
Data storage, transfer and sharing
damien.francois@uclouvain.be
november 2024

1

mailto:damien.francois@uclouvain.be

Goal of this session:

Share tools, tips and tricks related to the storage, transfer,

and sharing of scientific data on the clusters.

2

Data storage
File

Filesystems
File formats
Common problems with files

Object storage
Database systems

3

Data storage paradigms

4

Filesystems

Technology (method and data structure) used by the
operating system to store and retrieve files.

Can be

local on disk or in RAM, viewed only from one server, or
shared through the network, visible from multiple servers.

5

Shared filesystems

Network filesystems

one server multiple clients (NFS, CIFS)
typically used for the $HOME directories

Parallel filesystems

multiple servers multiple clients (BeeGFS, GPFS, Lustre)
typically used for the global scratch $GLOBALSCRATCH

6

Lemaitre4

7

Lemaitre4 filesystems
[dfr@lm4-f001 ~]$ df -khT -x tmpfs
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda3 xfs 48G 6.3G 42G 14% /
/dev/sda2 xfs 1006M 202M 805M 21% /boot
/dev/sda1 vfat 599M 5.8M 594M 1% /boot/efi
/dev/sda4 xfs 16G 6.9G 9.2G 44% /tmp
/dev/sda6 xfs 378G 2.7G 375G 1% /localscratch
gw-ucl:/CECI/gateway/proj nfs 32T 24T 8.1T 75% /CECI/proj
lm4-n001-ib:/soft/localsoft/RedHat-8_25-17-1_Infiniband nfs 1.3T 664G 617G 52% /opt/sw/arch
beegfs_nodev beegfs 318T 267T 51T 84% /globalscratch
10.44.3.1:/home nfs4 22T 3.3T 19T 16% /home

Source:

/dev/sd... → local disk
<machine>:<path> → NFS
other (e.g. beegfs_nodev) → specific filesystem

8

Lemaitre4 filesystems
[dfr@lm4-f001 ~]$ df -khT -x tmpfs -i
Filesystem Type Inodes IUsed IFree IUse% Mounted on
/dev/sda3 xfs 24M 208K 24M 1% /
/dev/sda2 xfs 512K 19 512K 1% /boot
/dev/sda1 vfat 0 0 0 - /boot/efi
/dev/sda4 xfs 8.0M 20K 8.0M 1% /tmp
/dev/sda6 xfs 189M 12 189M 1% /localscratch
gw-ucl:/CECI/gateway/proj nfs 108M 39M 69M 37% /CECI/proj
lm4-n001-ib:/soft/localsoft/RedHat-8_25-17-1_Infiniband nfs 128M 3.3M 125M 3% /opt/sw/arch
beegfs_nodev beegfs 0 0 0 - /globalscratch
10.44.3.1:/home nfs4 37G 28M 37G 1% /home

INodes:

entries in the file datastructure
rougly proportional to the number of files (and their size)
often disregarded but more important than volume!

9

What filesystem for what usage

10

File formats

Standard way information is orgnized and encoded in a file

Can be

text, readable by a human, but space-inefficient
binary, readable by dedicated software, often compressed.

11

Text file formats

12

Text file formats

13

Binary file formats

https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf 14

https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

Binary file formats

https://adyork.github.io/python-oceanography-lesson/17-Intro-NetCDF/index.html 15

https://adyork.github.io/python-oceanography-lesson/17-Intro-NetCDF/index.html

What file format for what usage

Meta data:

Configuration file: INI, YAML
Result with context information: JSON

Data:

Small data (kBs): CSV
Medium data (MBs): compressed CSV
Large data (GBs): netCDF, HDF5, ASDF, Zarr
Huge data (TBs): Object store
Huge number of small files (10^6*kBs): Database

16

The problems with files
Filesystems are not designed

to host millions of files
to manage concurrent accesses diligently
to finely organise sharing of the files

17

Problem 1: ZOT files

"Zillions of tiny" files

Over-consume resources
Inode spaces is finite on most filesystems
Minimal chunk size often large on HPC filesystems

Makes system slower (ls , rsync , rm etc.)
Inodes operations cannot be buffered/cached easily
Event simple ls -l can put heavy burden on MD servers
slowing all the operations

Easy to loose control

18

Problem 1: ZOT files (solutions)

Write a single file:

TAR archive
Singularity container
Write them to local filesystems
Even better to memory filesystems

Even better to another storage type:
Object store (rich efficient meta data)
Database (strong structure)

19

Problem 2: Concurrent access

20

Problem 2: Concurrent access (solutions)

Use a library for (organised) parallel writes (e.g. netCDF)
Write to local filesystems and merge afterwards
Use a database

21

Problem 3: sharing

Everyone must have access to the same computer
UNIX permissions are not so flexible

Groups must be set by admins
No organization of groups

22

Problem 3: sharing (solutions)

Dumb it down: chmod 777
Abuse UNIX permissions
Use an Object store

23

Object store

data storage technology that manages data as objects that

include the data itself, a variable amount of metadata, and a
globally unique identifier

Useful for web applications but coming to scientific world
Access with REST API (through HTTP)

24

Object store on Lumi

25

Access with code

Access with command line

Setup your own

https://pypi.org/project/boto/ -- https://rclone.org -- https://github.com/minio/minio 26

https://pypi.org/project/boto/
https://rclone.org/
https://github.com/minio/minio

Object store

When to use

For data that is written once and then read multiple times
from multiple remote locations as a whole
Input data for in-memory decompression
Output files for egress or sharing

When not to use

When direct access to portions of a file are needed
When data is not meant to be read sequentially

27

Database systems

system that interfaces users, applications, and the

database itself to capture and analyze the data

useful for enterprise data but coming to the HPC world
access via query language and software libraries

28

Relational database

Query language : SQL

create table Users (login varchar(255), first varchar(255), last varchar(255));

insert into Users values (“mark”, ‘Samuel”, “Clemens”);

select first,last from Users where login=’lion’;
select login, phone from Users join PhoneNb on Users.login=Phone.login;

29

Setup your own

File-based database system, easy way to replace a large

collection of small files with a single file.

No-setup server on top of SQlite that can cope with concurrent
accesses.

https://www.sqlite.org -- https://rqlite.io 30

https://www.sqlite.org/
https://rqlite.io/

NoSQL

31

Setup your own

File-based document-oriented database system, easy way to
replace a large collection of small files with a single file.

No-setup key-value database server that can cope with

concurrent accesses.

No-setup document-oriented database server that can cope
with concurrent accesses.

https://tinydb.readthedocs.io/en/latest/ -- https://redis.io -- https://zincsearch-docs.zinc.dev 32

https://tinydb.readthedocs.io/en/latest/
https://redis.io/
https://zincsearch-docs.zinc.dev/

Database

When to use

when you have a large collection of small files
when you perform a lot of direct writes in a large file
when you want to keep structure/relations between data

Many small results

When not to use

only sequential access
simple matrices/vectors, etc.
direct access on fixed-size records and no structure

33

Redis example

redis-server.sh:
 #! /bin/bash
 #SBATCH -n1 --mem 4G
 module load redis
 hostname -s > $HOME/redisserver
 redis-server

work.sh:
 #! /bin/bash
 #SBATCH -t 10:00 -n 1 -c 4 --mem-per-cpu 4G
 #SBATCH --array 1-1000
 module load redis

 ./myprog | redis-cli -h <(<$HOME/redisserver) -x SET res-$SLURM_TASK_ARRAY_ID

J=$(sbatch --parsable redis-server.sh)
sbatch --dependency=after:$J work.sh

34

Data transfer
SCP
RSYNC
TAR
Parallel RSYNC

35

SCP

Simplest (and least efficient) way to copy a file to/from a remote
server:

scp somefile lemaitre4:destination/directory
scp lemaitre4:destination/directory/somefile .

Copy remote to remote:

scp lemaitre4:some/directory/somefile destination:
scp -3 lemaitre4:some/directory/somefile destination:

Use -3 if source cannot reach destination directly

Use -r ("recursive") for directories

Note: to transfer from one CÉCI cluster to another, use the common storage 36

RSYNC

Efficient way to synchronise directories to/from a remote server:

rsync -va directory lemaitre4:some/directory
rsync -va lemaitre4:some/directory .

Rsync will only transfer the parts of the files that changed.

Can be used to resume an interrupted SCP transfer:

scp somelargefile lemaitre4:destination/directory # Interrupted for some reason
rsync --append somelargefile lemaitre4:destination/directory

37

RSYNC

Progress monitoring: use

-v --progress for large files
--info=progress2 --no-i-r for many smaller files

Verify what will be transfered before transfering with

--dry-run

Choose files to transfer with

--exclude
--include

Change group on the fly with

-g --groupmap=*:ceci_group

38

TAR+SSH

Often, for ZOT files, creating a single large file and transfering

that file will be more efficient.

tar czf - /path/to/data | ssh server “tar xzf - -C destination/directory

This will compress and uncompress data on the fly.

39

Parallel RSYNC

http://www.fpart.org/fpsync/ 40

http://www.fpart.org/fpsync/

[dfr@lm4-f001 Data]$ time scp -qr linux-6.9.8 manneback:

real 26m7.000s
user 0m3.856s
sys 0m10.972s

[dfr@lm4-f001 Data]$ time { tar czf - linux-6.9.8 | ssh manneback tar xzf - ; }

real 16m56.519s
user 0m33.286s
sys 0m4.805s

[dfr@lm4-f001 Data]$ time fpsync $HOME/Data/linux-6.9.8 manneback:$HOME/Data/linux-6.9.8

real 11m51.561s
user 0m52.537s
sys 3m16.098s

41

Parallel RSYNC

https://rclone.org/commands/rclone_sync/ 42

https://rclone.org/commands/rclone_sync/

43

Data sharing
Personal/Sensitive data
UNIX Permissions
Encryption
Nextcloud
Dataverse

44

Personal/Sensitive data

The clusters are desgined for performance by default, not privacy

Responsibilities...

what who

describing what specific protection
measures to take

the project PI, or the
institution's DPO

implementing protection measures the user

making sure the infratructure is safe

and secure from external threats
the sysadmins

45

Personal/Sensitive data

Four possible recommendations for personal and/or sensitive
data:

work only on local, mono-user, computer
encrypt the data
anonymize the data
pseudonimize the data

46

Encryption

in transit -- this is always the case on clusters with SSH
at rest on disks (when not processed by a job) -- it is the

user's responsibility to do so, and system administrators can
help set up what is needed
at work in RAM (for the duration of the job) -- this is almost
impossible to ensure on clusters ;

47

Anonymization

Pseudonymization

48

Sharing with other users

Note: x on a directory means traverse permission

https://wizardzines.com/comics/permissions/ 49

https://wizardzines.com/comics/permissions/

Sharing with other users

Make directory writable for the group

chmod g+rwx directory

Make file readable by everyone

chmod o+r file

Make directory readable by everyone, recursively

chmod o+rX directory

50

Sharing with other users

All parent directories must be traversable

[dfr@lm4-f001 Data]$ namei -l $(realpath random.dat)
f: /home/users/d/f/dfr/Data/random.dat
dr-xr-xr-x root root /
drwxr-xr-x root root home
drwxr-xr-x root root users
drwxr-xr-x root root d
drwxr-xr-x root root f
drwxr-x--x dfr dfr dfr
drwxrwx--- dfr dfr Data
-rw-rw-r-- dfr dfr random.dat

51

Sharing with a group

See which groups you are part of:

[dfr@lm4-f001 ~]$ id
uid=3000003(dfr) gid=3000003(dfr) groups=3000003(dfr),4999998(adminucl),4999999(sysadmin)

Change group ownership (as a regular user):

[dfr@lm4-f001 ~]$ ls -ld Data
drwxrwx--- 4 dfr dfr 7 Sep 17 11:35 Data
[dfr@lm4-f001 ~]$ chgrp adminucl Data/
[dfr@lm4-f001 ~]$ ls -ld Data
drwxrwx--- 4 dfr adminucl 7 Sep 17 11:35 Data

52

Sharing with a group

By default, the group of a newly created file is the creator's
primary group.

[dfr@lm4-f001 Data]$ touch testone
[dfr@lm4-f001 Data]$ ls -l testone

Unless newgrp is used to change the group for the current
session:

[dfr@lm4-f001 Data]$ newgrp adminucl
[...]
[dfr@lm4-f001 Data]$ touch testtwo
[dfr@lm4-f001 Data]$ ls -l testtwo
-rw-rw---- 1 dfr adminucl 0 Sep 18 10:45 testtwo
[dfr@lm4-f001 Data]$ exit

53

Sharing with a group

By default, the group of a newly created file is the creator's
primary group.

[dfr@lm4-f001 Data]$ touch testone
[dfr@lm4-f001 Data]$ ls -l testone

or the parent directory has sgid permission bit set:

[dfr@lm4-f001 Data]$ ls -ld .
drwxrwx--- 4 dfr adminucl 9 Sep 18 10:45 .
[dfr@lm4-f001 Data]$ chmod g+s .
[dfr@lm4-f001 Data]$ ls -ld .
drwxrws--- 4 dfr adminucl 9 Sep 18 10:45 .
[dfr@lm4-f001 Data]$ touch testthree
[dfr@lm4-f001 Data]$ ls -l testthree
-rw-rw---- 1 dfr adminucl 0 Sep 18 10:48 testthree

54

Sharing and hiding

When a common group is not available for sharing, the file can
be world-readable in a non-readable but traversable directory.

Then only users who know about the file exact name can open it.

[dfr@lm4-f001 ~]$ chmod o+x Download
[dfr@lm4-f001 Downloads]$ namei -l $(realpath rqlite-v7.21.1-linux-amd64.tar.gz)
f: /home/users/d/f/dfr/Downloads/rqlite-v7.21.1-linux-amd64.tar.gz
dr-xr-xr-x root root /
drwxr-xr-x root root home
drwxr-xr-x root root users
drwxr-xr-x root root d
drwxr-xr-x root root f
drwxr-x--x dfr dfr dfr
drwxrwx--x dfr dfr Downloads
-rw-rw-r-- dfr dfr rqlite-v7.21.1-linux-amd64.tar.gz

[bvr@lm4-f001 ~]$ ls ~dfr/Downloads/
ls: cannot open directory '/home/ucl/pan/dfr/Downloads/': Permission denied
[bvr@lm4-f001 ~]$ ls ~dfr/Downloads/rqlite-v7.21.1-linux-amd64.tar.gz
/home/ucl/pan/dfr/Downloads/rqlite-v7.21.1-linux-amd64.tar.gz
[bvr@lm4-f001 ~]$ file ~dfr/Downloads/rqlite-v7.21.1-linux-amd64.tar.gz
/home/ucl/pan/dfr/Downloads/rqlite-v7.21.1-linux-amd64.tar.gz: gzip compressed data, from Unix, original size 39096320

55

Sharing and encrypting

The gocryptfs tool makes the process easy.

1. Install it

wget https://github.com/rfjakob/gocryptfs/releases/download/v2.4.0/gocryptfs_v2.4.0_linux-static_amd64.tar.gz
tar xvzf gocryptfs_v2.4.0_linux-static_amd64.tar.gz
chmod +x gocryptfs
mv gocryptfs [some directory in your PATH]

2. Create a directory that will contain the encrypted files and

initialise a vault

[dfr@lm4-f001 ~]$ mkdir $CECIHOME/SecretFolder
[dfr@lm4-f001 ~]$ gocryptfs -init $CECIHOME/SecretFolder
Choose a password for protecting your files.
Password:
Repeat:

Your master key is:

 1a88a6b1-8f072fe8-7aac5356-1d025115-
 7574f7c3-627cbbdb-12b96ca8-09bfb39a

If the gocryptfs.conf file becomes corrupted or you ever forget your password,
there is only one hope for recovery: The master key. Print it to a piece of
paper and store it in a drawer. This message is only printed once.
The gocryptfs filesystem has been created successfully.
You can now mount it using: gocryptfs /CECI/home/ucl/pan/dfr/SecretFolder MOUNTPOINT 56

https://nuetzlich.net/gocryptfs/

Sharing and encrypting
3. mount the vault in a temporary directory

[dfr@lm4-f001 ~]$ gocryptfs $CECIHOME/SecretFolder ./Tests/ClearFolder
Password:
Decrypting master key
Filesystem mounted and ready.

4. Write files to the temporary directory

[dfr@lm4-f001 ~]$ echo test > ./Tests/ClearFolder/test.txt
[dfr@lm4-f001 ~]$ ls ./Tests/ClearFolder
test.txt
[dfr@lm4-f001 ~]$ ls $CECIHOME/SecretFolder
e6AxIMr4RuztuwpA-o_uOQ gocryptfs.conf gocryptfs.diriv

The files are encrypted on the fly.

Cleanup with fusermount -u ./Tests/ClearFolder

57

Sharing with external colleagues

Private cloud

Open data

58

Private cloud

Similar to Dropbox, OneDrive, Google Drive, etc.
59

Private cloud

Possibility to connect external storage
60

Private cloud

Share with a download link
61

Private cloud

Share with a download link
62

Open data

Publish and reference your data with a DOI 63

Summary and recap

64

Summary and recap

Storage: choose the right file system and the right file format

and give other storage systems some consideration

Transfer: use rsync in parallel when you can

Sharing: use all the potential of the UNIX permissions and try
Nextcloud and Dataverse

65

