
Introduction to Bash Scripting
https://forge.uclouvain.be/barriat/learning-bash

October 10, 2024

CISM/CÉCI Training Sessions

https://forge.uclouvain.be/barriat/learning-bash

Linux command line
A Linux terminal is where you enter Linux commands

It's called the Command Line User Interface

CLUI is one of the many strengths of Linux :

allows to be independent of distros (or UNIX systems like OSX)
allows to easily work remotely (SSH)
allows to join together simple (and less simple) commands to do complex
things and automate = scripting

In Linux, process automation relies heavily on scripting. This involves creating a
file containing a series of commands that can be executed together

10/10/2024 | Introduction to Bash Scripting 2 / 54

Linux Shell
A shell is a program that takes commands from the keyboard and transmits them
to the operating system to perform

The main function is to interpret your commands = language

Shells have some built-in commands

A shell also supports programming constructs, allowing complex commands to be
built from smaller parts = scripts

Scripts can be saved as files to become new commands

many commands on a typical Linux system are scripts

10/10/2024 | Introduction to Bash Scripting 3 / 54

Bash
The Bash shell is one of several shells available for Linux

It is the default command interpreter on most GNU/Linux systems. The name is an
acronym for the "Bourne-Again SHell"

Bash Scripting Demo

#!/bin/bash

declare STRING variable
STRING="Hello World"

print variable on a screen
echo $STRING

10/10/2024 | Introduction to Bash Scripting 4 / 54

10/10/2024 | Introduction to Bash Scripting 5 / 54

Bash environment
In a Bash shell many things constitute your environment

the form of your 'prompt' (what comes left of your commands)
your home directory and your working directory
the name of your shell
functions that you have defined
etc.

Environment includes many variables that may have been set by bash or by you

10/10/2024 | Introduction to Bash Scripting 6 / 54

Environment variables
Variables

USER the name of the logged-in user

HOME the user's home directory (similar to ~)

PWD the current working directory

SHELL the name of the shell

Access the value of a variable by prefixing its name with $

So to get the value of USER you would use $USER in bash code

You can use special files to control bash variables : $HOME/.bashrc

10/10/2024 | Introduction to Bash Scripting 7 / 54

Bash Scripting basics
By naming convention, bash scripts end with .sh

however, bash scripts can run perfectly fine without any extension

A good practice is to define a shebang : first line of the script, shebang is simply
an absolute path to the shell interpreter (see echo $SHELL result)

combination of bash # and bang !

The usual shebang for bash is #!/bin/bash

10/10/2024 | Introduction to Bash Scripting 8 / 54

Comments start with #

On a line, any characters after # will be ignored (with the exception of #!)

echo "A comment will follow." # Comment here.
^ Note whitespace before

There is no standard indentation

Pick a standard in your team that you can all work to
Use something your editor makes easy (Vim uses Tab)

10/10/2024 | Introduction to Bash Scripting 9 / 54

Permissions and execution
Bash script is nothing else than a text file containing instructions to be
executed sequentially

by default in Linux, a new text file's permissons are -rw-r--r-- (or 644)

You can run the script hello_world.sh using
sh hello_world.sh

bash hello_world.sh

chmod u+x run_all.sh then ./hello_world.sh
after the chmod , you file is -rwxr--r-- (or 744)

10/10/2024 | Introduction to Bash Scripting 10 / 54

Hands-on exercise
Your first bash script:

1. create a folder bash_exercises and go there

2. use your favourite editor (vim, obviously) to create a new file called
exercise_1.sh

3. write some code in it to display the current working directory as:
The current directory is : /home/me/bash_exercises

4. make the file executable
5. run it !

10/10/2024 | Introduction to Bash Scripting 11 / 54

Variables and data types in Bash
Variables let you store data : numeric values or character(s)

You can use variables to read, access, and manipulate data throughout your script

You don't specify data types in Bash

assign directly : greeting="Welcome" or a=4

assign based on variable: b=$a

And then access using $: echo $greeting

!!! no space before or after = in the assignation !!!
myvar = "Hello World"

10/10/2024 | Introduction to Bash Scripting 12 / 54

Quotes for character(s) " '

Double will do variable substitution, single will not:

$ echo "my home is $HOME"
my home is /home/me
$ echo 'my home is $HOME'
my home is $HOME

Command Substitution

#!/bin/bash
Save the output of a command into a variable
myvar=$(ls)

10/10/2024 | Introduction to Bash Scripting 13 / 54

Variable naming conventions

Variable names should start with a letter or an underscore

Variable names can contain letters, numbers, and underscores

Variable names are case-sensitive

Variable names should not contain spaces or special characters

Use descriptive names that reflect the purpose of the variable

Avoid using reserved keywords, such as if , then , else , fi , and so on...

Never name your private variables using only UPPERCASE characters to avoid
conflicts with builtins

10/10/2024 | Introduction to Bash Scripting 14 / 54

String manipulation

Consider string=abcABC123ABCabc

string length : ${#string} is 15

substring extraction :
${string:7} is 23ABCabc

${string:7:3} is 23A

${string:(-4)} or ${string: -4} is Cabc

10/10/2024 | Introduction to Bash Scripting 15 / 54

String manipulation

Consider filename=/var/log/messages.tar.gz

substring removal from left :
${filename##/var} is /log/messages.tar.gz

substring removal from right :
${filename%%.gz} is /var/log/messages.tar

You can use * to match all characters:

${filename%%.*} is /var/log/messages

$(filename##*/) is messages.tar.gz

10/10/2024 | Introduction to Bash Scripting 16 / 54

Arithmetic
Operator Operation

+ - * / addition, subtraction, multiplication, division

var++ increase the variable var by 1

var-- decrease the variable var by 1

% modulus (remainder after division)

Several ways to go about arithmetic in Bash scripting :

let , expr or using double parentheses

10/10/2024 | Introduction to Bash Scripting 17 / 54

Arithmetic
#!/bin/bash

a=$((4 * 5))
a=$((4 + 5))
a=$((3+5))

b=$((a + 3))
echo $b # 11

b=$(($a + 4))
echo $b # 12

((b++))
((b += 3))
echo $b # 16

10/10/2024 | Introduction to Bash Scripting 18 / 54

Conditional statements
Use:

if condition; then to start conditional block

else to start alternative block

elif to start alternative condition block

fi to close conditional block

The following operaors can be used beween conditions:

|| means OR

&& mean AND

10/10/2024 | Introduction to Bash Scripting 19 / 54

Conditional exemple
#!/bin/bash
num=6

if [$num -gt 5] && [$num -le 7]
then
 echo "$num is 6 or 7"
elif [$num -lt 0] || [$num -eq 0]; then
 echo "$num is negative or zero"
else
 echo "$num is positive (but not 6, 7 or zero)"
fi

10/10/2024 | Introduction to Bash Scripting 20 / 54

Operator Description

! EXPRESSION The EXPRESSION is false

-n STRING The length of STRING is greater than zero

-z STRING The lengh of STRING is zero (ie it is empty)

STR1 = STR2 STRING1 is equal to STRING2

STR1 != STR2 STRING1 is not equal to STRING2

INT1 -eq INT2 INTEGER1 is numerically equal to INTEGER2 (or ==)

INT1 -gt INT2 INTEGER1 is numerically greater than INTEGER2

INT1 -lt INT2 INTEGER1 is numerically less than INTEGER2

INT1 -ne INT2 INTEGER1 is numerically not equal to INTEGER2

10/10/2024 | Introduction to Bash Scripting 21 / 54

Build conditions with the test command

test -s /etc/hosts

Operator Description

-d FILE FILE exists and is a directory

-e FILE FILE exists

-s FILE FILE exists and it's size is greater than zero (ie. it is not empty)

-r FILE FILE exists and the read permission is granted

-w and -x test the write and the execute permission

10/10/2024 | Introduction to Bash Scripting 22 / 54

Conditional: light variation

Check an expression in the if statement ?
Use the double brackets just like we did for variables :

#!/bin/bash
num=6

if (($num % 2 == 0))
then
 echo "$num is an even number !"
fi

10/10/2024 | Introduction to Bash Scripting 23 / 54

Hands-on exercise

1. In your bash_exercises folder create a new bash file called exercise_2.sh
and make it executable

2. Ask the user for two numbers smaller than 100 and put them in variables
NUMBER1 and NUMBER2

#!/bin/bash
read NUMBER1
read NUMBER2

3. Check if the numbers are smaller than 100

If yes, check if both numbers are even and tell the user
If not, tell the user (use echo)

10/10/2024 | Introduction to Bash Scripting 24 / 54

Arrays

Indexed arrays

Declare an array with 4 elements
my_array=('Debian Linux' 'Redhat Linux' Ubuntu OpenSUSE)
get number of elements in the array
my_array_length=${#my_array[@]}

Declare an empty array
my_array=()
my_array[0]=56.45
my_array[1]=568
echo Number of elements: ${#my_array[@]}
echo array's content
echo ${my_array[2]}
echo ${my_array[@]}

10/10/2024 | Introduction to Bash Scripting 25 / 54

Loops
Useful for automating repetitive tasks

Basic loop structures in Bash scripting :

while : perform a set of commands while a test is true

until : perform a set of commands until a test is true

for : perform a set of commands for each item in a list

controlling loops

break : exit the currently running loop

continue : stop this iteration of the loop and begin the next iteration

last loop mechanism : select allows you to create a simple menu system
10/10/2024 | Introduction to Bash Scripting 26 / 54

Examples

#!/bin/bash

Basic while loop
counter=0
while [$counter -lt 3]; do
 echo $counter
 ((counter++))
done

10/10/2024 | Introduction to Bash Scripting 27 / 54

range
for i in {1..5}

list of strings
words='Hello great world'
for word in $words

range with steps for loop
for value in {10..0..2}

set of files
for file in $path/*.f90

command result
for i in $(cat file.txt)

10/10/2024 | Introduction to Bash Scripting 28 / 54

Hands-on exercise
1. In your bash_exercises folder create a new bash file called exercise_3.sh

and make it executable
2. Use the following website to get a list of 10 random words:

https://randomwordgenerator.com and put them together in an array
3. Register the start time with date +%S and put it in a variable tstart

4. Loop over the words and ask the user to give the number of letters. Echo the
answers.

5. Register the end time in tend

6. Display the total run time and the total number of letters.

10/10/2024 | Introduction to Bash Scripting 29 / 54

https://randomwordgenerator.com/

Arguments - Positional Parameters
How to pass command-line arguments to a bash script ?

Try a simple example called test_arg.sh :

#!/bin/bash
echo $1 $2 $4
echo $0
echo $#
echo $@

bash test_arg.sh a b c d e

a b d
test_arg.sh
5
a b c d e

10/10/2024 | Introduction to Bash Scripting 30 / 54

Special Variables

$0 the name of the script

$1 - $9 the first 9 arguments

$# how many arguments were passed

$@ all the arguments supplied

$$ the process ID of the current script

$? the exit status of the most recently run process

10/10/2024 | Introduction to Bash Scripting 31 / 54

Input/Output streams
Shells use 3 standard I/O streams

stdin is the standard input stream, which provides input to commands

stdout is the standard output stream, which displays output from
commands
stderr is the standard error stream, which displays error output from

commands

Shell has several meta-characters and control operators

10/10/2024 | Introduction to Bash Scripting 32 / 54

Control operators
Character Effect

; Normal separator between commands

&& Execute next command only if command succeeds

|| Execute next command only if command fails

& Don't wait for result of command before starting next command

| Use output of command as input for the next command

> file_desc Send stdandard output of command to file descriptor

< file_desc Use content of file descriptor as input

10/10/2024 | Introduction to Bash Scripting 33 / 54

Redirections
Use the meta-character > in order to control the output streams stdout and
stderr for a command or a bash script

From bash script

#!/bin/bash
#STDOUT to STDERR
echo "Redirect this STDOUT to STDERR" 1>&2
#STDERR to STDOUT
cat $1 2>&1

Output streams to file(s)

./my_script.sh > STDOUT.log 2> STDERR.err

10/10/2024 | Introduction to Bash Scripting 34 / 54

How to Read a File Line By Line : input redirection

#!/bin/bash
How to Read a File Line By Line

input="/path/to/txt/file"
while IFS= read -r line
do
 echo "$line"
done < "$input"

by default read removes all leading and trailing whitespace characters such
as spaces and tabs

10/10/2024 | Introduction to Bash Scripting 35 / 54

Return codes
Linux command returns a status when it terminates normally or abnormally

every Linux command has an exit status
the exit status is an integer number
a command which exits with a 0 status has succeeded
a non-zero (1-255) exit status indicates failure

How do I display the exit status of shell command ?

date
echo $?

List of special exit codes for GNU/Linux

10/10/2024 | Introduction to Bash Scripting 36 / 54

https://tldp.org/LDP/abs/html/exitcodes.html

How to store the exit status of the command in a shell variable ?

#!/bin/bash
date
status=$?
echo "The date command exit status : ${status}"

How to use the && and || operators with exit codes

command && echo "success"
command || echo "failed"
command && echo "success" || echo "failed"

_files="$@"
[["$_files" == ""]] && { echo "Usage: $0 file1.png file2.png"; exit 1; }

10/10/2024 | Introduction to Bash Scripting 37 / 54

Hands-on exercise
1. In your bash_exercises folder, copy exercise_3.sh to exercise_4.sh

2. In this new file, loop over the words and write the number of letters of each
word in a new file called output.txt

3. Now loop over the created file output.txt to get the total number of letters

4. Display the total run time and the total number of letters

10/10/2024 | Introduction to Bash Scripting 38 / 54

Functions
"small script within a script" that you may call multiple times
great way to reuse code
a function is most reuseable when it performs a single task
good to put ancillary tasks within functions : logically separate from main
code

#!/bin/bash
hello_world () {
 echo 'hello, world'
}
hello_world

Functions must be declared before they are used

defining a function doesn’t execute it
10/10/2024 | Introduction to Bash Scripting 39 / 54

Variables Scope

Define bash global variable
This variable is global and can be used anywhere in this bash script
var="global variable"

function my_function {
Define my_function local variable
This variable is local to my_function only
echo $var
local var="local variable"
echo $var
}

echo $var
my_function
Note the bash global variable did not change
"local" is my_function reserved word
echo $var

10/10/2024 | Introduction to Bash Scripting 40 / 54

Return Values

Bash functions don’t allow you to return a value when called

After completion, the return value is the status of the last statement (so 0-255)

It can also be specified manually by using return :

my_function () {
 echo "some result"
 return 55
}
my_function
echo $?

10/10/2024 | Introduction to Bash Scripting 41 / 54

Return an arbitrary value (different from a return code) from a function :

Assign the result of the function

my_function () {
 func_result="some result"
}
my_function
echo $func_result

Better way is to send the value to stdout using echo

my_function () {
 local func_result="some result"
 echo "$func_result"
}
func_result="$(my_function)"
echo $func_result

10/10/2024 | Introduction to Bash Scripting 42 / 54

Passing Arguments

In the same way than a bash script: see above ($1 , $* , etc)

#!/bin/bash
print_something () {
 echo Hello $1
}
print_something Mars

Athough it is possible, you should try to avoid having functions using the
name of existing linux commands.

10/10/2024 | Introduction to Bash Scripting 43 / 54

Hands-on exercise
1. Write a script called exercise_5.sh expecting 2 arguments. If not exactly

two arguments are provided:
Echo an error message
Exit with a non-zero error code

2. Write a function taking a folder path (e.g /home/ucl/elic/xxxx) and an
extension (e.g py) as arguments

3. Use the ls command to list the files in the given path having with the given
extension. Write this list to a file called files_found.txt .

4. Bonus : if there are no files, Exit with a non-zero error code

10/10/2024 | Introduction to Bash Scripting 44 / 54

Shell vs Environment Variables
Consider the script test.sh below :

#!/bin/bash
echo "var1 = ${var1}"
echo "var2 = ${var2}"

Then run this script :

var1=23
export var2=12
bash test.sh

By default, variables from the main interpreter are not available in scripts,
unless you export them.

10/10/2024 | Introduction to Bash Scripting 45 / 54

Subshells
A subshell is a "child shell" spawned by the main shell ("parent shell")
A subshell is a separate instance of the command process, run as a new
process
Unlike calling a shell script (slide before), subshells inherit the same
variables as the original process
A subshell allows you to execute commands within a separate shell
environment = Subshell Sandboxing

useful to set temporary variables or change directories without affecting
the parent shell's environment

Subshells can be used for parallel processing

10/10/2024 | Introduction to Bash Scripting 46 / 54

Syntax

A command list embedded between parentheses runs as a subshell :

#!/bin/bash
(command1 ; command2 ; command3)

Or :

#!/bin/bash
bash -c "command1; command2; command3"

Reminder : variables in a subshell are not visible outside the block of code in
the subshell

10/10/2024 | Introduction to Bash Scripting 47 / 54

Differences between Sourcing and Executing a script

source a script = execution in the current shell

variables and functions are valid in the current shell after sourcing even if
not export ed

execute a script = execution in a new shell (in a subshell of the current shell)

all new variables and functions created by the script will only live in the
subshell

Source a script using source or .

source myScript.sh
. myScript.sh

official one is . Bash defined source as an alias to the .
10/10/2024 | Introduction to Bash Scripting 48 / 54

Example

#!/bin/bash
COUNTRY="Belgium"
greeting() {
 echo "You're in $1"
}
greeting $COUNTRY

COUNTRY="France"
./myScript.sh # or bash or exec
echo $COUNTRY
greeting $COUNTRY # !!

COUNTRY="France"
source myScript.sh
echo $COUNTRY
greeting $COUNTRY

10/10/2024 | Introduction to Bash Scripting 49 / 54

Debug
Tips and techniques for debugging and troubleshooting Bash scripts

use set -x

enables debugging mode : print each command that it executes to the terminal,
preceded by a +

check the exit code

#!/bin/bash
if [$? -ne 0]; then
 echo "Error occurred"
fi

10/10/2024 | Introduction to Bash Scripting 50 / 54

use echo

Classical but useful technique : insert echo throughout your code to check
variable content

#!/bin/bash
echo "Value of variable x is: $x"

use set -e

this option will cause Bash to exit with an error if any command in the script fails

10/10/2024 | Introduction to Bash Scripting 51 / 54

Thank you for your attention

10/10/2024 | Introduction to Bash Scripting 52 / 54

Running parallel processes in subshells
Processes may execute in parallel within different subshells

permits breaking a complex task into subcomponents processed concurrently

Exemple : job.sh

#!/bin/bash
job() {
 i=0
 while [$i -lt 10]; do
 echo "${i}: job $job_id"
 ((i++))
 sleep 0.2
 done
}

sequential processing (manager_seq.sh) or parallel processing (manager_par.sh)
10/10/2024 | Introduction to Bash Scripting 53 / 54

#!/bin/bash
manager_seq.sh
source job.sh
echo "start"
for job_id in {1..2}; do job ; done
echo "done"

#!/bin/bash
manager_par.sh
source job.sh
echo "start"
for job_id in {1..2}; do job & done
wait # Don't execute the next command until subshells finish.
echo "done"

time ./manager_seq.sh
time ./manager_par.sh

10/10/2024 | Introduction to Bash Scripting 54 / 54

