
MAKE - TUTORIAL
Make & Makefiles are used to automate the compiling

of a small to medium project

This session is based on this makefile tutorial:

https://makefiletutorial.com/

Feel free to check it out

https://makefiletutorial.com/
https://makefiletutorial.com/


GETTING STARTED
$ unzip /CECI/proj/training/cmake.zip -d .
$ cd cmake-3.27.9/Step0
$ make



BASICS
A makefile is a bit like a "todo list".

Careful with the syntax, makefile uses tabs, not spaces

Make is meant for smart compiling, so it will try to
compile only what needs to be. How so ?

target: prerequisite1 prerequisite2
    command1
    command2
    ...



TERMINOLOGY
• Rule : a "task" of the makefile
• Target : the "name of a rule". It should produce a file

with the same name (or be a special rule)
• Prerequisite : either the name of an existing file, or

the target of a rule to be executed



TIMESTAMPS
Each file has a (set of) timestamps associated to it.
Make uses the last time a file has been modified in

order to determine if a rule has to be executed.

This rule will be executed if :

• There is no file named 'someExec'
• 'file1.c' or 'file2.h' has a timestamp more recent

than 'someExec'

someExec: file1.c file2.h
    gcc file1.c -o someExec



GOOD PRACTICE
• You should have one rule per .c/.cc/.cpp/.cxx
• You should have the source file as a prerequisite
• The first rule is the default. Use it as your 'main'
• Write a rule 'clean' that removes all intermediary

files (.o)

If no file bearing the name of the target is produced,
the target will never be considered "up to date"

Sometimes, that's the point (e.g. the 'clean' target)



TO GO FURTHER
Make is very useful and easy to learn. If you are

interested, have a look here: 

There are several notions not covered here such as:

• Variables
• Rule templates
• Recursive makes
• Functions
• String formatting

https://
makefiletutorial.com/

https://makefiletutorial.com/
https://makefiletutorial.com/
https://makefiletutorial.com/
https://makefiletutorial.com/


CMAKE - TUTORIAL
CMake documentation:

Tutorial based on official CMake tutorial:

https://cmake.org/documentation/

https://cmake.org/cmake/help/v3.27/guide/tutorial/
A%20Basic%20Starting%20Point.html

https://cmake.org/documentation/
https://cmake.org/cmake/help/v3.27/guide/tutorial/A%20Basic%20Starting%20Point.html
https://cmake.org/cmake/help/v3.27/guide/tutorial/A%20Basic%20Starting%20Point.html
https://cmake.org/documentation/
https://cmake.org/cmake/help/v3.27/guide/tutorial/A%20Basic%20Starting%20Point.html
https://cmake.org/cmake/help/v3.27/guide/tutorial/A%20Basic%20Starting%20Point.html


GETTING STARTED
$ ml releases/2023b
$ ml CMake GCC

1
2

$ cd cmake-3.27.93 $ cd cmake-3.27.9

$ ml releases/2023b1
$ ml CMake GCC2

3



STEP 1 - BASIC PROJECT
$ ls Step1/
CMakeLists.txt  TutorialConfig.h.in  tutorial.cxx

We can see three files:

CMakeLists.txt : This is the file read by CMake to build
your project

TutorialConfig.h.in : This file is ingested by CMake to
produce an actual header file (i.e. TutorialConfig.h)

tutorial.cxx : This is the source code of our project



CMAKE VERSION
Target: CMakeLists.txt (TODO 1)

cmake_minimum_required(VERSION <min>[...<policy_max>])

Do not set the minimal version of cmake to an
arbitrarily low value.

Set it to the version included in the release you use
(2023b)

cmake_minimum_required(VERSION 3.27)



NAME YOUR PROJECT
Target: CMakeLists.txt (TODO 2)

project(<PROJECT-NAME>
        [VERSION <major>[.<minor>[.<patch>[.<tweak>]]]]
        [DESCRIPTION <project-description-string>]
        [HOMEPAGE_URL <url-string>]
        [LANGUAGES <language-name>...])

project(<PROJECT-NAME> [<language-name>...])1
2
3
4
5
6

project(Tutorial)



ADD AN EXECUTABLE
Target: CMakeLists.txt (TODO 3)

add_executable(<name> 
               [source1] 
               [source2 ...])

add_executable(Tutorial tutorial.cxx)



BUILD AND RUN
Build your project

Run your program

$ mkdir build1
$ cmake -S Step1 -B build1
# -S tells cmake where to find the sources
# -B tells cmake where to build the project
$ cmake --build build1

$ ./build1/Tutorial 9
The square root of 9 is 3
$ ./build1/Tutorial 10
The square root of 10 is 3.16228
$ ./build1/Tutorial
Usage: ./build1/Tutorial number



STEP1 - SO FAR...
What did we learn ?

• Write a minimal working example of CMakeLists.txt
• Build a project by automatically generating a

Makefile

What next ?

• Set the version of C++
• Automate variables/macros definition in the code



NEWER C++ CODE
Target: tutorial.cxx (TODO 4-5)

// convert input to double
// TODO 4: Replace atof(argv[1]) with std::stod(argv[1])
const double inputValue = atof(argv[1]);

18
19
20

We want to use C++11 features
// convert input to double
// TODO 4: Replace atof(argv[1]) with std::stod(argv[1])
const double inputValue = std::stod(argv[1]);

18
19
20

Don't forget TODO 5

Try and build your project, now

std::stod() does not exist in C++98



UPGRADE C++ VERSION
Target: CMakeLists.txt (TODO 6)

set(CMAKE_CXX_STANDARD 98)
set(CMAKE_CXX_STANDARD_REQUIRED True)

11
12

set() allows you to set the value of a variable

CMake variables are prefixed by CMAKE_
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED True)

11
12

Try and build your project



IT'S ALL ABOUT VERSIONING
Target: CMakeLists.txt (TODO 7)

Add a version to your project.
project(Tutorial VERSION 1.0)

Now we can use the version as a macro in the rest of
the project



FIRST CONFIGURED (HEADER) FILE
Target: TutorialConfig.h.in (TODO 8)

You can use variables defined by CMake at compile-
time.

#define Tutorial_VERSION_MAJOR @Tutorial_VERSION_MAJOR@
#define Tutorial_VERSION_MINOR @Tutorial_VERSION_MINOR@

First, you need to write a "template" of a header file
using the @ character to surround the variables you

need



PRODUCE THE ACTUAL HEADER
Target: CMakeLists.txt (TODO 9)

Replaces the CMake variables in TutorialConfig.h.in
with their value and produce a new file

configure_file(<input> <output>
               [NO_SOURCE_PERMISSIONS | USE_SOURCE_PERMISSIONS |
                FILE_PERMISSIONS <permissions>...]
               [COPYONLY] [ESCAPE_QUOTES] [@ONLY]
               [NEWLINE_STYLE [UNIX|DOS|WIN32|LF|CRLF] ])

configure_file(TutorialConfig.h.in TutorialConfig.h)

Build your project again and inspect the file
TutorialConfig.h



USE THE GENERATED MACROS
Target: tutorial.cxx

Include the header (TODO 10)
#include "TutorialConfig.h"7

Print the version of your program (TODO 11)
    std::cout << argv[0] << " version: "
        << Tutorial_VERSION_MAJOR << "."
        << Tutorial_VERSION_MINOR << std::endl;

14
15
16

Now try and compile your project



ALLOW CMAKE TO SEE THE HEADER FILE
Target: CMakeLists.txt (TODO 12)

target_include_directories(<target> [SYSTEM] [AFTER|BEFORE]
  <INTERFACE|PUBLIC|PRIVATE> [items1...]
  [<INTERFACE|PUBLIC|PRIVATE> [items2...] ...])

target_include_directories(Tutorial 
        PUBLIC "${PROJECT_BINARY_DIR}")



STEP 2 - LIBRARIES AND
SUBPROJECTS

Our project is now (a bit) larger and includes a library
we are developing.

$ tree Step2
Step2

1
2

├── CMakeLists.txt3
├── MathFunctions4
│   ├── CMakeLists.txt5
│   ├── MathFunctions.cxx6
│   ├── MathFunctions.h7
│   ├── mysqrt.cxx8
│   └── mysqrt.h9
├── TutorialConfig.h.in10
└── tutorial.cxx11

├── CMakeLists.txt

├── TutorialConfig.h.in
└── tutorial.cxx

$ tree Step21
Step22

3
├── MathFunctions4
│   ├── CMakeLists.txt5
│   ├── MathFunctions.cxx6
│   ├── MathFunctions.h7
│   ├── mysqrt.cxx8
│   └── mysqrt.h9

10
11

├── MathFunctions
│   ├── CMakeLists.txt
│   ├── MathFunctions.cxx
│   ├── MathFunctions.h
│   ├── mysqrt.cxx
│   └── mysqrt.h

$ tree Step21
Step22
├── CMakeLists.txt3

4
5
6
7
8
9

├── TutorialConfig.h.in10
└── tutorial.cxx11

├── CMakeLists.txt

│   ├── CMakeLists.txt

$ tree Step21
Step22

3
├── MathFunctions4

5
│   ├── MathFunctions.cxx6
│   ├── MathFunctions.h7
│   ├── mysqrt.cxx8
│   └── mysqrt.h9
├── TutorialConfig.h.in10
└── tutorial.cxx11



ADD A LIBRARY
Target: MathFunctions/CMakeLists.txt (TODO 1)

add_library(<name> [STATIC | SHARED | MODULE]
            [EXCLUDE_FROM_ALL]
            [<source>...])

add_library(MathFunctions MathFunctions.cxx mysqrt.cxx)

You can think of add_library() as an extension of
add_executable() already present in your project...

... But cmake needs to:

• Know where to find the library
• Know how to link the library



INCLUDE A LIBRARY
Target: CMakeLists.txt (TODO 2-3)

add_subdirectory(MathFunctions)

"Make cmake aware" of a directory containing sources
target_include_directories(Tutorial PUBLIC

"${PROJECT_BINARY_DIR}"
"${PROJECT_SOURCE_DIR}/MathFunctions/")

Add the include directory to the search paths of cmake
(where are the headers of the library)



USE OUR LIBRARY IN OUR PROJECT
Target: tutorial.cxx (TODO 4-5)

#include "MathFunctions.h"

const double outputValue = mathfunctions::sqrt(inputValue);

Try and build your project

What causes "Undefined references" ?

Functions declared in a header are used, but the linker
cannot find them

How to deal with them ?

Tell the linker it has to link the library



LINK THE LIBRARY
A compiler builds a project in two steps:

• Translating source code to binary
• Linking together the "binary parts" of the program

Target: CMakeLists.txt (TODO 6)
target_link_libraries(Tutorial PUBLIC MathFunctions)

Tell cmake to link the library to our project



STEP2 - SO FAR ...
What did we learn ?

• A cleaner way to organise more complex projects
• How to develop a library for our project
• A better understanding of the compiling process
▪ Translate
▪ Link

What next ?

• Define compile-time options
• Conditionals in cmake



DEFINE AN OPTION
Target: MathFunctions/CMakeLists.txt (TODO 7)

option(<variable> "<help_text>" [value])

option(USE_MYMATH 
"Whether or not to use MathFunctions implementation" 
ON)

Pro-tip: Level up your game using ccmake (instead of
cmake)

$ ccmake -S Step2/ -B build2/
$ cmake --build build2/



EXPORT CMAKE OPTIONS IN C/C++
Target: MathFunctions/CMakeLists.txt (TODO 8)

target_compile_definitions(<target>
  <INTERFACE|PUBLIC|PRIVATE> [items1...]
  [<INTERFACE|PUBLIC|PRIVATE> [items2...] ...])

if (USE_MYMATH)
target_compile_definitions(MathFunctions

        PRIVATE "USE_MYMATH")
endif()

The macro USE_MYMATH is defined in the code only if
it is ON



USE CMAKE OPTIONS IN C/C++
Target: MathFunctions/MathFunctions.cxx (TODO 9-11)

#include <cmath>4

#ifdef USE_MYMATH
#include "mysqrt.h"

#endif

7
8
9

#ifdef USE_MYMATH
return detail::mysqrt(x);

#else
return std::sqrt(x);

#endif

16
17
18
19
20



SKIP UNNECESSARY COMPILING
Make CMake compile MathFunctions/mysqrt.cxx only

when we actually use it

Target: MathFunctions/CMakeLists.txt (TODO 12-14)
add_library(MathFunctions MathFunctions.cxx)6

if (USE_MYMATH)
target_compile_definitions(MathFunctions

    PRIVATE "USE_MYMATH")

add_library(SqrtLibrary STATIC mysqrt.cxx)
target_link_libraries(MathFunctions PUBLIC SqrtLibrary)

endif()

13
14
15
16
17
18
19



TO GO FURTHER...
Now you know how to add a library to your project...

but you need to specify some include/link paths in the
"main" CMakeLists.txt. You know your own code, so

you know what paths to add.

CMake allows to automatically add those paths when
including a library in the main CMake.

If you are interested, Step3 covers this subject, head to
the official tutorial to learn about it

https://cmake.org/cmake/help/v3.27/guide/tutorial

https://cmake.org/cmake/help/v3.27/guide/tutorial
https://cmake.org/cmake/help/v3.27/guide/tutorial


STEP2 - EXTENDED
What if we wanted to use a library installed on the

cluster ?

Let's say Eigen/3.4.0

Target: MathFunctions/CMakeLists.txt (TODO 15-16)
find_package(Eigen3 3.4 REQUIRED)5

else()
target_link_libraries(MathFunctions PUBLIC Eigen3::Eigen)

22
23



BUILD YOUR PROJECT
As usual :

$ rm -rf build2/  # (optional) remove the build directory
$ ccmake -S Step2/ -B build2/

ccmake fails to configure our project !
$ ml Eigen  # load Eigen3 module
$ ccmake -S Step2/ -B build2/
$ cmake --build build2/



USE EIGEN3 IN THE C++ CODE
Target: MathFunctions/MathFunctions.cxx

Include Eigen and iostream (TODO 17)

Play around with Eigen and compute the square root
(TODO 18)

Eigen::Array<double, 2, 2> arr;
arr << x, x+1, x+2, x+3;
std::cout << "Testing with Eigen. arr :" << std::endl << arr << std::endl <<
std::cout << "Testing with Eigen. first row : " << arr(0, Eigen::all) << std
std::cout << "Testing with Eigen. first column :" << std::endl << 
std::cout << "Testing with Eigen. arr.sqrt() :" << std::endl << arr.
return arr.sqrt()(0, 0);

24
25
26
27
28
29
30



STEP 5 - INSTALLING AND
TESTING

So far, we were running the program by directly
executing the binary produced in the build directory

What if we'd like to keep things a bit cleaner and install
the program in another directory ?

What about a program that you can call from
anywhere, like you would for any other program

(python, ls, cmake, vim, nano, etc.)



HOW DOES LINUX RUN PROGRAMS ?
Unix-like systems need to "see" your program.

So you must move them in one of the directories linux
"looks into", they are collectively called the PATH
$ echo $PATH
[... lots of paths separated by colons ...]

BTW, this is how lmod works. It changes the value of
PATH to load or unload modules on the fly without the

need to install them



WHERE TO INSTALL OUR PROGRAM ?
You can install it locally in your home ~/.local/
$ tree ~/.local/
/home/ulb/operations/npotvin/.local/

1
2

├── bin3
│   └── Tutorial4
├── include5
│   ├── MathFunctions.h6
│   └── TutorialConfig.h7
├── lib8
│   ├── libMathFunctions.a9
│   └── libSqrtLibrary.a10
└── share11

├── bin
│   └── Tutorial

$ tree ~/.local/1
/home/ulb/operations/npotvin/.local/2

3
4

├── include5
│   ├── MathFunctions.h6
│   └── TutorialConfig.h7
├── lib8
│   ├── libMathFunctions.a9
│   └── libSqrtLibrary.a10
└── share11

├── lib
│   ├── libMathFunctions.a
│   └── libSqrtLibrary.a

$ tree ~/.local/1
/home/ulb/operations/npotvin/.local/2
├── bin3
│   └── Tutorial4
├── include5
│   ├── MathFunctions.h6
│   └── TutorialConfig.h7

8
9

10
└── share11

├── include
│   ├── MathFunctions.h
│   └── TutorialConfig.h

$ tree ~/.local/1
/home/ulb/operations/npotvin/.local/2
├── bin3
│   └── Tutorial4

5
6
7

├── lib8
│   ├── libMathFunctions.a9
│   └── libSqrtLibrary.a10
└── share11



TELL CMAKE WHAT TO DO WITH THE
LIBRARY

Target: MathFunctions/CMakeLists.txt (TODO 1-2)
set(installable_libs MathFunctions tutorial_compiler_flags)

if(TARGET SqrtLibrary)
list(APPEND installable_libs SqrtLibrary)

endif()

install(TARGETS ${installable_libs} DESTINATION lib)
install(FILES MathFunctions.h DESTINATION include)



TELL CMAKE WHAT TO DO WITH THE
MAIN PROGRAM

Target: CMakeLists.txt (TODO 3-4)
install(TARGETS Tutorial DESTINATION bin)

install(FILES "${PROJECT_BINARY_DIR}/TutorialConfig.h"
  DESTINATION include
  )



INSTALL YOUR PROGRAM
First, configure and build:

$ mkdir build5
$ ccmake -S Step5/ -B build5/
$ cmake --build build5/

Be careful to configure the right install path.

Your program has been built successfully, it is now
time to install it.

$ cmake --install build5/

As simple as that



STEP5 - SO FAR ...
We have learned :

• How to run a program from anywhere
• How to install a program a�er build

To go further, you can have a look to step 9 the official
tutorial to package an installer

What's next ?

• Add some tests to your code
• Automate testing



FIRST DUMMY TESTS
Target: CMakeLists.txt (TODO 5-8)

enable_testing()48

add_test(NAME Runs COMMAND Tutorial 25)52

Ok, but how do we check the output ?
add_test(NAME StandardUse COMMAND Tutorial 4)
set_tests_properties(StandardUse
  PROPERTIES PASS_REGULAR_EXPRESSION "4 is 2")

58
59
60

add_test(NAME Usage COMMAND Tutorial)
set_tests_properties(Usage
  PROPERTIES PASS_REGULAR_EXPRESSION "Usage:.*number")

65
66
67



TEST YOUR PROGRAM
$ cmake --build build5/ && ctest --test-dir build5/
Internal ctest changing into directory: /home/ulb/operations/
npotvin/cmake-3.27.9-tutorial-source/build5
Test project /home/ulb/operations/npotvin/cmake-3.27.9-tutori
al-source/build5

    Start 1: Runs
1/3 Test #1: Runs ......................   Passed    0.00 sec
    Start 2: StandardUse
2/3 Test #2: StandardUse ...............   Passed    0.00 sec
    Start 3: Usage
3/3 Test #3: Usage .....................   Passed    0.00 sec

100% tests passed, 0 tests failed out of 3

Try with a test that will fail, see the output



CMAKE FUNCTION
Target: CMakeLists.txt

function(do_test target arg result)
add_test(NAME Comp${arg} COMMAND ${target} ${arg})
set_tests_properties(Comp${arg}

    PROPERTIES PASS_REGULAR_EXPRESSION ${result}
    )
endfunction()

70
71
72
73
74
75

do_test(Tutorial 4 "4 is 2")
do_test(Tutorial 9 "9 is 3")
do_test(Tutorial 5 "5 is 2.236")
do_test(Tutorial 7 "7 is 2.645")
do_test(Tutorial 25 "25 is 5")
do_test(Tutorial -25 "-25 is (-nan|nan|0)")
do_test(Tutorial 0.0001 "0.0001 is 0.01")

77
78
79
80
81
82
83



MORE ADVANCED TESTING ? (1/2)
What if we wanted to use C/C++ code to test parts of

our project ?

1. Write your test as an executable
2. Add your executable in CMake
3. Add tests using your new executable

add_executable(TestThings testThings.cxx)
add_test(NAME TestThing1 COMMAND TestThings arg1)
add_test(NAME TestThing2 COMMAND TestThings arg2)



MORE ADVANCED TESTING ? (2/2)
What if we do not want to compile the test targets

every time ?

1. Use CMake options
2. Add test targets in a if-then-else block
3. Switch the test option ON/OFF depending on your

needs

See ? you know enough to be autonomous



TO GO FURTHER
From here you can use a testing dashboard to monitor

your tests (Step 6 of the official tutorial).

You can experiment with other test frameworks
(doctest, gtest, CxxTest, etc.).

Build and test as github actions.


