
 1

 Introduction to Parallel Computing

damien.francois@uclouvain.be
October 2018

 2

Agenda

1. General concepts, definitions, blockers

2. Hardware for parallel computing

3. Programming models

4. User tools

 3

1.

General concepts

 4

Why parallel?

Speed up – Solve a problem faster
→ more processing power

(a.k.a. strong scaling)

Scale up – Solve a larger problem
→ more memory and network capacity

(a.k.a. weak scaling)

Scale out – Solve many problems
→ more storage capacity

 5

Parallelization involves:

● decomposition of the work

– distributing instructions to processors
– distributing data to memories

● collaboration of the workers

– synchronization of the distributed work
– communication of data

 6

Decomposition

● Work decomposition : task-level parallelism

● Data decomposition : data-level parallelism

● Domain decomposition : decomposition of work and data
is done in a higher model, e.g. in the reality

 7

Collaboration

● Synchronous (SIMD) at the processor level

● Fine-grained parallelism if subtasks must communicate
many times per second (instruction level); loosely
synchronous

● Coarse-grained parallelism if they do not communicate
many times per second (function-call level)

● Embarrassingly parallel if they rarely or never have to
communicate (asynchronous)

 8

Speedup, Efficiency, Scalability

https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf

 9

Blocker 1: Amdahl's Law

http://tutorials.jenkov.com/java-concurrency/amdahls-law.html

In parallel computing, Amdahl's law is mainly used
to predict the theoretical maximum speedup

for programs using multiple processors.

Often, not all the work can be decomposed

 10

Blocker 1: Amdahl's Law

https://en.wikipedia.org/wiki/Amdahl%27s_law

 11

Blocker 2: Parallel overhead

https://computing.llnl.gov/tutorials/parallel_comp/images/helloWorldParallelCallgraph.gif

Collaboration means communication and a lot of extra work

 12

Blocker 2: Parallel overhead
Load imbalance

 13

2.

Hardware for parallel computing

 14

At the core level

● Instruction-level parallelism
(ILP)

– Instruction pipelining
– Superscalar execution
– Out-of-order execution
– Speculative execution

● Single Instruction Multiple
Data (SIMD)

 15

At the CPU (socket) level

● Multicore
parallelism

 16

At the computer level

● Multi-socket
parallelism

– SMP
– NUMA

● Accelerators

 17

At the data center level
Cluster computing

 18

At the data center level
Cloud computing

 19

At the world level
Distributed computing

 20

At the world level
Grid computing

 21

3.

Programming models

 22

Parallel programming paradigms

● Task-farming: no communication among workers

– Master distribute work to workers (master/slave); or
– Workers pick up tasks from pool (work stealing).

● SPMD (Single program multiple data)

A single program that contains both the logic for
distributing work (master) and the computing part
(workers) of which many instances are started and
linked together at the same time

● MPMD (Multiple programs multiple data)

How is work organized?

 23

Parallel programming paradigms

● Pipelining (A->B->C, one process per task concurrently)

● Divide and Conquer (processes spawned at need and
report their result to the parent)

● Speculative parallelism (processes spawned and result
possibly discarded)

How is work organized?

 24

Programming models

● Single computer:

– CPUs: PThreads, OpenMP, TBB, OpenCL
– Accelerators: CUDA, OpenCL, OpenAcc

● Multi-computer:

– Distributed memory:
● Shared storage: MPI (clusters)
● Distributed storage: MapReduce (clouds)
● No storage: BOINC (distributed computing)

– Shared memory: CoArray, UPC

What programming libraries/syntax constructs, etc. exist?

 25

4.

User tools
that GNU/Linux offers

 26

Parallel processes in Bash

cp -r /CECI$(echo ~dfr)/parcomp . || https://indico.cism.ucl.ac.be/event/16/attachments/11/19/parallelcomputing.tgz

 27

Parallel processes in Bash

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

 28

One program and many files

Equivalent to
./lower.sh d1.txt ;
./lower.sh d2.txt ;
./lower.sh d3.txt ;
./lower.sh d3.txt ;

Equivalent to
./lower.sh d1.txt &
./lower.sh d2.txt &
./lower.sh d3.txt &
./lower.sh d3.txt &

wait

 29

Several programs and one file

./upper.sh starts as soon as ./lower.sh
writes the first output

./upper.sh waits for ./lower.sh to finish

 30

Several programs and one file

If ./upper.sh was not designed to read
from STDIN, we could use a FIFO file

 31

One program and one large file

Need recent version of Coreutils/8.22-goolf-1.4.10

Split the file and start 4 processes

 32

Several programs and many files

https://www.gnu.org/software/make/manual/html_node/index.html

 33

Several programs and many files

 34

Summary

● You have either

– one very large file to process
● with one program: split
● with several programs: pipes, fifo

– many files to process
● with one program xargs
● with many programs make

 35

GNU Parallel

More complicated to use but very powerful

 36

GNU Parallel

● Syntax: parallel command ::: argument list

 37

GNU Parallel

● Syntax: {} as argument placeholder. Can be modified

 38

GNU Parallel

● Multiple parameters and --xapply

 39

GNU Parallel

● When arguments are in a file : use :::: (4x ‘:’)

 40

GNU Parallel

● Split a file with --pipe

 41

Other interesting options

-S Use remote servers through SSH

-j n Run n jobs in parallel

-k Keep same order

--delay n Ensure there are n seconds between each start

--timeout n Kill task after n seconds if still running

Author asks to be cited: O. Tange (2011): GNU Parallel - The
Command-Line Power Tool, The USENIX Magazine, February
2011:42-47.

 42

Exercise

Reproduce the examples with ./lower and ./upper.sh

using GNU Parallel

 43

Solutions

● One program and many files

$ time parallel -k ./lower.sh {} > res.txt ::: d?.txt

● One program and one large file

$ time cat d.txt | parallel -k -N1 --pipe ./lower.sh {} > res.txt

● Several programs and several files

$ time { parallel ./lower.sh {} {.}.tmp ::: d?.txt ; \
> parallel ./upper.sh {} {.}.res ::: d?.tmp ; }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

