) 500-layer case with GPU-direct
on 4-15-23; (bottom) 800-layer case without GPU-direct on 8-6-
23.

in early 2023, the mean time per step was larger
than the typical or minimum time step. In recent
months the performance of NekRS has improved,
with a considerable reduction in noise, leading to a
measured improvement over Titan of 320⇥. Addi-
tionally, these Frontier calculations were executed
within a multiphysics calculation through the EN-
RICO solver. Thus, NekRS is not only executing sub-
stantially faster, it is also resolving more complex
physical phenomena than was previously possible.
Standalone measurements for the 800-layer core
have achieved up to a factor of 467⇥ the measured
value on Titan.

7.2. Shift

We evaluate the performance of the Shift code
using a full-core SMR model with depleted fuel ma-
terials. Depleted (as opposed to fresh) mixtures typi-
cally increase the computational cost of a simulation
by a factor of 4 to 5 [28].

The principal parameter affecting Shift’s perfor-
mance is the number of particles executed per GPU.
In general, more particles yield higher work rates.
Available memory on the GPU is the limiting factor
for the size of the particle vector. The larger mem-
ory on Frontier’s AMD MI-250X, 64 GB per GCD, is
4 times greater than the available memory on Sum-
mit’s Nvidia V100 GPUs, which yields a substantial
performance benefit. In all of the measurements
that follow, Frontier is configured to run using 8 MPI
ranks per node and 1 MPI rank per GCD. This sensi-
tivity on particle vector size has a significant impact
on strong scaling. Figure 6 shows the strong scaling
behavior of Shift on Frontier for two different total
particle counts. As expected, the efficiency falls off
with particle vector size; it is > 80% above 1M par-
ticles per GCD but falls off precipitously afterward.
As long as a near-optimal particle vector size can be

10 100 1000 10000 100000

N (MPI ranks)

1000

2000

3000

4000

5000

6000

7000

t
(s

)

64M particles-5.4.3

8192M particles-5.4.3

(a)

0 1 2 3 4 5 6 7 8

Np (particles/GCD) �106

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

�

64M particles

8192M particles

(b)

1 10 100 1000 10000

N (nodes)

105

106

107

108

109

W
r

[n
s�

1
]

Np = 8 � 106/GCD

inactive

active

(c)

Figure 6: Shift strong scaling: (a) runtime versus MPI ranks and
(b) efficiency versus particles per GPU. Weak scaling: (c) shows
the Wr for both inactive and active iteration cycles. The parallel
efficiency is 98.2%. Results use the ROCm 5.4.3 compiler stack.

used for a given problem, the weak scaling perfor-
mance of Shift is nearly linear across all of Frontier
as shown in Fig. 6c. Full machine work rates range
from 400 M to 1132 M particles per second using
0.125–8 M particles per GCD, respectively.

Table 8 shows the performance gains for the Shift
code across the Titan, Summit, and Frontier ma-
chines. These gains are a result of both larger ma-
chine size and algorithmic improvements. For each
result, we also report the performance that would
be achieved by extrapolating the result to the full
size of the relevant machine (18,688 nodes for Titan,
4608 nodes for Summit, and 9408 nodes for Frontier).

9

April, 2023: NekRS Default

q Explored several strategies to reduce network conges<on.

- Turning off GPU direct was most effec=ve.

q Time per-step, 300 B points, on
72,000 GCds ~ 0.3-0.4 sec/step.

q With no GPU-direct, significant
reduc=on in network noise.

q 390 GFLOPS/rank
à 28 PFLOPS total

38

Collabora'on with ExaSMR: 9000-Nodes Fron'er Runs (72,000 GCDs)ExaSMR

E. Merzari (PSU/ANL), Y. Lan, M. Min

Figure 5: Navier-Stokes time-per-step and time histogram for
large-scale runs on Frontier: (top) 500-layer case with GPU-direct
on 4-15-23; (bottom) 800-layer case without GPU-direct on 8-6-
23.

in early 2023, the mean time per step was larger
than the typical or minimum time step. In recent
months the performance of NekRS has improved,
with a considerable reduction in noise, leading to a
measured improvement over Titan of 320⇥. Addi-
tionally, these Frontier calculations were executed
within a multiphysics calculation through the EN-
RICO solver. Thus, NekRS is not only executing sub-
stantially faster, it is also resolving more complex
physical phenomena than was previously possible.
Standalone measurements for the 800-layer core
have achieved up to a factor of 467⇥ the measured
value on Titan.

7.2. Shift

We evaluate the performance of the Shift code
using a full-core SMR model with depleted fuel ma-
terials. Depleted (as opposed to fresh) mixtures typi-
cally increase the computational cost of a simulation
by a factor of 4 to 5 [28].

The principal parameter affecting Shift’s perfor-
mance is the number of particles executed per GPU.
In general, more particles yield higher work rates.
Available memory on the GPU is the limiting factor
for the size of the particle vector. The larger mem-
ory on Frontier’s AMD MI-250X, 64 GB per GCD, is
4 times greater than the available memory on Sum-
mit’s Nvidia V100 GPUs, which yields a substantial
performance benefit. In all of the measurements
that follow, Frontier is configured to run using 8 MPI
ranks per node and 1 MPI rank per GCD. This sensi-
tivity on particle vector size has a significant impact
on strong scaling. Figure 6 shows the strong scaling
behavior of Shift on Frontier for two different total
particle counts. As expected, the efficiency falls off
with particle vector size; it is > 80% above 1M par-
ticles per GCD but falls off precipitously afterward.
As long as a near-optimal particle vector size can be

10 100 1000 10000 100000

N (MPI ranks)

1000

2000

3000

4000

5000

6000

7000

t
(s

)

64M particles-5.4.3

8192M particles-5.4.3

(a)

0 1 2 3 4 5 6 7 8

Np (particles/GCD) �106

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

�

64M particles

8192M particles

(b)

1 10 100 1000 10000

N (nodes)

105

106

107

108

109

W
r

[n
s�

1
]

Np = 8 � 106/GCD

inactive

active

(c)

Figure 6: Shift strong scaling: (a) runtime versus MPI ranks and
(b) efficiency versus particles per GPU. Weak scaling: (c) shows
the Wr for both inactive and active iteration cycles. The parallel
efficiency is 98.2%. Results use the ROCm 5.4.3 compiler stack.

used for a given problem, the weak scaling perfor-
mance of Shift is nearly linear across all of Frontier
as shown in Fig. 6c. Full machine work rates range
from 400 M to 1132 M particles per second using
0.125–8 M particles per GCD, respectively.

Table 8 shows the performance gains for the Shift
code across the Titan, Summit, and Frontier ma-
chines. These gains are a result of both larger ma-
chine size and algorithmic improvements. For each
result, we also report the performance that would
be achieved by extrapolating the result to the full
size of the relevant machine (18,688 nodes for Titan,
4608 nodes for Summit, and 9408 nodes for Frontier).

9

July, 2023: No GPU-direct

Figure 5: Navier-Stokes time-per-step and time histogram for
large-scale runs on Frontier: (top) 500-layer case with GPU-direct
on 4-15-23; (bottom) 800-layer case without GPU-direct on 8-6-
23.

in early 2023, the mean time per step was larger
than the typical or minimum time step. In recent
months the performance of NekRS has improved,
with a considerable reduction in noise, leading to a
measured improvement over Titan of 320⇥. Addi-
tionally, these Frontier calculations were executed
within a multiphysics calculation through the EN-
RICO solver. Thus, NekRS is not only executing sub-
stantially faster, it is also resolving more complex
physical phenomena than was previously possible.
Standalone measurements for the 800-layer core
have achieved up to a factor of 467⇥ the measured
value on Titan.

7.2. Shift

We evaluate the performance of the Shift code
using a full-core SMR model with depleted fuel ma-
terials. Depleted (as opposed to fresh) mixtures typi-
cally increase the computational cost of a simulation
by a factor of 4 to 5 [28].

The principal parameter affecting Shift’s perfor-
mance is the number of particles executed per GPU.
In general, more particles yield higher work rates.
Available memory on the GPU is the limiting factor
for the size of the particle vector. The larger mem-
ory on Frontier’s AMD MI-250X, 64 GB per GCD, is
4 times greater than the available memory on Sum-
mit’s Nvidia V100 GPUs, which yields a substantial
performance benefit. In all of the measurements
that follow, Frontier is configured to run using 8 MPI
ranks per node and 1 MPI rank per GCD. This sensi-
tivity on particle vector size has a significant impact
on strong scaling. Figure 6 shows the strong scaling
behavior of Shift on Frontier for two different total
particle counts. As expected, the efficiency falls off
with particle vector size; it is > 80% above 1M par-
ticles per GCD but falls off precipitously afterward.
As long as a near-optimal particle vector size can be

10 100 1000 10000 100000

N (MPI ranks)

1000

2000

3000

4000

5000

6000

7000

t
(s

)

64M particles-5.4.3

8192M particles-5.4.3

(a)

0 1 2 3 4 5 6 7 8

Np (particles/GCD) �106

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

�

64M particles

8192M particles

(b)

1 10 100 1000 10000

N (nodes)

105

106

107

108

109

W
r

[n
s�

1
]

Np = 8 � 106/GCD

inactive

active

(c)

Figure 6: Shift strong scaling: (a) runtime versus MPI ranks and
(b) efficiency versus particles per GPU. Weak scaling: (c) shows
the Wr for both inactive and active iteration cycles. The parallel
efficiency is 98.2%. Results use the ROCm 5.4.3 compiler stack.

used for a given problem, the weak scaling perfor-
mance of Shift is nearly linear across all of Frontier
as shown in Fig. 6c. Full machine work rates range
from 400 M to 1132 M particles per second using
0.125–8 M particles per GCD, respectively.

Table 8 shows the performance gains for the Shift
code across the Titan, Summit, and Frontier ma-
chines. These gains are a result of both larger ma-
chine size and algorithmic improvements. For each
result, we also report the performance that would
be achieved by extrapolating the result to the full
size of the relevant machine (18,688 nodes for Titan,
4608 nodes for Summit, and 9408 nodes for Frontier).

9

Progress Towards Exascale
q Users are observing ~3X increase at Strong-Scale limit (0.15 s/step vs 0.5 s/step)

q Strong-scaling impacted by kernel launch overhead as well as MPI. (Some promise on
both fronts)

q HUGE problems (billions of elements vs 10s of millions)

q Portable performance: OCCA

q Sustaining 930 GFLOPS per A100 on Polaris (coun%ng fp32 as a 1/2 flop)

q Quote from Elia Merzari : “Once students switch to GPU variant, they never go back.”

q Bake-Offs have been a very good mechanism to increase produc.vity.

What Might We Do for the Future?
q Increase strong-scalability

q How?

q Two main issues with GPUs:

q Reduce kernel launch overhead

q Reduce message-passing latency

q Convex subnetworks

q Hardware collec.ves

q One-sided message exchanges (Thomas Gillis)

n0.8 on a Single GPU (V100) John Camier, LLNL (CEED MS37, 2022)

CEED Bake-Off BP1:
Throughput vs. Local Problem Size (Up and to the le- is good.)

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(a) Deterministic kernels

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 FAST @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) fast non-deterministic kernels

Figure 1: MFEM results for the CEED BP1 benchmark on a single NVIDIA
Volta V100 SXM2 GPU on Lassen using the deterministic (a) and fast non-
deterministic (b) kernels.

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5

3

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7

(a) Deterministic kernels

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5

3

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 FAST @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) fast non-deterministic kernels

Figure 2: MFEM results for the CEED BP3 benchmark on a single NVIDIA
Volta V100 SXM2 GPU on Lassen using the deterministic (a) and fast non-
deterministic (b) kernels.

For CEED applications, the rate of work is measured in billions-DOFs-per-second (GDOF/s, or gigadofs).
Two of the principal metrics of interest are the peak rate of work per unit resource (rmax) and the local
problem size on the node required to realize 80% percent of the peak rate of work per unit resource (N0.8).
As explained in [4], users are typically interested in reduced time-to-solution by increasing the number of
nodes until parallel e�ciency reaches an intolerable level (about 80%). Improving the N0.8 directly allows
to reduce the time-to-solution: the smaller the value of N0.8, the more processors that can be used and the

Exascale Computing Project (ECP) 2 CEED-MS37

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 XFL @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(a) Reduced N0.8 with XFL kernels

10
3

10
4

10
5

10
6

10
7

0

1

2

3

4

5

n0.8
10

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP1 XFL vs FAST @ V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) XFL vs fast kernels

Figure 4: Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels
on CEED BP1 benchmark on a single NVIDIA V100 SXM2 GPU on Lassen.

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5

3

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 XFL @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(a) Reduced N0.8 with XFL kernels

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5

3

n0.8
10

Degrees of Freedom (DOF)

Th
ro
ug

hp
ut

(G
DO

F/
s)

MFEM BP3 XFL vs FAST @ Lassen V100

p = 1
p = 2
p = 3
p = 4
p = 5
p = 6
p = 7
p = 8

(b) XFL vs fast kernels

Figure 5: Reduced N0.8 obtained with the XFL (a) and XFL vs fast (b) kernels
on CEED BP3 benchmark on a single NVIDIA V100 SXM2 GPU on Lassen.

solver Development for molten salt reactors.

NEAMS Full-Core Pebble-Bed Performance Optimization. The main target of our NEAMS study
is the full core for the pebble bed reactor (Figure 8, left), which has 352,625 spherical pebbles and a
fluid mesh comprising E = 98, 782, 067 elements of order N = 8 (n ⇡ 51B). In this case, we consider the
characteristics-based timestepping with �t = 4.e-4 or 8.e-4, corresponding to respective Courant numbers of
CFL ⇡ 2 and 4. Table 1 lists the battery of tests considered for this problem, starting with the single-sweep
Chebyshev-Additive Schwarz (1-Cheb-ASM) pMG smoother, which is the default choice for smaller (easier)

Exascale Computing Project (ECP) 4 CEED-MS37

What Might We Do for the Future?
q Increase strong-scalability

q How?

q Two main issues with GPUs:

q Reduce kernel launch overhead

q Reduce message-passing latency

q Convex subnetworks

q Hardware collec.ves

q One-sided message exchanges (Thomas Gillis)

Thank You for Your Attention!

