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1.

General concepts
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Why parallel?

Speed up – Solve a problem faster
→  more processing power

(a.k.a. strong scaling)

Scale up – Solve a larger problem
→  more memory and network capacity

(a.k.a. weak scaling)

Scale out – Solve many problems
→  more storage capacity
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Parallelization involves:

●  decomposition of the work

– distributing instructions to processors  
– distributing data to memories

●  collaboration of the workers

– synchronization of the distributed work 
– communication of data
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Decomposition

● Work decomposition : task-level parallelism

● Data decomposition : data-level parallelism

● Domain decomposition : decomposition of work and data 
is done in a higher model, e.g. in the reality
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Collaboration

● Synchronous (SIMD) at the processor level

● Fine-grained parallelism if subtasks must communicate 
many times per second (instruction level); loosely 
synchronous

● Coarse-grained parallelism if they do not communicate 
many times per second (function-call level) 

● Embarrassingly parallel if they rarely or never have to 
communicate (asynchronous)
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Speedup, Efficiency, Scalability

https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf
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Blocker 1: Amdahl's Law

http://tutorials.jenkov.com/java-concurrency/amdahls-law.html

In parallel computing, Amdahl's law is mainly used 
to predict the theoretical maximum speedup 

for programs using multiple processors.

Often, not all the work can be decomposed
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Blocker 1: Amdahl's Law

https://en.wikipedia.org/wiki/Amdahl%27s_law
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Blocker 2: Parallel overhead

https://computing.llnl.gov/tutorials/parallel_comp/images/helloWorldParallelCallgraph.gif

Collaboration means communication and a lot of extra work
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Blocker 2: Parallel overhead
Load imbalance
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2.

Hardware for parallel computing
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At the core level

● Instruction-level parallelism 
(ILP)

– Instruction pipelining
– Superscalar execution
– Out-of-order execution
– Speculative execution

● Single Instruction Multiple 
Data (SIMD)
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At the CPU (socket) level

● Multicore 
parallelism
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At the computer level

● Multi-socket 
parallelism

– SMP
– NUMA

● Accelerators
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At the data center level
Cluster computing
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At the data center level
Cloud computing
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At the world level
Distributed computing
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At the world level
Grid computing
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3.

Programming models
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Parallel programming paradigms

● Task-farming: no communication among workers 

– Master distribute work to workers (master/slave); or
– Workers pick up tasks from pool (work stealing).

● SPMD (Single program multiple data)

A single program that contains both the logic for 
distributing work (master) and the computing part 
(workers) of which many instances are started and 
linked together at the same time

● MPMD (Multiple programs multiple data)

How is work organized?
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Parallel programming paradigms

● Pipelining (A->B->C, one process per task concurrently)

● Divide and Conquer (processes spawned at need and 
report their result to the parent)

● Speculative parallelism (processes spawned and result 
possibly discarded)

How is work organized?
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Programming models

● Single computer: 

– CPUs: PThreads, OpenMP, TBB, OpenCL
– Accelerators: CUDA, OpenCL, OpenAcc

● Multi-computer:

– Distributed memory: 
● Shared storage: MPI (clusters)
● Distributed storage: MapReduce (clouds)
● No storage: BOINC (distributed computing)

– Shared memory: CoArray, UPC

What programming libraries/syntax constructs, etc. exist?



  25

4.

User tools 
that GNU/Linux offers
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Parallel processes in Bash

cp -r /CECI$(echo ~dfr)/parcomp .  ||  https://indico.cism.ucl.ac.be/event/16/attachments/11/19/parallelcomputing.tgz
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Parallel processes in Bash

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html



  28

One program and many files

Equivalent to 
./lower.sh d1.txt ;
./lower.sh d2.txt ;
./lower.sh d3.txt ;
./lower.sh d3.txt ;

Equivalent to 
./lower.sh d1.txt &
./lower.sh d2.txt &
./lower.sh d3.txt &
./lower.sh d3.txt &

wait
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Several programs and one file

./upper.sh starts as soon as ./lower.sh 
writes the first output

./upper.sh waits for ./lower.sh to finish



  30

Several programs and one file

If ./upper.sh was not designed to read
from STDIN, we could use a FIFO file
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One program and one large file

Need recent version of Coreutils/8.22-goolf-1.4.10

Split the file and start 4 processes
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Several programs and many files

https://www.gnu.org/software/make/manual/html_node/index.html
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Several programs and many files
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Summary

● You have either

– one very large file to process
● with one program: split
● with several programs: pipes, fifo

– many files to process
● with one program xargs
● with many programs make



  35

GNU Parallel

More complicated to use but very powerful
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GNU Parallel

● Syntax: parallel command ::: argument list



  37

GNU Parallel

● Syntax: {} as argument placeholder. Can be modified
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GNU Parallel

● Multiple parameters and --xapply
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GNU Parallel

● When arguments are in a file : use :::: (4x ‘:’)
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GNU Parallel

● Split a file with  --pipe
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Other interesting options

-S  Use remote servers through SSH

-j n           Run n jobs in parallel

-k             Keep same order

--delay n  Ensure there are n seconds  between each start

--timeout n Kill task after n seconds if still running

Author asks to be cited: O. Tange (2011): GNU Parallel - The 
Command-Line Power Tool, The USENIX Magazine, February 
2011:42-47.
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Exercise

Reproduce the examples with ./lower and ./upper.sh 

using GNU Parallel
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Solutions

● One program and many files

$ time parallel -k ./lower.sh {} > res.txt  ::: d?.txt 

● One program and one large file

$ time cat d.txt | parallel -k -N1 --pipe ./lower.sh {} > res.txt

● Several programs and several files

$ time { parallel ./lower.sh {} {.}.tmp ::: d?.txt ; \ 
> parallel  ./upper.sh {} {.}.res ::: d?.tmp ; }
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