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Low-Level Languages

• Cuda (NVIDIA)
• HIP (AMD)
• OpenCL (neutral)

Directive Based Models

• OpenMP
• OpenACC

High-Level Frameworks

• Kokkos
• Raja
• Alpaka
• SyCL (DPC++)

The zoo of programming model for accelerators 

Central Processing Unit (CPU)

• latency-optimized 
• general-purpose
• wide range of distinct tasks sequentially

Graphics Processing Unit (GPU)

• throughput-optimized 
• specialized
• highly parallel computing



Programming with directives

OpenMP

• general-purpose parallel programming model
• the programmer explicitly spread the 

execution of loops, code regions, and tasks 
across team(s) of threads

OpenACC

• oriented towards accelerators
• the programmer tells to the compiler which 

loops can be parallelized and let the compiler 
do the mapping to the target architecture  

#pragma omp construct [clauses] 
structured-block

!$omp construct [clauses]
code-block

!$omp end construct

#pragma acc construct [clauses] 
structured-block

!$acc construct [clauses]
code-block

!$acc end construct



OpenMP support for accelerator

• introduced with OpenMP 4.0, 
significantly extended in versions 4.5 
and 5.0

• GPUs are the most common type of 
accelerator

• OpenMP is not limited to GPUs, you can 
use it to target any kind of accelerators 
(NEC SX-Aurora TSUBASA, FPGAs, 
ASICs, …)

• makes it easier to target multiple 
heterogeneous architectures using the 
same code base



Device

Multiple accelerator/coprocessor 
of the same type for offloading

Host

Where the execution starts. In 
almost all cases, this is the CPU

OpenMP execution model



#pragma omp parallel for
for (int i = 0; i < n; ++i) {

y[i] = a * x[i] + y[i];
}

!$omp parallel do
do i = 1,n

y(i) = a * x(i) + y(i)
end do
!$omp end parallel do

Host Multithreading

As a starting point to our journey to the world of 
GPU programming with directives, we will use a 
very simple kernel: saxpy

• parallel: create a team of threads that will 
start executing in parallel

• for/do: distribute the iteration of the loop
within the team of threads



Offloading execution

The target directive instructs the compiler to generate 
a target task that will execute the enclosed block of code on a 
device

#pragma omp target
structured-block

!$omp target
code-block

!$omp end target

#pragma omp target parallel for
for (int i = 0; i < n; ++i) {

y[i] = a * x[i] + y[i];
}

!$omp target parallel do
do i = 1,n

y(i) = a * x(i) + y(i)
end do
!$omp end target parallel do



Gather devices information

The omp_get_num_devices routine 
returns the number of target devices

Devices are assigned an ID from 0 to 
ndevice-1. You can select the device to 
use for a target region by using the 
device clause

The omp_is_initial_device routine
returns true if the current task is executing 
on the host device (CPU). It returns false
if this is not the case

int on_host;
int ndev = omp_get_num_devices();

printf("Number of devices: %d\n", ndev);

for (int i = 0; i < ndev; i++) {
#pragma omp target device(i) map(from:on_host)
{
on_host = omp_is_initial_device();

}

printf("Is initial device when on device %d: %d\n", 
i, on_host);

}

printf("Is initial device when on host: %d\n", 
omp_is_initial_device());



Data in the device memory

Variable and arrays are present in the host (CPU) memory but not in the device memory

• in order to use a variable/array on the device, we need to have the data present in the device memory

• if we want to use data computed on the device, we need to update the data present in the host 
memory

#pragma omp target map(type:list)
structured-block

!$omp target map(type:list)
code-block

!$omp end target

Type Description

alloc allocate memory on the device

to allocate memory on the device and copy 
the original values from the host to the 
device

from allocate memory on the device and copy 
the values from the device to the host

tofrom combination of to and from type



Data in the device memory

double a = 1234;
double *b = (double*)malloc(sizeof(double)*n);

#pragma omp target map(tofrom:a) \
map(to:b[0:n]) 

{
// Code using a and b on the GPU

}

real(kind=real64)              :: a
real(kind=real64), allocatable :: b(:)

allocate(b(n))

!$omp target map(tofrom:a) map(to:b)
! Code using a and b on the GPU

!$omp end target

• in C/C++, when moving array to and from 
the GPU, you need to specify the number 
of elements to be copied

• this is not required in Fortran

You can also copy part of an array:

#pragma omp target map(to:b[10:4])

!$omp target map(to:b[10:13])

Note: in C/C++ the syntax is [start:length]
and [start:end] in Fortran



Moving data to and from the device

#pragma omp target parallel for map(to:x[0:n]) map(tofrom:y[0:n])
for (int i = 0; i < n; ++i) {

y[i] = a * x[i] + y[i];
}

!$omp target parallel do map(to:x) map(tofrom:y)
do i = 1,n

y(i) = a * x(i) + y(i)
end do
!$omp end target parallel do

• map(to:x): because we only read the array 
on the device

• map(tofrom:y): because we read and 
modify the array on the device

Scalar variables that do not appear in a map
clause default to firstprivate. As a 
consequence we don’t need to map the variable 
a to the device 



Compilers

Clang (AMD)

clang -fopenmp -fopenmp-target=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa –march=gfx<XXX> <source>

Clang (NVIDIA)

clang -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda
-Xopenmp-target=nvptx64-nvidia-cuda -march=<sm_XY> <source>

NVIDIA HPC SDK (NVIDIA only)

nvc/nvfortran –mp=gpu –Minfo=mp –gpu=<ccXY> <source>

GCC (NVIDIA, ok performance with recent version)

gcc/gfortran –fopenmp -foffload=nvptx-none <source>



Using the Cray compiler (Lucia, LUMI)

Cray cc (AMD)

module load PrgEnv-cray
module load rocm
module load craype-accel-amd-gfx90a
cc –fopenmp <source>

Cray cc (NVIDIA)

module load PrgEnv-cray
module load nvhpc
module load craype-accel-nvidia80
cc –fopenmp <source>

Cray utilize target modules to define the target architecture for compilation. Once a craype-accel-*
module is loaded, offloading is automatic if OpenMP is enabled (-fopenmp)



A GPU is composed of multiple units each 
with their own registers, local memory and 
scheduler

• streaming multiprocessors (NVIDIA)
• compute units (AMD)

On a GPU, the work is scheduled in blocks 
that are executed on these units

• thread blocks (NVIDIA)
• workgroups (AMD)

A look to the hardware



The threads in a block are further divided in 
bundles that execute in lockstep: they run 
the same instructions, and follow the same 
control-flow path (SIMD fashion)

• 32 threads: warps (NVIDIA)
• 64 workitems: wavefront (AMD)

These bundles of threads execute on the 
vector units of the GPU

A look to the hardware



A look to the hardware

#pragma omp target parallel for
for (int i = 0; i < n; ++i) {
y[i] = a * x[i] + y[i];

}

We create only one team of threads that will 
use only one of the available units of our 
GPU

We need a way to create multiple teams so 
that we use the full potential of the 
hardware



The team construct: motivation

Let’s consider some limitations of the hardware:

• no synchronization or memory fences possible between the streaming multiprocessors/compute units
• unlike CPUs where there is cache coherency between the cores, there is no such coherence between 

the streaming multiprocessors/compute units of a GPU

These limitations of the hardware have consequence if you consider “normal” OpenMP:

• creation of a parallel region, work-sharing tasks, …
• barriers, critical regions, locks and atomics can be applied to a team of threads

In order to keep these characteristics on the devices an additional level was added, the team construct:

• multiple teams are spawned and each of these teams has a master threads
• the master thread can spawn a team of threads with a parallel construct
• threads in different teams cannot synchronize with each other but threads within a team can



Creating teams and distribute work

#pragma omp teams
structured-block

!$omp teams
structured-block 

!$omp end teams

#pragma omp distribute
for-loops

!$omp distribute
do-loops 

!$omp end distribute

When a distribute
construct is reached, 
the iterations of one or 
more loops will be 
distributed to the teams

When a teams construct 
is reached, a league of 
teams is created and 
the initial thread in each 
team executes 
the teams region



Get teams information

The number of teams can be controlled by the num_teams clause and the number of threads with the 
thread_limit clauses

#pragma omp teams num_teams(nteams) \ !$omp teams num_teams(nteams) &
thread_limit(nthreads)               !$omp&       thread_limits(nthreads)

In addition, OpenMP provide runtime functions:

• omp_get_num_teams() returns the number of teams
• omp_get_team_num() returns the team number of the calling threads (0 to nteams-1)
• omp_get_thread_limit() returns the maximum number of threads



#pragma omp target teams distribute parallel for \
map(to:x[0:n]) map(tofrom:y[0:n])

for (int i = 0; i < n; ++i) {
y[i] = a * x[i] + y[i];

}

!$omp target teams distribute parallel do map(to:x) map(tofrom:y)
do i = 1,n

y(i) = a * x(i) + y(i)
end do
!$omp end target teams distribute parallel do

• target: create a target 
task that will be executed 
on the GPU

Saxpy with teams distribute

• team distribute: create 
multiple teams of threads 
and distribute the loop 
iterations to these teams 

• parallel for/do: 
distribute the iterations to 
the threads of the teams



Jacobi 2D – host version
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while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma omp parallel for reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// Swap values, uold <- unew
}



Jacobi 2D – device version

𝑢𝑖,𝑗
𝑁+1 =

1

4
𝑢𝑖+1,𝑗
𝑁 + 𝑢𝑖−1,𝑗

𝑁 + 𝑢𝑖,𝑗+1
𝑁 + 𝑢𝑖,𝑗−1

𝑁

while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma omp teams distribute parallel for reduction(max:err) \
map(tofrom:uold[0:n*m]) map(from:unew[0:n*m])

for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// Swap values, uold <- unew
}



Jacobi 2D

Number of 
threads

Time
(s) Speedup

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64

16 2.117 13.43

32 1.376 20.66

AMD MI250x (1) 11.842 2.41
NVIDIA A100 (2) 31.694 0.89

• if we run the multithreaded version of the 
Jacobi code on a CPU, we get a good speedup 
up to 8 threads and close to 21x speedup 
when we use the entire socket (AMD EPYC 
7542, 32 cores)

• if we run on the GPU we see a small speedup 
on AMD compared to the serial execution but 
10x slower compared to the 32 threads run

• on NVIDIA, the performance is even worse, 
with a 0.89x speedup compared to the serial 
run

(1) Cray compiler, CPE 22.08, ROCm 5.1
(2) Clang 16.0.6, CUDA 11.7



Jacobi 2D

__tgt_rtl_data_alloc:                64us
__tgt_rtl_data_alloc:                53us
__tgt_rtl_data_submit_async:      33674us
__tgt_rtl_data_alloc:                 3us
__tgt_rtl_data_submit_async:        135us
__tgt_rtl_run_target_team_region:  4879us
__tgt_rtl_data_retrieve_async:       93us
__tgt_rtl_data_retrieve_async:    32358us
__tgt_rtl_data_retrieve_async:    32632us
__tgt_rtl_synchronize:                0us
__tgt_rtl_data_delete:                4us
__tgt_rtl_data_delete:               26us
__tgt_rtl_data_delete:               17us

In order to understand to poor performance of 
the GPU version, we will do a quick profiling

We can use nsys (NVIDIA) or the 
LIBOMPTARGET_KERNEL_TRACE environment 
variable (AMD).

Number of 
threads

Time
(s) Speedup

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64

16 2.117 13.43

32 1.376 20.66

AMD MI250x (1) 11.842 2.41
NVIDIA A100 (2) 31.694 0.89

(1) Cray compiler, CPE 22.08, ROCm 5.1
(2) Clang 16.0.6, CUDA 11.7



Efficient movement of data

From the result of a quick profiling of the Jacobi 
code on the GPU, we see that

• moving data to and from the device at every 
iteration is inefficient

• better solution is to copy the data to the 
device and keep it on the device between 
iterations

For that we can use a structured data region that 
Map variables to a device data environment for 
the extent of the region

#pragma omp target data map(type:list)
structured-block

!$omp target data map(type:list)
structured-block 

!$omp end target data



Jacobi 2D with a structured data region

#pragma omp target data map(tofrom:uold[0:n*m]) map(alloc:unew[0:n*m])
while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma omp target teams distribute parallel for reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// swap values, uold <- unew
} // end of the data region

In order to improve the movement of data, we create a data region that covers the entire while loop so 
that we don’t copy data to and from the GPU between iterations 



Unstructured data

• for data regions that span multiple 
lexical scopes (functions or files) you 
can use an unstructured data region

• data movement or allocation to the 
device is done with the enter data
directive

• data movement or deallocation from 
the device is done with the exit 
data directive

• update of data in the middle of an 
unstructured data region, you can use 
the target update directive (from the 
host)

#pragma omp target enter data map(type:list)

#pragma omp target update to|from(list)

#pragma omp target exit data map(type:list)

!$omp target enter data map(type:list)

!$omp target update to|from(list)

!$omp end target exit data map(type:list)



The update directive

• you can update data in the middle of a 
data region, you can use the target 
update directive with clauses

• from: data on the host is updated with 
data from the device

• to: data on the device is updated with 
the data  from the host

• this directive can be used in the 
middle of a structured or unstructured 
data region

#pragma omp target data map(tofrom:a[0:n])
{

// do something with a on the device
#pragma omp target update from(a[0:n])
// do something with a on the host
#pragma omp target update to(a[0:n])
// do something with a on the device

}

!$omp target data map(tofrom:a)
! do something with a on the device
!$omp target update from(a)
! do something with a on the host
!$omp target update to(a)
! do something with a on the device

!$omp end target data



Jacobi 2D with unstructured data directives

#pragma omp target enter data map(to:uold[0:n*m]) map(alloc:unew[0:n*m])

while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma omp target teams distribute parallel for reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// swap values, uold <- unew
}

#pragma omp target exit data map(from:uold[0:n*m]) map(delete:unew[0:n*m])



Jacobi 2D with a data region

Number of 
threads

Time
(s) Speedup

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64

16 2.117 13.43

32 1.376 20.66

AMD MI250x (1) 11.842 2.41
(2) 3.265 8.71

NVIDIA A100 (1) 31.694 0.89
(2) 1.010 28.15

Now that we have removed unnecessary data 
movement we see

• a huge improvement compared to the first 
version without data movement optimization

• still, we only achieved a ~9x speedup on the
MI250x GPU compared to the serial CPU 
version

• Significant speed up for the A100 (28x)

(1) with no data movement optimization
(2) with data movement optimization



Enabling more parallelism

#pragma omp target data map(tofrom:uold[0:n*m]) map(alloc:unew[0:n*m])
while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma omp target teams distribute reduction(max:err)
for (int j = 1; j < n-1; j++) {
#pragma omp parallel for reduction(max:err)
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// swap values, uold <- unew
} // end of the data region

By only parallelizing the outer loop, 
we do not fully exploit the parallelism 
of the hardware

• distribute the iterations of the outer loop to the teams
• distribute the iterations of the inner loop to the threads



Enabling more parallelism
Number of 

threads
Time

(s) Speedup

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64

16 2.117 13.43

32 1.376 20.66

AMD MI250x (1) 3.265 8.71
(2) 0.526 54.05

NVIDIA A100 (1) 1.010 28.15
(2) 0.581 48.94

(1) parallelization of the outer loop
(2) outer loop across teams and inner 

loop across threads

By distributing both loops, the first across teams 
and the second across threads we increase 
parallelism.

• for CPUs it’s not recommended to use more 
threads than the available cores/hardware 
threads on the system

• for GPUs, in order to hide memory latency, you 
need to use more threads than what the 
hardware is capable of executing at the same 
time

• Increasing the parallelism leads to 2x 
improvement on the A100 and more than 6x 
for the MI250x compared to the version where 
we only parallelize the outer loop



Enabling more parallelism with loop collapsing

#pragma omp target data map(tofrom:uold[0:n*m]) map(alloc:unew[0:n*m])
while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma omp target teams distribute parallel for collapse(2) reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// swap values, uold <- unew
} // end of the data region

Another way to increase the parallelism is to collapse the loop nest. For a for or distribute construct, if 
a collapse clause is present and more the one loop is associated with the construct, then the iteration of 
all associated loops are collapsed into one larger iteration space



Loop collapsing
Number of 

threads
Time

(s) Speedup

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64

16 2.117 13.43

32 1.376 20.66

AMD MI250x (1) 0.526 54.05
(2) 0.522 54.46

NVIDIA A100 (1) 0.566 48.94
(2) 0.581 48.93

Collapsing the loops is an other way to increase 
parallelism on the GPU

• No change is the observed speedup for the
MI250x as well as for the A100

(1) outer loop across teams and inner 
loop across threads

(2) collapsing the two loops



Structure mapping

typedef struct saxpy_data {
 int size;
 float *x, *y;
 float a;
} saxpy_data_t;

void saxpy(saxpy_data_t *data) {
#pragma omp target teams distribute parallel for \

map(  to:data[0:1]) \
map( to:data->x[0:data->size]) \
map(tofrom:data->y[0:data->size])

 for(int i = 0; i < data->size; i++) {
  data->y[i] = data->a * data->x[i] + data->y[i];
 }
}

Scalar member of a structure will be copied at 
the same time as the base structure

However, OpenMP target offload do not have 
support for deep copy:

• we have to be careful when using structure
with non-scalar members (arrays) 

• non-scalar members need to be mapped
explicitly by the developer

Structure pointers are arrays of size 1 and need
to be mapped explicitly by the developer



User-defined mapper

#pragma omp declare mapper([mapper-identifier:]type var) \
[clause[ [,] clause] ... ]

When a structure is heavily used in the application, it can be tiresome to explicitly map it every time we 
want to use it to the device

OpenMP offer user-defined mapper to tackle this problem: the developer can define how a structure 
should be mapped to the device

The declare mapper directive declares a user-defined mapper for a given type and may define 
a mapper-identifier that can be used in a map clause.

where clause is map([map-type: ] list)which is the same syntax as for the mapping clause of a data 
region.



User-defined mapper

typedef struct saxpy_data {
 int size;
 float *x, *y;
 float a;

} saxpy_data_t;

#pragma omp declare mapper(saxpy_data_t data)   \
                    map(to:data)             \  
                    map(to:data.x[0:data.size]) \
           map(  data.y[0:data.size])   

void saxpy(saxpy_data_t *data) {
 #pragma omp target teams distribute parallel for \
          map(data[0:1])
 for(int i = 0; i < data->size; i++) {
  data->y[i] = data->a * data->x[i] + data->y[i];
 }

}

Using the declare mapper directive, we can
how a structure should be copied to the device:

• we specify that the mapper applies to the
saxpy_data_t type and defines an identifier
for the structure (data)

• we map the base structure with a to modifier
which means that the size and a members 
will be copied to the device when entering the
data region but not copied back the host when
we exit the region. We also allocate and attach
the x and y arrays

• as we use a pointer to the saxpy_data_t
structure, the mapping of the structure to the
device is done with map(data[0:1])



Prescriptive vs. Descriptive model

OpenMP is descriptive

The OpenMP directives instruct the compiler to generate parallel code in a specific way, leaving little 
to the discretion of the compiler

OpenACC is prescriptive

OpenACC directives tell the compiler that a loop can be parallelized. The compiler is free to run them 
in parallel any way it chooses and choose very different mappings depending on the underlying 
hardware



The kernels construct

The kernels construct defines a region that is to 
be compiled into a sequence of kernels for 
execution on the device 

• the compiler will analyse the code and splits it 
in a sequence of device kernels

• typically each loop nest will become a kernel

#pragma acc kernels
structured-block

!$acc kernels
code-block

!$acc end kernels

#pragma acc kernels
{
// A first kernel generated here
for (int i = 0; i < n; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
// A second kernel generated here
for (int i = 0; i < n; i++) {
y[i] = i*x[i] + y[i];
sum += y[i];

}
}

!$acc kernels
! A first kernel generated here
do i = 0, n
x(i) = 1.0
y(i) = 2.0

end do
! A second kernel generated here
do i = 0, n
y(i) = i*x(i) + y(i)
sum = sum + y[i]

end do
!$acc end kernels



The parallel construct

The parallel construct starts parallel execution 
on the device 

#pragma acc parallel
structured-block

!$acc parallel
code-block

!$acc end parallel

The loop construct identifies a loop eligible for 
parallelization

#pragma acc loop
for-loop

!$acc loop
do-loop

#pragma acc parallel
{
#pragma acc loop
for (int i = 0; i < n; i++) {
x[i] = 1.0;
y[i] = 2.0;

}

#pragma acc loop
for (int i = 0; i < n; i++) {
y[i] = i*x[i] + y[i];
sum += y[i];

}
}

!$acc parallel
!$acc loop
do i = 0, n
x(i) = 1.0
y(i) = 2.0

end do

!$acc loop
do i = 0, n
y(i) = i*x(i) + y(i)
sum = sum + y[i]

end do
!$acc end parallel



Data movement clauses

OpenACC data movement directives are very similar to the OpenMP directives: like with the target
construct you can use data clauses with the kernels or parallel construct

Clause Description

create allocate memory on the device

delete deallocate memory on the device

copyin allocate memory on the device and copy the original values from the host to the device

copyout allocate memory on the device and copy the values from the device to the host

copy combination of copyin and copyout

#pragma acc kernels clause(list)

#pragma acc parallel clause(list)

!$acc kernels clause(list)

!$acc parallel clause(list)



Data region

For unstructured data regions:

• data movement or allocation to the device is done with the enter data directive
• data movement or deallocation from the device are done with the exit data directive

#pragma acc data clause(list)
structured-block

!$acc data clause(list)
code-block

!$acc end data

#pragma acc enter data clause(list) 

#pragma acc exit data clause(list)

!$acc enter data clause(list)

!$acc exit data clause(list)

Structured data region data region are created using the data directive



The update directive

#pragma acc data map(tofrom:a[0:n])
{

// do something with a on the device
#pragma acc update host(a[0:n])
// do something with a on the host
#pragma acc update device(a[0:n])
// do something with a on the device

}

!$acc data map(tofrom:a)
! do something with a on the device
!$acc update host(a)
! do something with a on the host
!$acc update device(a)
! do something with a on the device

!$acc end data

• you can update data in the middle of 
an data region, you can use the update
directive clauses:

• host: data on the host is updated with 
data from the device (you can also use 
self)

• device: data on the device is updated 
with the data  from the host

• this directive can be used in the 
middle of a structured or unstructured 
data region



OpenACC saxpy
#pragma acc kernels copyin(x[0:n]) copy(y[0:n])
for (int i = 0; i < n; ++i) {
y[i] = a * x[i] + y[i];

}

!$acc kernels copyin(x) copy(y)
do i = 1,n
y(i) = a * x(i) + y(i)

end do
!$acc end kernels

#pragma acc parallel loop copyin(x[0:n]) 
copy(y[0:n])
for (int i = 0; i < n; ++i) {
y[i] = a * x[i] + y[i];

}

!$acc parallel loop copyin(x) copy(y)
do i = 1,n
y(i) = a * x(i) + y(i)

end do
!$acc end parallel loop

We have two options to implement our saxpy 
example with OpenACC

• using a kernel directive and let the compiler 
analyze our code and generate a kernel that 
will execute on the GPU

• using a combined parallel loop directive to 
explicitly indicate to the compiler where the 
source of parallelism is



Compilers

NVIDIA HPC SDK (NVIDIA only)

nvc/nvfortran –acc –Minfo=acc –gpu=<ccXY> <source>

GCC (NVIDIA, ok performance with recent version)

gcc/gfortran –fopenacc -foffload=nvptx-none <source>

OpenACC is not as widely supported  by compilers as OpenMP: 

• the best implementation is the NVIDIA compiler
• it is possible to use GCC to target both NVIDIA and AMD GPUs 
• some commercial compilers, like the HPE Cray one include support for OpenACC



OpenACC Jacobi

#pragma acc data copy(uold[0:n*m]) create(unew[0:n*m])
while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma acc parallel loop reduction(max:err)
for (int j = 1; j < n-1; j++) {
#pragma acc loop reduction(max:err)
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// swap values, uold <- unew
} // end of the data region

• the parallel loop construct create a region to be executed on the device and indicate that the outer 
loop is parallelizable

• the loop directive on the inner loop indicates to the compiler that it is parallelizable as well



OpenACC Jacobi

#pragma acc data copy(uold[0:n*m]) create(unew[0:n*m])
while (err > tol && iter < iter_max) { 
err = 0.0;

#pragma acc parallel loop collapse(2) reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int i = 1; i < m-1; i++) {
unew[j*m + i] = 0.25 * (uold[j*m     + (i+1)] + uold[j*m     + (i-1)]

+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
}

}

// swap values, uold <- unew
} // end of the data region

Similarly to to what we did with the OpenMP version, we can also collapse the nested loop nest with the 
collapse clause.



Coalescent memory access

Coalescent memory access

Uncoalescent memory access

Coalesced memory access refers 
to combining multiple memory accesses 
into a single transaction

• when a thread access the GPU global 
memory it always access a the 
memory in chunks

• if other threads access the same 
chunk at the same time then the 
chunk can be reused

• the most efficient access is when 
threads read or write contiguous 
memory locations

• strided memory access is not optimal 
as more memory transactions are 
reqired to read/write the same 
amount of data



AoS and SoA

struct point {
float x;
float y;
float z;

};
struct point points[n];

struct points_list {
float x[n];
float y[n];
float z[n];

};
struct points_list points;

Array of Structures: cache friendly

Structure of arrays: coalescent access



Wrapping-up

OpenMP and OpenACC allows you to target GPUs with a few directives added to your code. While adding 
these directives is relatively easy:

Transferring data between the host and the device is an expensive process

• data transfer may be the main bottleneck when running on a accelerator is not handled carefully
• only transfer data required on the device
• try to keep the data on the device as long as possible
• use structured data region (target data) or unstructured data region (target enter/exit data)

You need sufficient parallelism in order to achieve good performance

• need to expose more parallelism that for CPUs
• can be achieved by distributing loops across teams and across threads
• for tightly nested loop collapsing is also an option



This training was partially developed in the framework of the EuroCC project that has 
received funding from the European High-Performance Computing Joint Undertaking 
(JU) under grant agreement No 951732. The JU receives support from the European 
Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria, 
Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, 
Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, 
United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, 
Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

