Introduction to Bash Scripting

https://forge.uclouvain.be/barriat/learning-bash

BASH

THE BOURNE-AGAIN SHELL

October 09, 2025

CISM/CECI Training Sessions

'l UCLouvain

https://forge.uclouvain.be/barriat/learning-bash
https://forge.uclouvain.be/barriat/learning-bash

Linux command line k

A Linux terminal is where you enter Linux commands
It's called the Command Line User Interface
CLUI (or just CLI) is one of the many strengths of Linux :

e allows to be independent of distros (or UNIX systems like OSX)

e allows to easily work remotely (SSH)

e allows to join together simple (and less simple) commands to do complex
things and automate = scripting

In Linux, process automation relies heavily on scripting. This involves creating a
file containing a series of commands that can be executed together.

Linux Shell

A shell is a program that takes commands from the keyboard and transmits them
to the operating system to perform

The main function is to interpret your commands = language
Shells have some built-in commands

A shell also supports programming constructs, allowing complex commands to be
built from smaller parts = scripts

Scripts can be saved as files to become new commands

many commands on a typical Linux system are scripts

Bash

The Bash shell is one of several shells available for Linux

It is the default command interpreter on most GNU/Linux systems.
acronym for the "Bourne-Again SHell"

Bash Scripting Demo
#!/bin/bash

declare STRING variable
STRING="Hello World"

print variable on a screen
echo $STRING

The name is an

Bash environment

In a Bash shell many things constitute your environment

e the form of your 'prompt' (what comes left of your commands)
e your home directory and your working directory

e the name of your shell

e functions that you have defined

o etc.

Environment includes many variables that may have been set by bash or by you

Environment variables

Variables
USER the name of the logged-in user
HOME the user's home directory (similarto ~)
PWD the current working directory
UID the numeric user id of the logged-in user

Access the value of a variable by prefixing its name with $
So to get the value of USER you would use $USER in bash code

You can use special files to control bash variables : $HOME/.bashrc

Bash Scripting basics

By naming convention, bash scripts end with .sh
however, bash scripts can run perfectly fine without any extension

A good practice is to define a shebang : first line of the script
shebang is simply an absolute path to the shell interpreter

combination of bash # and bang !

The usual shebang for bashis #!/bin/bash

Comments start with #

On a line, any characters after # will be ignored (with the exception of #!)

echo "A comment will follow." # Comment here.
N Note whitespace before

There is no standard indentation

e Pick a standard in your team that you can all work to

e Use something your editor makes easy (Vim uses Tab)

Permissions and execution

e Bash scriptis nothing else than a text file containing instructions to be
executed sequentially
by default in Linux, a new text file's permissons are -rw-r--r-- (or 644)

e You can run the script hello_world.sh using
o sh hello world.sh
© pash hello_world.sh

o chmod u+x run_all.sh then ./hello _world.sh
after the chmod , you file is -rwxr--r-- (or 744)

Hands-on exercise

Your first bash script:

1. create a folder bash_exercises and go there

2. use your favourite editor (vim, obviously) to create a new file called

exercise 1.sh

3. write some code in it to display the current working directory as:
The current directory is : /home/myself/bash_exercises

4. make the file executable

5.runit!

Variables and data types in Bash

Variables let you store data : numeric values or character(s)
You can use variables to read, access, and manipulate data throughout your script
You don't specify data types in Bash

e assign directly : greeting="welcome" or a=4

e assign based on variable: b=$a
And then access using $: echo $greeting

Il no space before or after = in the assignation !
myvar = "Hello Wor1ld" X

Quotes for character(s) " '

Double will do variable substitution, single will not:

$ echo "my home is $HOME"
my home 1s /home/myself
$ echo 'my home is $HOME'
my home is $HOME

Command Substitution

#1/bin/bash
Save the output of a command into a variable

myvar=$(Lls)

Variable naming conventions

e Variable names should start with a letter or an underscore

e Variable names can contain letters, numbers, and underscores

e Variable names should not contain spaces or special characters

e Variable names are case-sensitive

e Use descriptive names that reflect the purpose of the variable

e Avoid using reserved keywords, such as if , then, else, fi, and so on...

e Never name your private variables using only UPPERCASE characters to avoid
conflicts with builtins

String manipulation

Consider filename=/var/log/messages.tar.gz

e substring removal from left :
o ${filename##/var} IS /log/messages.tar.gz

e substring removal from right :

o ${filename%%.gz} IS /var/log/messages.tar
You can use * to match all characters:

o ${filename%%.*} IS /var/log/messages

o $(filename##*/) IS messages.tar.gz

How to return the length of a variable ? ${#filename} is 24

Arithmetic
Operator Operation
+ - * / addition, subtraction, multiplication, division
var++ increase the variable var by 1
var - - decrease the variable var by 1

% modulus (remainder after division)

Arithmetic

Use double parentheses (| integersonly |)

a=$((4 * 5))
b=$(($a + 4))
echo $b # 24

$ 1s optional inside parentheses

b=$((a - 3))
echo $b # 17

((b++ 1))
((b +=3))
echo $b # 21

Conditional statements

Use:

e if condition; then to start conditional block
e elif condition; then to start alternative condition block
e else to start alternative block

e fi to close conditional block
The following operators can be used beween conditions:

e || means OR

e & Mean AND

Conditional syntax

if [[$num -gt 5 && $num -1le 7]]; then
echo '"$num is 6 or 7'
elif [[$num -1t © || $num -eq 0]]; then
echo '$num 1is negative or zero'
else
echo '$num is positive (but not 6, 7 or zero)'

fi

Conditions with numbers

Operator Description
| EXPRESSION The EXPRESSION is false
INT1 -eq INT2 INTEGERT1 is equal to INTEGER2 (or ==
INT1 -ne INT2 INTEGERT1 is different from INTEGER2

INT1 -gt/-ge INT2 INTEGERT1 is higher / higher or equal to INTEGER2

INT1 -1t/-1le INT2 INTEGERT1 is lower /lower or equal to INTEGER2

Note: Do not use signs like > :they compare strings only

Conditions with strings

Operator

-Nn STRING
-z STRING
STR1 = STR2

STR1 != STR2

Description
The length of STRING is greater than zero
The lengh of STRING is zero (ie it is empty)
STRINGT1 is equal to STRING2
STRINGT1 is not equal to STRING?2

Conditions on files

Operator Description
-d FILE FILE exists and is a directory
-e FILE FILE exists
-s FILE FILE exists and is not empty

-r/-w/-x FILE FILE exists and user has read/write/execute permissions

if [[-e "my_file.sh"]]; then
echo "my_file.sh exists"
fi

Conditional with arithmetics

If your condition is only arithmetics / booleans you can use double brackets (just
like we did for variables) :

if (($num % 2 == 0)); then
echo "$num is an even number !"
fi

if (($num % 2 == 0 && $num % 3 == 0)); then
echo "$num can be divided by 2 and 3"
fi

Conditional Summary Table

Goal Syntax Notes
String test [[$a == foo]] for strings
File test [[-f file.txt]] for files
Integer math ((num % 2 == 0)) for integers

Floating-point (($(echo "$x > $y" | bc -1))) uses bc

Hands-on exercise ’

1.In your bash_exercises folder create a new bash file called exercise_2.sh
and make it executable

2. Ask the user for two numbers smaller than 100 and put them in variables
numberl and number2

#1/bin/bash
read numberil
read number?2

3. Check if the numbers are smaller than 100

o If yes, check if both numbers are even and tell the user

o If not, tell the user (use echo)

Loops

Useful for automating repetitive tasks

Basic loop structures in Bash scripting :
e while : perform a set of commands while a test is true
e for :perform aset of commands for each item in a list
e controlling loops

o break :exitthe currently running loop

o continue :stop this iteration of the loop and begin the next iteration

Examples

#1/bin/bash

Basic while loop

counter=0

while [$counter -1t 3]; do
echo $counter
((counter++))

done

range
for 1 in {1..5}

1list of strings
words='Hello great world'
for word in $words

range with steps for Lloop
for value in {10..0..-2}

set of files
for file in $path/*.f90

command result
for 1 in $(cat file.txt)

Arrays

Indexed arrays

Declare an array with 4 elements

my_array=('Debian Linux' 'Redhat Linux' Ubuntu OpenSUSE)
get number of elements in the array
my_array_length=${#my_array[@]}

Declare an empty array

my_array=()

my_array[0]=56.45

my_array[1]=568

echo Number of elements: ${#my_array[@]}
echo array's content

echo ${my_array[2]}

echo ${my_array[@]}

Hands-on exercise

1.In your bash_exercises folder create a new bash file called exercise_3.sh
and make it executable

2. Use the following list of words and put them together in an array:
misplace discipline birthday lie classroom swallow casualty failure

partner visible
3. Register the start time with date +%N and putitin a variable tstart

4. Loop over the words and ask the user to give the number of letters. Echo the
answers.

5. Register the end time in tend

6. Display the total run time and the total number of letters.

Arguments - Positional Parameters

How to pass command-line arguments to a bash script ?

#!/bin/bash
echo $1 $2 $4
echo $0

echo $#

echo $@

bash test_arg.sh a b c d e

abd
test_arg.sh
5
abcde

Special Variables

$0
$1
$#
3@
33
$?

- $9

the name of the script

the first 9 arguments

how many arguments were passed
all the arguments supplied

the process ID of the current script

the exit status of the most recently run process

Input/Output streams

Shells use 3 standard I/0 streams

e stdin isthe standard input stream, which provides input to commands

e stdout isthe standard output stream, which displays output from
commands

e stderr isthe standard error stream, which displays error output from
commands

Shell has several meta-characters and control operators

Control operators

Character Effect
; Normal separator between commands
&& Execute next command only if command succeeds
| | Execute next command only if command fails
& Don't wait for result of command before starting next command

| Use output of command as input for the next command

Control operators

Character Effect
> file_desc Send standard output of command to file descriptor
>> file_desc Same butin append mode

< file_desc Use content of file descriptor as input

Command separators

Commands can be combined using meta-characters and control operators

cmdl; cmd2
cd myfolder; L1s # no matter cd to myfolder successfully, run 1s

&

cmdl && cmd2
cd myfolder && 1ls # run 1ls only after cd to myfolder

&

cmdl || cmd2
cd myfolder || ls # if failed cd to myfolder, "ls will run

&

Redirections

Use the meta-character > in order to control the output streams stdout and
stderr for a command or a bash script

From bash script

#!1/bin/bash
#STDOUT to STDERR

echo "Redirect this STDOUT to STDERR" 1>&2
#STDERR to STDOUT

cat $1 2>&1

Output streams to file(s)

./my_script.sh > STDOUT.log 2> STDERR.err

How to Read a File Line By Line : input redirection

#!/bin/bash
How to Read a File Line By Line
while IFS= read -r line; do
echo "$line"
done

Then you can use:

./my_script.sh < file.txt

by default read removes all leading and trailing whitespace characters such

as spaces and tabs

Return codes

Linux command returns a status when it terminates normally or abnormally

e every Linux command has an exit status
e the exit status is an integer number
e a command which exits with a 0 status has succeeded

e a non-zero (1-255) exit status indicates failure

How do I display the exit status of shell command ?

date
echo $?

How to store the exit status of the command in a shell variable ?

#!1/bin/bash
date
status=%$?

echo "The date command exit status : ${status}"”

How to use the && and || operators with exit codes

command && echo "success"
command || echo "failed"
command && echo "success" || echo "failed"

Hands-on exercise

1.In your bash_exercises folder, copy exercise_3.sh tO exercise_4.sh

2. In this new file, loop over the words and write the number of letters of each
word in a new file called output.txt

3. Now loop over the created file output.txt to getthe total number of letters

4, Display the total run time and the total number of letters

Functions

e "small script within a script” that you may call multiple times

e great way to reuse code

e a function is most reuseable when it performs a single task

#!/bin/bash
hello_world () {
echo 'hello, world'

k;
hello world

Functions must be declared before they are used

defining a function doesn't execute it

Variables Scope /

Define bash global variable
This variable is global and can be used anywhere in this bash script
var="global variable"

function my_function {

Define my_function local variable

This variable 1is local to my_function only
echo $var

local var="local variable"

echo $var

}

echo $var

my_function

Note the bash global variable did not change
"local" 1is my_function reserved word

echo $var

Return an arbitrary value from a function

Assign the result of the function

my_function () {
local func_result="some result"
echo "$func_result"

k;

func_result="$(my_function)"

echo $func_result

Passing Arguments

In the same way than a bash script: see above ($1, $*, etc)

#1/bin/bash
print_something () {
echo Hello $1

}

print_something Mars

I Athough it is possible, you should try to avoid having functions using the name
of existing linux commands.

Hands-on exercise

1. Write a script called exercise_5.sh expecting 2 arguments.

2. Write a function taking a folder path (e.g /home/ucl/elic/xxxx)and an
extension (e.g py) as arguments

3. Use the 1s command to list the files in the given path having with the given
extension. Write this list to a file called files found.txt .

4. Bonus : if there are no files, Exit with a non-zero error code

Subshells k

e A subshellis a "child shell" spawned by the main shell ("parent shell")

e Asubshell is a separate instance of the command process, run as a new
process

e Unlike calling a shell script (slide before), subshells inherit the same
variables as the original process

e A subshell allows you to execute commands within a separate shell
environment = Subshell Sandboxing
useful to set temporary variables or change directories without affecting
the parent shell's environment

e Subshells can be used for parallel processing

Shell vs Environment Variables

Consider the script test.sh below:

#!1/bin/bash
echo "varl
echo "var?2

${vari}"
${var2}"

Then do the following commands :

varl=23
export var2=12
bash test.sh

By default, variables from the main interpreter are not available in scripts,
unless you export them.

Differences between Sourcing and Executing a script

e source a script = execution in the current shell

e execute a script = execution in a new shell (in a subshell of the current shell)

Source a script using source or .

source test.sh
. test.sh

official oneis . Bash defined source as an alias to the .

Example

#!1/bin/bash
country="Belgium"

greeting() {
echo "You're in $1"
k;

greeting $country

country="France"

./test.sh Or source test.sh

echo $country
greeting $country

> country="France"

> ,/test.sh

You're 1in Belgium

> echo $country

France

> greeting $country
greeting: command not found

> country="France"
> source test.sh
You're 1n Belgium

> echo $country

Be lgium

> greeting $country
You're in Belgium

Debug

Tips and techniques for debugging and troubleshooting Bash scripts

use set -X

enables debugging mode : print each command that it executes to the terminal,
preceded by a +

check the exit code

#!/bin/bash

if [$?2 -ne 0]; then
echo "Error occurred"

fi

use echo

Classical but useful technique : insert echo throughout your code to check
variable content

#!1/bin/bash
echo "Value of variable x is: $x"

use set -e

this option will cause Bash to exit with an error if any command in the script fails

<Y_&
& <
T <
wm
e
4 &
SR

Thank you for your attention

</
Running parallel processes in subshells ‘

Processes may execute in parallel within different subshells
permits breaking a complex task into subcomponents processed concurrently

Exemple: job.sh

#1/bin/bash
job() {
1=0
while [$1 -1t 10]; do
echo "${i}: job $job_id"

((1++))
sleep 0.2
done

}

sequential processing (manager_seq.sh) or parallel processing (manager_par.sh)

#1/bin/bash

manager_seq.sh

source job.sh

echo "start"

for job_id in {1..2}; do job ; done
echo "done"

#!/bin/bash

manager_par.sh

source job.sh

echo "start"

for job_id in {1..2}; do job & done

walt # Don't execute the next command until subshells finish.
echo "done"

time ./manager_seq.sh
time ./manager_par.sh

