file:///home/bvr/Documents/Formations/ddd _ex.html

#include <iostream>
using namespace std;

int divint(int, int);
int main()
{
int x =5, y=2;
cout << divint(x, y);

X =3; y =0;
cout << divint(x, y);
return 0;
}
int divint(int a, int b)
{
return a / b;
}

To enable debugging, the program must be compiled with the -g option.

$g++ -g crash.cc -o crash
Floating point exception (core dumped)

a core file (attention ulimit -c)

$gdb crash
Gdb prints summary information and then the (gdb) prompt

(gdb) r

Program received signal SIGFPE, Arithmetic exception.
0x08048681 in divint(int, int) (a=3, b=0) at crash.cc:21
21 return a / b;

'r' runs the program inside the debugger

In this case the program crashed and gdb prints out some
relevant information. 1In particular, it crashed trying
to execute line 21 of crash.cc. The function parameters
'a' and 'b' had values 3 and 0 respectively.

(gdb) 1
1 is short for 'list'. Useful for seeing the context of
the crash, lists code lines near around 21 of crash.cc

(gdb) where

#0 0x08048681 in divint(int, int) (a=3, b=0) at crash.cc:21

#1 0x08048654 in main () at crash.cc:13

Equivalent to 'bt' or backtrace. Produces what is known

as a 'stack trace'. Read this as follows: The crash occurred
in the function divint at line 21 of crash.cc. This, in turn,
was called from the function main at line 13 of crash.cc

(gdb) up

Move from the default level '0' of the stack trace up one level
to level 1.

1of6 8/21/24, 5:08 PM

20f6

(gdb) list

file:///home/bvr/Documents/Formations/ddd _ex.html

list now lists the code lines near line 13 of crash.cc

(gdb) p x
print the value of the local (to main) variable x

the attempt to divide an integer by 0.

gdb crash core

non-initialized memory.

#include <iostream>
using namespace std;

void setint(int*, int);
int main()
{

int a;

setint(&a, 10);

cout << a << endl;

int* b;
setint(b, 10);
cout << *b << endl;

return 0;

}

void setint(int* ip, int i)
{
*ip = 1;

}

$g++ -g crash2.cc -o crash2

segmentation fault (core dumped)

$ gdb crash2

(gdb) r

Starting program: crash2

10

10

Program received signal SIGSEGV, Segmentation fault.
0x4000b4d9 in dl fini () from /lib/ld-linux.so.2

(gdb) where
#0 0x4000b4d9 in dl fini () from /lib/ld-linux.so0.2
#1 0x40132al2 in exit () from /lib/libc.so0.6

#2 0x401lcdc6 in _ libc_start main () from /lib/libc.so0.6

#3 0x080485f1 in start ()
(gdb)

Unfortunately, the program will not crash in either of the user-defined functions, main or
setint, so there is no useful trace or local variable information. In this case, it may be

more useful to single-step through the program.

8/21/24, 5:08 PM

30f6

file:///home/bvr/Documents/Formations/ddd _ex.html

(gdb) b main
Set a breakpoint at the beginning of the function main

(gdb) r
Run the program, but break immediately due to the breakpoint.

(gdb) n
n = next, runs one line of the program

(gdb) n

(gdb) s

setint(int*, int) (ip=0x400143e0, i=10) at crash2.C:20

s = step, is like next, but it will step into functions.
In this case the function stepped into is setint.

(gdb) p ip
$3 = (int *) 0x400143e0

(gdb) p *ip
1073827128

The value of *ip is the value of the integer pointed to by ip. In this case, it is an unusual
value and is strong evidence that there is a problem. The problem in this case is that the
pointer was never properly initialized, so it is pointing to some random area in memory
(the address 0x40014e0). By pure luck, the process of assigning a value to *ip does not
crash the program, but it creates some problem that crashes the program when it finishes.

Segfault example:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char **argv)

{

char *buf;
buf = malloc(1<<31);
fgets(buf, 1024, stdin);
printf("%ss\n", buf);
return 1;

}

(gdb) run

SIGSEGV : we tried to access an invalid memory address

backtrace

#0 0x4007fcl3 in IO getline info () from /lib/libc.so0.6

#1 0x4007fb6c in IO getline () from /lib/libc.so.6

#2 0x4007ef51 in fgets () from /lib/libc.so0.6

#3 0x80484b2 in main (argc=1l, argv=0xbffffaf4) at segfault.c:10
#4 0x40037f5c in libc start main () from /lib/libc.so0.6

frame 3

8/21/24, 5:08 PM

file:///home/bvr/Documents/Formations/ddd _ex.html

print buf
$1 = 0x0
-> NULL pointer

kill
break 8
run (it stops at the breakpoint)

print buf

$2 = Oxbffffaa8 "Ubai#\177\003@t \001@\001"
next

10 fgets(buf, 1024, stdin);

(gdb) print buf

$3 = 0x0

-> NULL pointer

after the malloc, buf is NULL!

1<< 31 (1 right-shifted 31 x is 429497295 (4GB) malloc fail
1<<9is1024

Infinite Loop

#include <stdio.h>
#include <ctype.h>

int main(int argc, char **argv)
{

char c;

c = fgetc(stdin);
while(c != EOF){

if(isalnum(c))
printf("sc", c);
else
c = fgetc(stdin);
}

return 1;

}

gdb a.out
run

~c -> sigint
backtrace

#0 0x00007ffff7afcbal in __write_nocancel () from /lib64/libc.so0.6

#1 0x00007ffff7a872f3 in _10_new_file_write () from /lib64/libc.so0.6
#2 0x00007ffff7a88b0e in Gl 10 _do_write () from /lib64/libc.s0.6

40f6 8/21/24, 5:08 PM

file:///home/bvr/Documents/Formations/ddd _ex.html

#3 0x00007ffff7a890cb in _ GI__ 10 _file_overflow () from /lib64/libc.s0.6
#4 0x00007ffff7a7f75e in putchar () from /lib64/libc.s0.6
#5 0x000000000040067b in main (argc=1, argv=0x7fffffffddd8) at inf.c:12

—_

frame in the write() of libc
frame 5 -> in the main

print c
next several time -> line 11 & 12 forever!

solution...

Valgrind : a memory mismanagement detector (memcheck and more)

Use of uninitialised memory

Reading/writing memory after it has been free'd

Reading/writing off the end of malloc'd blocks

Reading/writing inappropriate areas on the stack

Memory leaks -- where pointers to malloc'd blocks are lost forever
Mismatched use of malloc/new/new [] vs free/delete/delete []
Overlapping src and dst pointers in memcpy() and related functions
Some misuses of the POSIX pthreads API

#include <stdio.h>

int main()

{

char *p;

// Allocation #1 of 19 bytes
p = (char *) malloc(19);

// Allocation #2 of 12 bytes
p = (char *) malloc(12);
free(p);

// Allocation #3 of 16 bytes
p = (char *) malloc(16);

return 0;

}

valgrind --tool=memcheck --leak-check=yes --show-reachable=yes --num-callers=20 --track-fds=yes ./test

==15231== Memcheck, a memory error detector

==15231== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==15231== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==15231== Command: ./test

==15231==

50f6 8/21/24, 5:08 PM

6 of 6

==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==
==15231==

FILE DESCRIPTORS: 3 open at exit.
Open file descriptor 2: /dev/pts/4
<inherited from parent>

Open file descriptor 1: /dev/pts/4
<inherited from parent>

Open file descriptor 0: /dev/pts/4
<inherited from parent>

HEAP SUMMARY :

in use at exit: 35 bytes in 2 blocks
total heap usage: 3 allocs, 1 frees, 47 bytes allocated

16 bytes in 1 blocks are definitely lost in loss record 1 of 2
at Ox4C29F73: malloc (vg replace malloc.c:309)

by 0x4005B6: main (testvalgrid.c:15)

19 bytes in 1 blocks are definitely lost in loss record 2 of 2
at Ox4C29F73: malloc (vg replace malloc.c:309)

by 0x40058E: main (testvalgrid.c:8)

LEAK SUMMARY :

definitely lost:
indirectly lost:
possibly lost:
still reachable:
suppressed:

For lists of detected and suppressed errors,
ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

35 bytes in 2 blocks

0 bytes
0 bytes
0 bytes
0 bytes

in
in
in
in

0 blocks
0 blocks
0 blocks
0 blocks

rerun with:

file:///home/bvr/Documents/Formations/ddd _ex.html

8/21/24, 5:08 PM

