
Writing and editing text files with VIM
These slides were made using VIM

JdF | 10/10/2024 | Writing and editing text files with VIM

What is VIM ?
VIM is a terminal-based text editor:

Born in 1991, successor of VI (1977)
Written in C and in VIM-script
Free and free
Actively maintained and developed
One of the most popular terminal-based text editors

JdF | 10/10/2024 | Writing and editing text files with VIM 2

Why should I use it ?
Lightweight
Available on all Linux distributions
Powerful commands system
Easy configuration
Plugin system
Commands system is available in many other editors (VSC, Sublime, …)

JdF | 10/10/2024 | Writing and editing text files with VIM 3

Getting in and out
Opening a file from the
terminal:
$ vim my_file.py

Saving and quitting
:wq

Quitting without saving:
:q!

Opening another file in VIM:
:e other_file.py

JdF | 10/10/2024 | Writing and editing text files with VIM 4

Getting a file to play with
You are encouraged to tests the commands during the tutorial.

You can use the cthulhu.txt file linked to the indico page:

Copy link address -> go to terminal and enter:

wget https://indico.cism.ucl.ac.be/event/149/contributions/164/attachments/240/507/cthulhu.txt

and then:

vim cthulhu.txt

JdF | 10/10/2024 | Writing and editing text files with VIM 5

Modes
VIM is a modular editor. It has three (main) modes:

normal : default mode, where you enter commands
edition : where you type text
visual : where you select portions of text with a visual highlight to apply
commands on them

*

JdF | 10/10/2024 | Writing and editing text files with VIM 6

Start typing !
To start adding text you have to go from normal to insertion mode.

i/I (insert): go to insertion mode at cursor/ beginning of line

a/A (append): go to insertion mode after cursor/end of line

o/O (open line) : start a new line in insertion mode below/above cursor

R : go to replace mode (insert on top of current text)

Note: lots of VIM commands have meaningful upper/lowercase variations.

When you've typed the text you wanted, remember to use the "esc" key to get
back to normal mode. This should always be your default mode.

JdF | 10/10/2024 | Writing and editing text files with VIM 7

Movement commands
VIM allows to navigate quickly through text using short commands in addition to
the usual arrows, home, end, … keys.

word-based (capitals ignore special characters):
w/W : first character of next word

e/E : end of word

b/B : beginning of word (previous word if already at beginning)

sentence:
(/) : sentence start/end

paragraphs/code blocks:
{/} : paragraph start/end

JdF | 10/10/2024 | Writing and editing text files with VIM 8

Movement commands
VIM allows to navigate quickly through text using short commands.

lines:
0 : beginning of line

$: end of line

^ : beginning of text in line

JdF | 10/10/2024 | Writing and editing text files with VIM 9

Movement commands
VIM allows to navigate quickly through text using short commands.

files:

gg : beginning of file

G : end of file

others:

gf : open file with name under cursor

gd : go to the definition of the current object/variable

JdF | 10/10/2024 | Writing and editing text files with VIM 10

Movement commands
VIM allows to navigate quickly through text using short commands.

Matching symbols (parentheses, brackets, …):

% brings you to the matching sign

if not on a symbol, brings you to the next one in file

Finding generic characters:

f/F<x> : place the cursor on the next/previous appearance of "x" in line

t/T<x> : place the cursor just before/after the next/previous "x" in line

JdF | 10/10/2024 | Writing and editing text files with VIM 11

Quiz !
You're writing your thesis, your cursor is in the middle of a paragraph and you
want to start a new paragraph directly following the current one, what sequence
would work ?

What if you want to add it at the beginning ?

JdF | 10/10/2024 | Writing and editing text files with VIM 12

Cut, copy, paste
In VIM, copying is called "yanking" and cutting is "deleting". The commands are:

d for deleting/cutting

y for yanking/copying

p for pasting

You must specify what you want to delete/yank. The simplest are:

dd : delete current line

yy : yank current line

x : delete current character

You can then use p anywhere to paste
JdF | 10/10/2024 | Writing and editing text files with VIM 13

Undo and redo
To undo last change, go to normal mode and use u

To redo last undone changes, use ctrl+r

Note: by doing "undoes" and "redoes" you are creating a tree of states. You can go
back and forth in time with g- and g+

*

JdF | 10/10/2024 | Writing and editing text files with VIM 14

Combination commands
Typical VIM commands are built like this:

<action><number?><movement>

For instance:

dw will delete text until next word

y} will copy the text until the end of the current paragraph

One can also use a number to extend the movement:

d5↓ will delete five lines going down

JdF | 10/10/2024 | Writing and editing text files with VIM 15

Quiz !
You have a csv file with lines like this:

"data1";"brol 1";"value 1";
"more data 2";"something 2";"value 2";
"test data 3 and some";"other thing 3";"value 3";

How would you exchange the content of the first and second column on one line ?

JdF | 10/10/2024 | Writing and editing text files with VIM 16

Changing text
Changing with c :

cc : delete line and go to insertion mode

c5w : delete 5 words and go to insertion mode

Inside and around (very useful):

ci) : delete text inside parentheses and go to insertion mode

ya[: yank text around (including) brackets

Note: with i and a , signs like (are symbols, not movement commands. To
change a paragraph you just need to use {c} or cap (use p for "paragraph" or
s for "sentence")

JdF | 10/10/2024 | Writing and editing text files with VIM 17

Quiz !
With your cursor inside a word, how would you move this word after the next
word ?

You made a typo and exchanged two characters, how to you exchange them again
(the cursor is on the first one) ?

JdF | 10/10/2024 | Writing and editing text files with VIM 18

Indentation
VIM will try to guess the proper indentation for your code.

If you need to change it you can use the < and > commands to de-indent and
indent. As usual:

>> will indent the current line

>3↓ will indent 3 lines going down

<} will de-indent all lines until the end of the block/paragraph

You can also use the = command to apply auto-indentation:

gg=G will go to the beginning and try to auto-indent until the end of the file

JdF | 10/10/2024 | Writing and editing text files with VIM 19

Useful options
Show line numbers:

:set number

Paste mode (bypass automatic indentation)

:set paste

Incremental search:

:set incsearch

These and many others can be set permanently in the .vimrc file.

JdF | 10/10/2024 | Writing and editing text files with VIM 20

Macros
To repeat sequences of commands you can use macros:

enter recording mode with q<macro_id> where macro_id can be any letter

type the sequence of commands
stop recording with q

use the macro with @<macro_id>

you can repeat macros with <number>@<macro_id>

Note: If you just want to repeat the last command, you can simply use .

*

JdF | 10/10/2024 | Writing and editing text files with VIM 21

Quiz !
You have an emails list file with 200 lines, looking like this:

Pierre Bieliavsky pierre.bieliavsky@uclouvain.be
Giacomo Luca Bruno giacomo.luca.bruno@uclouvain.be
Eduardo Cortina Gil eduardo.cortina@uclouvain.be

How would you use macros to make a csv from this file in te following shape ?

"Pierre Bieliavsky"; "pierre.bieliavsky@uclouvain.be"
"Giacomo Luca Bruno"; "giacomo.luca.bruno@uclouvain.be"
"Eduardo Cortina Gil"; "eduardo.cortina@uclouvain.be"

JdF | 10/10/2024 | Writing and editing text files with VIM 22

Searching
The search command is:

/<search_pattern>

Where the pattern can contain regular expressions. You can then use

n to go to the next match

N to go to the previous match

If your cursor is on the word you want to search (for instance a variable name),
you can use * to start a search on it.

Searching is a movement command. You can do d/vim to delete everything until
the first match of vim

JdF | 10/10/2024 | Writing and editing text files with VIM 23

Searching
Some useful regular expressions:

. : any character

[a-z] , [1-4] : ranges

(expression)+ : given expression once or more

(expression)* : given expression zero times or more

(expression)? : given expression zero or one time

(expression){m,n} : given expression m to n times

Notes:

Special charachers should be escaped with \ as in \. for a literal .

Parenthesis can be used to gather expressions if neededJdF | 10/10/2024 | Writing and editing text files with VIM 24

Visual mode
Visual mode allows you to highlight text to perform actions on it. There are
three different visual modes:

v : character mode (I almost never use it)

V : line mode

ctrl+v : block mode

Once in visual mode, you can use:

movement commands to change the selection
action commands to apply them on the selection (and go back to normal
mode)

*

JdF | 10/10/2024 | Writing and editing text files with VIM 25

Block mode
Block mode behaves a little differently than the other modes:

c replaces the text on all lines of the block by copies of the same text

I can be used to insert on all lines

Changes are only applied to lines when esc is hit. It can be used to easily move
whole columns:

1. Highlight the desired column with ctrl+v + movement commands

2. Use x to delete the column and put it in the clipboard

3. Go to te desired location and use p to paste it.

*

JdF | 10/10/2024 | Writing and editing text files with VIM 26

Search and replace
Substitution can be done using the following:

:s<scope>/<pattern>/<replacement>

Where <scope> is the area in which the substitution should happen. The simplest
are:

% : replace everywhere in file

3,5 : replace on lines 3 to 5 included

The easiest way is usually to

1. Do a visual selection of the scope
2. Start the :s command without a scope to substitute only in the selected area

*

JdF | 10/10/2024 | Writing and editing text files with VIM 27

Search and replace
The Pattern can contain regular expressions.

The commands allow options:

/g : replace all occurrences, not only the first one

/c : ask confirmation for each replacement

/i : ignore case

These options can be combined:

:s<scope>/<pattern>/<replacement>/gc

JdF | 10/10/2024 | Writing and editing text files with VIM 28

Quiz !
You are working on your markdown notes and you realize that you have used *
instead of - [] in the 20 lines of your todo-list: how do you fix that ? find one
solution with visual blocks and one with search/replace.

* task 1 **very important**
* another task

To

- [] task 1 **very important**
- [] another task

JdF | 10/10/2024 | Writing and editing text files with VIM 29

Completion
VIM provides intelligent completion:

ctrl+p : complete current word based on words in the current file.

ctrl+x → ctrl+l : complete current line

ctrl+x → ctrl+f : complete current word using existing file names

Once in completion mode, you can either continue typing to reduce options or use
arrows to select among the proposed solutions. Use the Enter key to select an
option

JdF | 10/10/2024 | Writing and editing text files with VIM 30

Bash commands
You can apply bash commands using:

:<scope>! <command> <arguments>

The scope is the same as for the substitute command.

This will run the command on the selected scope and replace the content by the
output of the command. Examples:

:%! sort : sort the whole file

:%! grep -v <pattern> : remove lines matching <pattern>

:%! grep -o '[a-z\.\-]\+@[a-z\.]\+' : only keep emails

JdF | 10/10/2024 | Writing and editing text files with VIM 31

Split-screen
You can open two files side-by-side with:

$ vim -O file_1.txt file_2.txt

Then you can go to the left/right part of the window with ctrl+w ←/→
If already in VIM, you can split the current editor window with:

:split other_file.txt for horizontal split

:vsplit other_file.txt fo vertical split

If you are in verical split, option :set scrollbind forces the pars to scroll
together.

JdF | 10/10/2024 | Writing and editing text files with VIM 32

Special cases
You can edit files over ssh using:

vim scp://<user>@<server>/<relative path to file>

You can also view the content of zip files:

vim my_file.zip

You can also easily compare files:

vimdiff file_1.txt file_2.txt

JdF | 10/10/2024 | Writing and editing text files with VIM 33

Press "pause"
If you need to quit VIM and get back to the terminal temporarly, instead of
quitting VIM you can pause it by using

ctrl+Z

It will suspend the VIM process and put it in th background. Once you want to get
it back, simply use bash command

%

To bring it to the foreground.

Note: Be careful if you run other commands in the backround, your VIM session
might not be the one you will bring back !

JdF | 10/10/2024 | Writing and editing text files with VIM 34

Plugins
VIM can be further enhanced with plugins. The easiest way to manage them is to
use a dedicated system such as:

Vundle (https://github.com/VundleVim/Vundle.vim)
Pathogen (https://github.com/tpope/vim-pathogen)

These provide commands to install and update plugins.

JdF | 10/10/2024 | Writing and editing text files with VIM 35

https://github.com/VundleVim/Vundle.vim
https://github.com/tpope/vim-pathogen

Plugins
Plugins can help in several aspects:

Provide better completion
Manage "tags" over a larger coding project
Check code for syntax errors
Provide (even) better navigation/action commands
Integrate with code versioning systems
Open files at last position
…

JdF | 10/10/2024 | Writing and editing text files with VIM 36

Thank you for your attention !

JdF | 10/10/2024 | Writing and editing text files with VIM 37

