Consortium des Equipements
de Calcul Intensif
en Fédération Wallonie-Bruxelles

C.|CE.C

Introduction to Parallel Computing

damien.francois@uclouvain.be
October 2018

B c Université catholigu

INSTITUT DE CALCUL INTENSIF ET DE STOCKAGE DE MASSE

Agenda

1. General concepts, definitions, blockers
2. Hardware for parallel computing
3. Programming models

4. User tools

B

General concepts

Why parallel?

Speed up — Solve a problem faster
— more processing power
(a.k.a. strong scaling)

Scale up — Solve a larger problem
— more memory and network capacity
(a.k.a. weak scaling)

Scale out — Solve many problems
— more storage capacity

Parallelization involves:

* decomposition of the work
— distributing instructions to processors
— distributing data to memories

* collaboration of the workers

- synchronization of the distributed work
- communication of data

Decomposition

ISM

task-level paralleli

 Work decomposition

ISIM

data-level parallel

1on

 Data decomposi

f work and data

iaon O

decompos

 Domain decomposition

ity
S

o
e

o
AT
'@;ﬁ

=
©
)
| -
&)
L
)
=
>
)
[
O
@
=
| -
b
L
R
L

done In a

IS

Collaboration C:|ICE.CI
|

Synchronous (SIMD) at the processor level

Fine-grained parallelism if subtasks must communicate
many times per second (instruction level); loosely
synchronous

Coarse-grained parallelism if they do not communicate
many times per second (function-call level)

Embarrassingly parallel if they rarely or never have to
communicate (asynchronous)

Speedup, Efficiency, Scalability
N B

Parallel
Speedup
'y

Superlinear

Typical
Success

Sublinear

r—r—1T—1—1—® # Processors

Negative

https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf

Blocker 1: Amdahl's Law @iEXd
Often, not all the work can be decomposed %-*

B = Non-parallelizable
1 - B = Parallelizable

In parallel computing, Amdahl's law is mainly used
to predict the theoretical maximum speedup
for programs using multiple processors.

http://tutorials.jenkov.com/java-concurrency/amdahls-law.htmi

Blocker 1: Amdahl's Law
] B

Amdahl's Lawe

—

— |

|

e
g

Parallel Portion

g™

R EEEE R

MMumber of ProcEssor s

e 5 8 B 8 E B B B B G

https://en.wikipedia.org/wiki/Amdahl%27s_law

Blocker 2: Parallel overhead

Collaboration means communication and a lot of extra work -

wvoid main [int arge, char *argv]])
f
int myrank, size;

MPLInil{ £arge, Eargv);
MPIL_Comm_rank{MPI_COMM WORLD, & myrank]; Hkn
MFPI_Comm_size{ MPI_COMM WORLD, &size)

printf{ "Processor %d of %d: Hello Wordd!'n™, myrank, size]; f/// .
MPI_Finalize{)

1

=)

Example of Parallel Communications Overhead
and Complexity: actual caligraph from the simple
parallel "hello woHd" program shown. Most of the
routines are from communications libraries.

https://computing.linl.gov/tutorials/parallel_comp/images/helloWorldParallelCallgraph.gif

Blocker 2: Parallel overhead

Load imbalance

Hardware for parallel computing

At the core level

Instruction-level parallelism
(ILP)

Instruction pipelining

Superscalar execution
Out-of-order execution
Speculative execution

* Single Instruction Multiple
Data (SIMD)

| 32K L1 Instruction Cache p»|Pre-decode b Instr Queue
Decoders

| Branch Predictor |

| 1.5KuOP Cache |

e || Reorder

Allocate/Rename/Retire

| Scheduler
[PortO | [Port1 | [Port5 | [Port2 | [Port3 | [Port4

ALU | ALU | ALU | Load load | STD
V-Mul V-Add TP _| StAddr || StAddr |

V-Shuffle V-Shufflg 256- FP Shuf *

Fdiv 256- FP Add | | 256- FP Bool

256- FP MUL 256- FP Blend
256- FP Blend | , Memory Control |

‘ 48 bytes/cycle

Line Fill
256K L2 Cache (Unified)
32K L1 Data Cache

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

 Multicore
parallelism

Prncéssur

ihctuding |
Display:
DMl and

LIIIII

wo Memory. Eontruller /0 topsuzsen

At the computer level

e Multi-socket
parallelism

SMP
NUMA
Accelerators

| Processor [F
Graphlcs-"

Inclading |
Display.
'} 'DMland
Misc: 1/0

-IJd'rl ll]-l'h‘Lll AT aey . T
sasmassaranay Memory Controller 1/0 s

; Cuntmlfer

fnrrudfng '
Display:
('} 'DMland
Mise: 1/0

Llll

maed Memory Controller I."‘Du_étmg

At the data center level

Cluster computing

About

CECI is the 'Consortium des Equipements de
Calcul Intensif'; a consortium of high-performance
computing centers of UCL, ULB, ULg, UMons, and
UNamur. Read more.

- Centre
J . m de Calcul I‘,1

UG

SEGI

vons~

LPSI, GMN, INFO UCL

Université
catholique
de Louvain

Consortium des Equipements de Calcul
Intensif

6 clusters, 10k cores, 1 login, 1 home directory

w

The common storage is functional!

Have you tried it yet? More info...

Latest News

SATURDAY, 23 SEPTEMBER 2017
A CECI user pictured in the ULiége news!

The ULiége website published a story (in French) about the work of Denis Baurain and his
collaborators on the Tier-1 cluster Zenobe that lead to a publication in Nature Ecology &
Evolution.

TUESDAY, 01 AUGUST 2017
Ariel Lozano is the new CECI logisticien

We are happy to announce the hire of a new CECI logisticien: Ariel Lozano. Welcome Ariel!

At the data center level @iEXd
Cloud computing -—

,g L
!.! amazon

web services

AP
q GOOS[Q . Microsoft Azure

Cloud Platform

OpenNebula openstack

At the world level

SET' @) H[IME Project ~ Science ~ Computing ~

What is SETI@home?

SETI@home is a scientific experiment, based at UC
Berkeley, that uses Internet-connected computers in the
Search for Extraterrestrial Intelligence (SETI). You can
participate by running a free program that downloads
and analyzes radio telescope data.

Join SETI@home

User of the Day

The_PC_God
Hello community. My name is Daniel. | am 28
years old and i live in a small village called
Kuhardt (Rhineland-Palatinate, Germany)
which is located...

NovoDyne inc.

Community ~ Site ~ Sign Up Login

News

BSRC Student Travel Fundraiser

Berkeley SETI Research Center is holding a fundraiser to raise $7000 to send our
student interns to conferences to present their work.

We've been working with some great students at Berkeley SETI, and we're
optimistic that some of them will become the scientists and engineers who lead the
field in future and maybe even find the signal we're searching for. In the meantime
they have been doing amazing work and we'd like to send them to academic
conferences to present their results, and for their own professional development. If
you would like to help with this effort, we are running a crowdfunding campaign at
https://crowdfund.berkeley.edu/SETItravel - every donation counts! We also have
some fun perks including the chance to ask questions to members of the Berkeley
SETI team, and to attend a party in our lab.

Although this does not directly benefit SETI@home (our annual fundraiser will start
in a couple weeks), it's a worthy cause. I'll be contributing!
2 Oct 2017, 18:10:26 UTC - Discuss

At the world level

Grid computing
& WLCG

\0' Worldwide LHC Computing Grid

Collaboration Meetings | Grid Operations Docs & Ref | Getting Started Public site

Welcome to the Worldwide LHC Computing Grid About WLCG

‘What is WLCG? See our
Last 24 hours public site...

Hangout with CERN: LHC
and Grid - the world is our
calculator &

Transfer Throughput
50 GBps

40 GBps [

30 GBps -
- - Jobs

20 GBps

0 Bps I

12:00 16:00 20:00 00:00 04:00 08:00

No jobs currently published.

News

== 3lice == atlas cms == |hch TEG Reports
Computing Model
Update available
Technology Market Cost
The Worldwide LHC Computing Grid (WLCG) project is a global collaboration of more than 170 Trends

computing centres in 42 countries, linking up national and international grid infrastructures. 3\

B

Programming models

Parallel programming paradigms @@=&]
How is work organized? -

* Task-farming: no communication among workers

— Master distribute work to workers (master/slave); or
— Workers pick up tasks from pool (work stealing).
« SPMD (Single program multiple data)

A single program that contains both the logic for
distributing work (master) and the computing part
(workers) of which many instances are started and
linked together at the same time

MPMD (Multiple programs multiple data)

Parallel programming paradigms @i[@=&
How is work organized? -*

* Pipelining (A->B->C, one process per task concurrently)

* Divide and Conquer (processes spawned at need and
report their result to the parent)

 Speculative parallelism (processes spawned and result
possibly discarded)

Programming models C:|CE.Cl

What programming libraries/syntax constructs, etc. exist? -

* Single computer:

- CPUs: PThreads, OpenMP, TBB, OpenCL
- Accelerators: CUDA, OpenCL, OpenAcc
* Multi-computer:

— Distributed memory:

e Shared storage: MPI (clusters)

* Distributed storage: MapReduce (clouds)

* No storage: BOINC (distributed computing)
- Shared memory: CoArray, UPC

User tools
that GNU/Linux offers

Parallel processes in Bash

dfr@hmem00 — bash

dfr@hmem@®:~/parcomp $ cat lower.sh
#!/binfbash

#

Usage:

.flower.sh [input_file [output_file]]

Make ACTG chars lower case with extra processing.

If output_file is not defined, stdout is used
If input_file and output file are not defined, stdin and stdout are used.

#
#
#
#
#

while read line; do

sleep 1

echo $line | tr ACTG actg »> ${2-/dev/stdout}
done < ${1-/dev/stdin}

dfr@hmem@®:~/parcomp $ cat d.txt

g
dfr@hmem@8:~/parcomp $ [i

cp -r /ICECI$(echo ~dfr)/parcomp . || https://indico.cism.ucl.ac.be/event/16/attachments/11/19/parallelcomputing.tgz

Parallel processes in Bash

dfr@hmem00 — bash

dfr@hmemd0:~/parcomp $ # Foreground: commands end with ';'
dfr@hmem®0:~/parcomp § time { ./lower.sh dl.txt rl.txt ; ./lower.sh dl.txt r2.txt ; };

real &m8.0833s

user Ome .084ds

5¥5 8m8 .819s

dfr@hmem@0:~/parcomp § # Background, in parallel: commands end with '&' and 'wait' necessary
dfr@hmemd0:~/parcomp $ time { ./lower.sh d2.txt rl.txt & ./lower.sh d2.txt r2.txt & wait ; };
[1] 49722

[2] 49723

[11- Done .flower.sh d2.txt rl.txt

[2]1+ Done .flower.sh d2.txt r2.txt

real &m4 .011s
user Ome .004ds
5¥s 8mB . BB85s
dfr@hmem@®:~/parcomp $ [

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

One program and many files

Equivalent to
TS Jlower.sh d1.txt ;
frﬂhmemBB:-—Hparcomp $ 1s d?.txt] -/lower-Sh dZtXt :

dl.txt d2.txt d3.txt d4.txt | wer r] Xt
df r@hmem®8:~/parcomp $ 1s d?.txt | xargs -n 1 echo "File: " /lower.sh d3.txt J

File: d1.txt Jlower.sh d3.txt ;
File: d2.txt

File: d3.txt
File: d4.txt
dfr@hmemdd:~/parcomp $ time { 1s d?.txt | xargs -n 1 ./lower.sh > /dev/null ; }

real Bmle.B841s
user BmB.0818s
5¥s BmB . BB6s
dfr@hmem80:~/parcomp § time { 1s d?.txt | xargs -n 1 -P 4 ./lower.sh > fdev/null ;

real Bmd.814s
user 8m8 . 888s
5¥5s Bm8.81l6s
dfr@hmem@®:~/parcomp $ ||

Equivalent to
Jlower.sh d1.txt &
Jlower.sh d2.txt &
Jlower.sh d3.txt &
Jlower.sh d3.txt &

wait

Several programs and one file

dfr@hmem®8:~/parcomp
dfr@hmem@8:~/parcomp

real Bm8.833s
user 8m8 . 8855
5¥5 8m8.817s
dfr@hmem@8:~/parcomp
dfr@hmem@8:~/parcomp

real Bm5 .814s
user BmB . B06s

5¥s 8mB . 889s
dfr@hmem@8:~/parcomp
dfr@hmem®8:~/parcomp
pru-rw-r-- 1 dfr dfr
dfr@hmem®®:~/parcomp
[1] 65343

[1]1+ Done

real Bm5.813s
user eme .082s
S¥S Bm@ .ee7s
dfr@hmem@8:~/parcomp

Jupper.sh waits for ./lower.sh to finish

dfr@hmem00 — bash

Using an intermediay file

time { ./lower.sh d.txt tmp.txt ; ./upper.sh tmp.txt res.txt ; }

Using pipes (as our programs can handle stdin and stdout)
time { ./lower.sh d.txt | .fupper.sh > res.txt ; }

Jupper.sh starts as soon as ./lower.sh

mkfifo tmpfifo writes the first output

s -1 tmpfifo
Oct 7 10:27 EmpFifo
time { ./lower.sh d.txt tmpfifo & ./upper.sh tmpfifo res.txt ; }

.flower.sh d.txt tmpfifo

Several programs and one file

dfr@hmem00 — bash

dfr@hmem8®:~/parcomp $ # Using an intermediay file
df r@ehmem@®:~/parcomp time { ./lower.sh d.txt tmp.txt ; ./upper.sh tmp.txt res.txt ; }

real Bm8.833s
user 8mB . BB85s
5¥5 8m8.817s
dfr@hmem88:~/parcomp $ # Using pipes (as our programs ci

dfr@hmem80:~/parcomp $ time { ./lower.sh d.txt | ./uppel If ./uppel‘.Sh was not deSIQned to read
from STDIN, we could use a FIFO file

real Bm5 .814s

user Ome.006s "

5¥s 8mB . 889s

dfr@hmemd8:~/parcomp $ mkfifo tmpfifo

dfr@hmem88:~/parcomp § 1s -1 tmpfifo

prw-rw-r-- 1 dfr dfr Oct 7 18:27 EmpEifo

dfr@hmem88:~/parcomp time { ./lower.sh d.txt tmpfifo & ./ /upper.sh tmpfifo res.txt ; }

[1] 65343

[11+ Done .flower.sh d.txt tmpfifo

real Bm5.813s
user eme .082s
S¥S Bm@ .ee7s
dfr@hmem@8:~/parcomp

One program and one large file

dfr@hmem00 — bash

dfr@hmemBd:~/parcomp $ # One process to process the whole file Sp“t the file and start 4 processes
dfr@hmem@0:~/parcomp § time { cat d.txt | ./lower.sh > res.txt

real Omd .014s

user Ome .083s

5¥5 8m8 . 889s

dfr@hmem@@:~/parcomp § # Four processes handlin i in round robin fashion

dfr@hmemd0:~/parcomp $ time { cat d.txt | split --unbuffered --number r/4 --filter ./lower.sh »*res.txt ; }

real Bml.81l1s

user BmB .0689s

5¥s BmB .821s

dfr@hmem®0:~/parcomp § !! & top -u dfr -bnl | grep lower

time { cat d.txt | split --unbuffered --number r/4 --filter ./lower.sh >res.txt ; } & top -u dfr -bnl | gr
ep lower

[1] 12817

12822 dfr 28 8 183m 1252 1852 S . . :88.88 lower.sh
12823 dfr 280 B 183m 1252 1852 § . . :00.88 lower.sh
12824 dfr 28 8 183m 1252 1852 S . . :88.88 lower.sh
12825 dfr 286 B 183m 1252 1852 § . . :08.88 lower.sh
dfr@hmem®®:~/parcomp $

real Bml.0811s

user BmB .811s

S¥S Ome.819s

[11+ Done time { cat d.txt | split --unbuffered --number r/4 --filter ./lower.sh > res
.txt; }
dfr@hmem88:~/parcomp $ |JJ

Need recent version of Coreutils/8.22-goolf-1.4.10
31

Several programs and many files

dfr@hmem00 — bash

Sample Makefile to process each file with
lower.sh then upper.sh

#

all: dl.res d2.res d3.res dd.res

Build intermediary files
%.tmp: %.txt
./lower.sh $< %@

Build final result
.res: %.tmp
./upper.sh $< %@

[S S S S A A A N B

"Makefile" 14L, 219C written

https://www.gnu.org/software/make/manual/html_node/index.html

Several programs and many files

dfr@hmem00 — bash

dfr@hmem@0:~/parcomp $ time make
./lower.sh dl.txt dl.tmp
./upper.sh dl.tmp dl.res
./lower.sh d2.txt d2.tmp
./upper.sh d2.tmp d2.res
./lower.sh d3.txt d3.tmp
./upper.sh d3.tmp d3.res
./lower.sh d4.txt d4.tmp
./upper.sh d4.tmp d4.res

rm dl.tmp d2.tmp d4.tmp d3.tmp

real Bm32.268s

user B8mB .B828s

5¥s 8mB .899s

dfr@hmemd®:~/parcomp $ rm *res

dfr@hmem80:~/parcomp $ time make -j 4

./lower.sh dl.txt dl.tmp
lower.sh d2.txt d2.tmp
lower.sh d3.txt d3.tmp

./lower.sh d4.txt d4.tmp

.fupper.sh dl.tmp dl.res

./upper.sh d2.tmp d2.res

.fupper.sh d4.tmp d4.res

./upper.sh d3.tmp d3.res

rm dl.tmp d2.tmp d4.tmp d3.tmp

real Om8.163s
user OmB.825s

Summary

e You have either

— one very large file to process

e with one program: split

e with several programs: pipes, fifo
- many files to process

e with one program xargs

* With many programs make

GNU Parallel

GNU Parallel

GNU parallel is a shell tool for executing jobs in parallel using one or more computers. A job can be a
single command or a small script that has to be run for each of the lines in the input. The typical input is a
list of files, a list of hosts, a list of users, a list of URLS, or a list of tables. A job can also be a command
that reads from a pipe. GNU parallel can then split the input and pipe it into commands in parallel.

If you use xargs and tee today you will find GNU parallel very easy to use as GNU parallel is written to
have the same options as xargs. If you write loops in shell, you will find GNU parallel may be able to

replace most of the loops and make them run faster by running several jobs in parallel.

GNU parallel makes sure output from the commands is the same output as you would get had you run the G N U p a ra ’ ’ e I

commands sequentially. This makes it possible to use output from GNU parallel as input for other

For people who live life in the parallel lane.
programs.

For each line of input GNU parallel will execute command with the line as arguments. If no command is given, the line of input is executed. Several lines

will be run in parallel. GNU parallel can often be used as a substitute for xargs or cat | bash.

More complicated to use but very powerful

35

GNU Parallel

Syntax: parallel command ::. argument list

[~ NN dfr@hmem00 — bash
dfr@hmem®0:~/parcomp $ parallel echo :::

dfr@hmemdd:~/parcomp $ parallel echo ::: {1..18}

]
18
dfr@hmem®0:~/parcomp § time parallel sleep ::: {1..18}

real Bmll.288s

user BmB . 206s

5¥5 8m8.129s

dfr@hmem®®:~/parcomp $ parallel echo :::
dl.txt

d2.txt

d3. txt

dd. txt

dfr@hmem@8:~/parcomp $ [i

GNU Parallel C:|ICE.CI
|

Syntax: {} as argument placeholder. Can be modified

dfr@hmem@®:~/parcomp $ parallel

dl.txt

d2.txt

d3.txt

d4 txt

dfr@hmem@@:~/parcomp § parallel echo {} {.}.res :::
dl.txt dl.res

d2.txt d2.res

d3.txt d3.res

d4.txt d4d.res

dfr@hmem@®:~/parcomp $ parallel 111 . ./fparcomp/d?.txt
..fparcomp/dl.txt

.. fparcomp/d2.txt

. .fparcomp/d3.txt

.. fparcomp/d4 . txt

dfr@hmemd0:~/parcomp § parallel echo 111 ..fparcomp/d?. txt
dl.txt

d2.txt

d3.txt

d4 . txt

dfr@hmem@8:~/parcomp

dfr@hmem@8:~/parcomp

dfr@hmem@8:~/parcomp

GNU Parallel

* Multiple parameters and --xapply

& MM dfr@hmem00 — bash

dfr@hmemd0:~/parcomp § parallel echo ::: 1 2 3 4 :::
A

B
A
B
A
B
A
B
fr@hmem88:~/parcomp $ parallel --xapply echo ::: 12 3 4 :::

A

fr@hmem@8:~/parcomp § parallel echo {1} and {2} ::: 1 2 3 4 :::

1
1
p.
2
3
3
a4
a4
d
1
2
3
4
d
1
1
1
1
p.
2
p.
2
3
3
3
3
4

POoOMOD>POMNDODPPOND >

GNU Parallel

When arguments are in a file : use :::: (4x)

& MM dfr@hmem00 — bash

dfr@hmemd®:~/parcomp $ cat experiments.csv
Number,Letter
1.A

]
]
]
]
]
]

B
B
.
C
C
.
fr@hmemdd:~/parcomp $ parallel --colsep ',' --header '\n' echo {Number} {Letter} :::: experiments.csv
B
B
C
C

A
A
A

2
3
3
a4
5
5
d
1
2
3
3
4
5
5
d

fr@hmem®B:~/parcomp $ [J

GNU Parallel

Split a file with --pipe

® OO dfr@hmem00 — bash

dfr@hmem@®:~/parcomp $ cat *.csv
Number,Letter

1,A

5.A

dfr@hmem®®:~/parcomp § tail -n +2 *_.csv | parallel -kN1 --recend '\n' --pipe echo -n "JOB{#} : ;cat;"
JOB1 :

JOB2 :

JOB3 :

JOB4

JOBS :

JOB6 :

JOB7 :

dfr@hmem@®:~/parcomp $ [

Other interesting options

Use remote servers through SSH
Run n jobs in parallel
Keep same order
--delay n Ensure there are n seconds between each start

--timeout n Kill task after n seconds if still running

Author asks to be cited: O. Tange (2011): GNU Parallel - The
Command-Line Power Tool, The USENIX Magazine, February
2011:42-47.

Exercise
N

Reproduce the examples with ./lower and ./upper.sh

using GNU Parallel

Solutions
A B

* One program and many files

$ time parallel -k ./lower.sh {} > res.txt

 One program and one large file

$ time cat d.txt | parallel -k -N1 --pipe ./lower.sh {} > res.txt

 Several programs and several files

$ time { parallel ./lower.sh {} {.}.tmp ::: d?2.txt ; \
> parallel ./upper.sh {} {.}.res ::: d?.tmp ; }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

