
Python Bindings

We saw that interfacing python with compiled code can provide huge performance
gains. There are two main approaches to achieve this:
▶ Just in time (JIT) compilers: compile and run a python code in real time

▶ Numba: jit compiler supporting numpy code
▶ Ahead of time (AOT) compilers: creation of a compiled library in your machine

(this would provide what is called a binding)
▶ Numba: also provides some AOT functionality (to be re-implemented)
▶ Cython: compile a python-like C code or a pure C library
▶ f2py: tool part of numpy project allowing to compile and wrap Fortran code
▶ pybind11: library to expose C++ types into Python for the creation of C++ bindings
▶ Boost.Python: C++ library for Python interoperability

https://numba.readthedocs.io/en/stable/index.html
https://numba.readthedocs.io/en/stable/reference/aot-compilation.html
https://cython.readthedocs.io/en/stable
https://numpy.org/doc/stable/f2py/
https://numpy.org/doc/stable/f2py/
https://github.com/boostorg/python


Cython: Fibonacci example
The Fibonacci series is defined by the recurrence relation

Fn = Fn−1 + Fn−2 (1)

starting with F0 = 0 and F1 = 1.
A basic pure python implementaion1:

def fibonacci(num):
fn = 0
fn1 = 1
while num-1:

fn, fn1 = fn1, fn + fn1
num -= 1

return fn1

if __name__ == "__main__":

print(fibonacci(15))

1code on python4hpc/examples/compiling/fibo-python/fibonacci.py



Cython: Fibonacci example
You must annotate your code using a new syntax in between python and C.
Example fibonacci function in cython2

def fibonacci(int num):
cdef int fn
cdef int fn1
fn = 0
fn1 = 1
while num-1:

fn, fn1 = fn1, fn + fn1
num -= 1

return fn1

To build it is required a sort of makefile, typically called setup.py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

setup(ext_modules = cythonize("fibolib.pyx"))

2code files on python4hpc/examples/compiling/fibo-cython



Cython: Fibonacci example

The build will produce a binary .so object for the library

$ python setup.py build_ext --inplace

Having this lib on the same directory, it can be imported as a module on a pure
python code

from fibolib import fibonacci

print(fibonacci(15))



Cython: C library

▶ Cython allows also to wrap C libraries to provide bindings for Python
▶ Check the example in python4hpc/examples/compiling/fibo-wrap-c to see

how wrapping works for a C function providing the nth Fibonacci number.
▶ Steps for building and running the example:

$ make
$ python fibonacci.py
The 15th Fibonacci number is: 610



f2py: Fortran library
▶ To wrap Fortran code the f2py tool from numpy provides a straighforward

approach3

function fibonacci(n)
implicit none
integer, intent(in) :: n
integer :: fibonacci, fseries(0:n), i
fseries(0) = 0
fseries(1) = 1

do i = 2, n
fseries(i) = fseries(i - 1) + fseries(i - 2)

end do
fibonacci = fseries(n)

end function fibonacci

$ f2py -c -m fibolib fibolib.f90

import fibolib

print(fibolib.fibonacci(15))

$ python fibonacci.py
610

3code files on python4hpc/examples/compiling/fibo-fortran



Further references and training on the topic

▶ High Performance Python - 2nd Ed by By Micha Gorelick and Ian Ozsvald
▶ CSC Python Tutorial: Python in High Performance Computing

http://shop.oreilly.com/product/0636920268505.do
https://github.com/csc-training/hpc-python

	Main

