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https://slurm.schedmd.com/job_array.html

Job arrays

“Job arrays offer a mechanism for submitting and managing 
collections of similar jobs quickly and easily”

                                                                           a.k.a. parametrized jobs
Typical use cases:

- parameter sweep
- file collection processing
- line-in-file processing
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https://slurm.schedmd.com/job_array.html

Job arrays
# Submit a job array with index values between 0 and 31
$ sbatch --array=0-31    -N1 ...

# Submit a job array with index values of 1, 3, 5 and 7
$ sbatch --array=1,3,5,7 -N1 ...

# Submit a job array with index values between 1 and 7
# with a step size of 2 (i.e. 1, 3, 5 and 7)
$ sbatch --array=1-7:2   -N1 ...
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https://slurm.schedmd.com/job_array.html

Job arrays IDs
SLURM_JOB_ID=36
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=1
SLURM_ARRAY_TASK_COUNT=3

SLURM_JOB_ID=37
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=2
SLURM_ARRAY_TASK_COUNT=3
[…]

You can address multiple jobs in the array : for instance
`scancel 36_[1-2]`



  

•••

https://slurm.schedmd.com/job_array.html

Job array file names

#SBATCH --output slurm-%A_%a.out
#SBATCH --error slurm-%A_%a.err

%A -> SLURM_ARRAY_JOB_ID 

%a -> SLURM_ARRAY_TASK_ID 
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Job array indices
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

some_program $SLURM_ARRAY_TASK_ID

Submits a 10-job array, each job runs `some_program` with a 
parameter value from 0 to 9. Jobs are independent but can be 
managed as a whole. 
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Caveat: integers only

The parameter must be

- integer, 
- non-negative, 
- one-dimensional, 
- bounded.

The parameter cannot be

- categorical, 
- real valued, 
- multi-dimensional, 
- larger than `MaxArraySize`.

Solution: Bash array
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Bash array
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

PARAMS=([…])

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 10-job array, each job runs `some_program` with a 
parameter value taken from the `PARAMS` array 

https://slurm.schedmd.com/job_array.html
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Bash array : explicit
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-2

module load […]

PARAMS=(red blue green)

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 3-job array, each job runs `some_program`, once with 
parameter value `red`, the other `blue` and the final one, `green`  

https://slurm.schedmd.com/job_array.html
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Bash array : globbing
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-2

module load […]

PARAMS=(~/data/*.csv) # list of .csv files in data/

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

Submits a 3-job array, each job runs `some_program` with a file 
matching the `~/data/*.csv` pattern, in alphanumerical order. 

https://www.gnu.org/software/bash/manual/bash.html#Filename-Expansion
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Bash array : brace expansion
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

PARAMS=(1.{0..9}) # expands to 1.0 1.1 1.2 … 1.9

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 10-job array, each job runs `some_program` with a 
parameter equal to 1.0, 1.1, 1.2, … 1.9. 

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion
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Bash array : brace expansion
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-8

module load […]

PARAMS=({1..3}_{red,green,blue}) # = 1_red 1_green 1_blue 2_red …

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]/_/ }

Submits a 9-job array, each job runs `some_program` with two 
parameters equal to `1 red`, `1 green`, …, `3 green`, `3 blue`. 

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion
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Bash array : seq
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

PARAMS=$(seq --format %.3E 1 0.1 2) #= 1.000E+00 1.100E+00 …

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 10-job array, each job runs `some_program` with a 
parameter equal to 1.000E+00, 1.100E+00, …, 1.900+E0

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion
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Bash array : mapfile
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

mapfile PARAMS < /path/to/parameterfile # reads file into variable

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 9-job array, each job runs `some_program` with as 
parameter one line from the `parameterfile` file. 

https://www.gnu.org/software/bash/manual/bash.html
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Caveat: nb jobs hardcoded

The `SBATCH` lines are comments in Bash, variable 
expansion is ignored.

`#SBATCH --array=1-$N`

Solutions: CLI option or 
`stdin` submission

sbatch: error: Batch job submission failed: Invalid 
job array specification
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CLI option
#! /bin/bash
#
#SBATCH […]

module load […]
echo ${PARAMS[@]}

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

Give the argument in the command line rather than in the script
https://slurm.schedmd.com/sbatch.html

$ PARAMS=([…])
$ N=${#PARAMS[@]}
$ sbatch --array=0-$N submit_script.sh
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`stdin` submission
#! /bin/bash
#SBATCH […]
#SBATCH --array=1-$N

module load […]
echo ${PARAMS[@]}

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

Feed the script to `sbatch` through `stdin` rather than as  file path

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html

$ PARAMS=([…])
$ N=${#PARAMS[@]}
$ cat  submit_script.sh | envsubst '${N}' | sbatch 
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workflows

Scripted submissions

Submission scripts are not always necessary ; jobs can be 
submitted directly on the command line.

Typical use cases:
- jobs too different for job arrays
- submission from within a pre-existing script

- only a few  jobs
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Inline submissions
#! /bin/bash
#
#SBATCH --time=[…]
#SBATCH --ntasks=[…]

module load […] OpenMPI

mpirun some_program

$ module load […] OpenMPI
$ sbatch --time=[…] --ntasks=[…] --wrap “mpirun some_program”

The script can be replaced with a single call to `sbatch`
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Scripted submissions

$ module load OpenMPI
$ for i in 4 8 16 32; do sbatch -n=$i --wrap “mpirun some_program”; done

Typical use case: scaling studies

#! /bin/bash

for file in ~/data/*.dat
do
compress “$file”
done

Typical use case: when you already have a script that works on your 
laptop without Slurm and want to use it on the cluster.

#! /bin/bash

for file in ~/data/*.dat
do
sbatch --wrap “compress \“$file\””
done



  
https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

“-d, --dependency=<dependency_list>

      Defer the start of this job until the specified dependencies 
have been satisfied completed.”

                                                                              
Typical use cases:

1. pre-processing job
2. processing job
3. post-processing job



  
https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

after:job_id[[+time][:jobid[+time]…]] # after job(s) start (+ time) 

afterany:job_id[:jobid…] # after job(s) have terminated

afterburstbuffer:job_id[:jobid…] # after job+bbuffer is done

aftercorr:job_id[:jobid…] # job arrays

afternotok:job_id[:jobid…] # after jobs failed

afterok:job_id[:jobid…] # after jobs completed successfully

singleton

Comma-separated list→ AND  ;   ?-separated list→ OR

Possible `dependency_list` items:



  
https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

$ sbatch preprocess.sh
submitted batch job 1

$ sbatch -d afterok:1 process1.sh
submitted batch job 2

$ sbatch -d afterok:1 process2.sh
submitted batch job 3

$ sbatch -d afterok:2:3 postprocess.sh

$ sbatch -d afterany:1:2:3 cleanup.sh

$ sbatch -d afternotok:1?afternotok:2?afternotok:3 cancel.sh

Jobs whose dependency will never be satisfied must be dealt with

Example



  

Caveat:IDs unknown until submitted

The dependency jobs must have been submitted before the 
dependent  job and their job IDs be captured. 

Solutions: CLI option --parsable 



  
https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

JID=999999 # If jobid does not exist, no dependency is set
for i in {1..4};
do

JID=$(sbatch --parsable --dependency=afterok:$JID submit_script_$i.sh)

done

Submits 4 jobs (`submit_script_1.sh` -> `submit_script_4.sh`) 
chained together with N-1 dependency



  
https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

#!/bin/bash

ID=$(sbatch --parsable $1)

shift

for script in "$@"; do

   ID=$(sbatch --parsable --dependency=afterok:${ID%%;*} $script)

done

/chainsubmit.sh job1.slurm job2.slurm job3.slurm job4.slurm

chainsubmit.sh



  

Packed jobs (serial)

When jobs are small you can pack them into multi-step jobs to 
ease overhead.

#!/bin/bash
#SBATCH […]

for i in {1..4};
do

srun […] some_program $i

done

Submits 1 job running 4 steps in series (dependency is implicit)
All steps inherit the full allocation.



  

Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to 
ease overhead.

#!/bin/bash
#SBATCH […]
#SBATCH -n 4 # can be <= 4; srun instances will start when possible
for i in {1..4};
do
srun -n1 -c1 --exact some_program $i &
done
wait

Submits 1 job running 4 steps in parallel
Each step gets a subset of the allocation. 

•••



  

Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to 
ease overhead.

#!/bin/bash
#SBATCH […]
#SBATCH -n 4 # can be <= 4; srun instances will start when possible
for i in {1..4};
do
srun -n1 -c1 --exact some_program $i &
done
wait

If there are mores steps than the allocation allows, they are 
queued unless --overlap is specified.

•••



  

Packed jobs: --exclusive
•••

#SLURM change log
* Changes in Slurm 20.11.0rc1
  -- Make --exclusive the default with srun as a step adding --overlap to
reverse behavior.
  -- Add --whole option to srun to allocate all resources on a node in an 
allocation.
* Changes in Slurm 20.11.3
  -- Partially revert changes made in 20.11.0 to srun step behavior. […] 
This reverts the behavior such that all resources on a node are assigned 
to the job step by default.
  -- srun - add a new --exact option, and deprecate the --whole option 
(which has been restored as the default behavior).
# and now --exclusive implies --exact 
* Changes in Slurm 21.08.0rc1
  -- --cpus-per-task and --threads-per-core now imply --exact.
* Changes in Slurm 21.08.6
  -- Remove implicit --exact when --cpus-per-task is used.

Older Slurm versions will prefer `--exclusive`



  

Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH […]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

if some_condition; do
scontrol requeue $SLURM_JOB_ID
fi



  

Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH […]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

if some_condition; do
exit 99
fi



  

In-job submission

A job can submit itself again.

#!/bin/bash
#SBATCH […]

some_program

if some_condition; do
sbatch $0
fi

The same submission script will be used even if modified since.
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xargs

https://en.wikipedia.org/wiki/Xargs

“xargs reads items from the standard input, […] and executes the 
command […] with items read from standard input“

                                                                               
Typical use cases:

- execute same command on multiple files
- line-in-file processing
- process each line output from another program



  

xargs

https://en.wikipedia.org/wiki/Xargs

$ find . -name \*.csv -print0 |\
    xargs -I{} -0 sbatch […] --wrap ‘some_program “{}”’

Submits one job for each CSV file, passed as argument to `some_program`

#!/bin/bash
#SBATCH […]

module load […]

find . -name \*.csv -print0 |\
   xargs -P $SLURM_NTASKS -I{} -0 srun --exact […] some_program “{}”

Generates one job step for each CSV file found (max 
$SLURM_NTASKS at a time)



  

xargs

https://en.wikipedia.org/wiki/Xargs

$ cat parameters.csv |\
    xargs -I{} sbatch […] --wrap “some_program {}”

Submits one job for each line in `parameters.csv`

#!/bin/bash
#SBATCH […]

module load […]

cat parameters.csv |\
    xargs -P $SLURM_NTASKS -I{} srun --exact […] some_program {}

Generates one job step for each line in `parameters.csv` (max 
$SLURM_NTASKS at a time)



  

envsubst

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html

“standard input is copied to standard output, with references to 
environment variables of the form $VARIABLE or ${VARIABLE} being 
replaced with the corresponding values. “                                              
                   
Typical use case:

- when program parameters are in a file rather than on      
command line



  
https://en.wikipedia.org/wiki/Xargs

$ cat input.txt
nprocs=$NPROCS
tol=$TOL
MaxIter=$MAXITER

$ export NPROCS=4; export TOL=0.01; export MAXITER=10000

$ envsubst < input.txt
nprocs=4
tol=0.01
MaxIter=100090

envsubst



  
https://en.wikipedia.org/wiki/Xargs

$ NPROCLIST=(2 4 8)
$ TOLLIST=(0.01 0.001 0.001)
$ MAXITERLIST=(1000 10000 100000) 

$ for i in {0..2}; do
> NPROC=${NPROCLIST[$i]} ; TOL=${TOLLIST[$i]}; MAXITER=${MAXITERLIST[i]}
> envubst < input.txt > input.job$i.txt
> sbatch […] --wrap “some_program input.job$i.txt”
> done

Submits one job for each triplet (NPROC, TOL, MAXITER), creating 
the needed input file from the environment variables.

envsubst



  

GNU Parallel

https://www.gnu.org/software/parallel/

•••

“GNU parallel is a shell tool for executing jobs in parallel using one 
or more computers. “

                                                                               
Typical use cases:

- for generating parameters (scripted submissions)
- for managing parallel processes (job packing)



  

GNU Parallel and Slurm•••

$ parallel sbatch […] --wrap “some_program {}” ::: *.csv

Submits one job for each CSV file found

#!/bin/bash
#SBATCH […]

module load […]

parallel -j $SLURM_NTASKS srun --exclusive […] some_program {} ::: *.csv

Generates one job step for each CSV file found, max 
$SLURM_NTASK at a time



  

GNU Make

https://www.gnu.org/software/make/

“GNU Make is a tool which controls the generation of executables 
and other non-source files of a program from the program's 
source files.“                                  
                                        

Typical use case:
- for building software



  

GNU Make

https://www.gnu.org/software/make/

“GNU Make is a tool which controls the generation of executables 
and other non-source files of a program from the program's 
source files. […] Make is not limited to building a package. You can 
also use Make to control installing or deinstalling a package, 
generate tags tables for it, or anything else you want to do often 
enough to make it worth while writing down how to do it.“                   
                                      
Highjacked use case:

- for managing processes dependencies (job packing)



  

GNU Make

https://www.gnu.org/software/make/

$ cat Makefile
# comment
target1:  dependencies1 … target2
          commands1
          …

target2:  dependencies2 …
          commands2
          …

Running `make` builds the file `target1` by first building file `target2`



  

GNU Make

https://www.gnu.org/software/make/

$ cat Makefile
# Create archive and compress
archive.tar.gz: archive.tar
          gzip -k archive.tar

archive.tar:  file1.txt
          tar cvzf archive.tar directory

file1.txt:
          mkdir -p directory
          touch directory/file1.txt



  

GNU Make

https://www.gnu.org/software/make/

$ make
mkdir -p directory
touch directory/file1.txt
tar cvzf archive.tar directory
directory/
directory/file1.txt
gzip -k archive.tar

$ make
make: `archive.tar.gz' is up to date.

$ rm archive.tar.gz
$ make
gzip -k archive.tar

Make only builds what is needed (based on timestamps)



  

GNU Make: shell

https://www.gnu.org/software/make/

Make will use Bash and run all commands for a given target in the 
same shell invocation (otherwise, one invocation per line)

$ cat Makefile
# default shell is /bin/sh

.ONESHELL:
SHELL = /bin/bash

target1:  dependencies … target2
          commands1
          …

target2:  dependencies …
          commands2
          …



  

GNU Make: //

https://www.gnu.org/software/make/

The `-j` or `--jobs` option tells make to execute many recipes 
simultaneously, while `--output-sync` prevents mingled outputs

$ make --jobs 4 --output-sync 



  

GNU Make and Slurm

http://plindenbaum.blogspot.com/2014/09/parallelizing-gnu-make-4-in-slurm.html

Will run every command as a Slurm step, in parallel, honoring 
dependencies.  

$ cat Makefile
.ONESHELL:
SHELL=srun
.SHELLFLAGS= -n1 -c1 --exact bash -c
[…]

#!/bin/bash
#SBATCH […]

module load […]

make -j $SLURM_NTASKS



  

Part I. Workflows with Slurm
Part II: Workflows with GNU tools & Slurm
Part III: Heterogeneous jobs
Part IV: Process placement



  

You want You ask

N CPUs to launch N processes --ntasks=N

Use srun --multi-prog

#! /usr/bin/env bash
#SBATCH --ntasks=3

cp /CECI/proj/training/slurm/coordinator.sh .
cp /CECI/proj/training/slurm/worker.sh .
cp /CECI/proj/training/slurm/multi.conf .

srun --multi-prog multi.confsu
bm
i
t-
ma
st
er
s
la
ve
.s
h

# multi.conf for --multi-prog
0  ./coordinator.sh
1-2  ./worker.sh

mu
lt
i
.c

on
f

How to submit a master/slave job >



  

Heterogeneous job
A job where all processes do not require the same resources. E.g.
- a master/worker setup
- a coupled simulation model (MPMD)
#! /bin/bash
#SBATCH --cpus-per-task=2
#SBATCH --mem-per-cpu=1g
#SBATCH --ntasks=1
#SBATCH --partition=main

#SBATCH packjob

#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4g
#SBATCH --ntasks=4
#SBATCH --partition=large

[...]



  

Het. MPMD job

A job where all processes do not require the same resources. E.g.
- a master/worker setup
(No multi.conf file)

Distinct steps, distinct MPI world

[…]

srun --het-group=0 coordinator.sh &

srun --het-group=1 worker.sh &

wait



  

Het. master/worker job

A job where all processes do not require the same resources. E.g.
- a coupled simulation model

Single step, single MPI world

[…]

srun model.exe : iomanager.exe

# or

mpirun model.exe : iomanager.exe
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Process placement
Remember:

How are 
ranks 
distributed?



  

Rank distribution across nodes

PROCID 
1

PROCID 
2

PROCID 
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PROCID 
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PROCID 
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Rank distribution across nodes

PROCID 
1

PROCID 
2

PROCID 
3

PROCID 
4

PROCID 
1

PROCID 
2

PROCID 
3

PROCID 
4

Node 1 Node 2

Node 2

Node 1



  

Rank distribution across nodes

The -m/--distribution option controls the strategy for placement

Other options: arbitrary, plane=n

$ srun -l -n 4 -N 2 -m block --exclusive  hostname | sort
0: lm3-w014.cluster
1: lm3-w014.cluster
2: lm3-w018.cluster
3: lm3-w018.cluster

$ srun -l -n 4 -N 2 -m cyclic --exclusive  hostname | sort
0: lm3-w014.cluster
1: lm3-w018.cluster
2: lm3-w014.cluster
3: lm3-w018.cluster



  

Rank distribution inside the node

https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-numa/

(NUMA)

(SMP)
vs.



  

Rank distribution per socket
The -m/--distribution second option controls the strategy for 
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -l -n 4  -c4 -m block:block --exclusive bash -c 'taskset -cp $$'

0: pid 3156907's current affinity list: 0-3
1: pid 3156908's current affinity list: 4-7
2: pid 3156909's current affinity list: 8-11
3: pid 3156910's current affinity list: 12-15

$ srun -l -n 4  -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$'

0: pid 3156982's current affinity list: 0-3
1: pid 3156983's current affinity list: 32-35
2: pid 3156984's current affinity list: 4-7
3: pid 3156985's current affinity list: 36-39



  

Rank distribution per socket
The -m/--distribution second option controls the strategy for 
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -l -n 4  -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$'

0: pid 3156982's current affinity list: 0-3
1: pid 3156983's current affinity list: 32-35
2: pid 3156984's current affinity list: 4-7
3: pid 3156985's current affinity list: 36-39

$ srun -l -n 4  -c4 -m block:fcyclic --exclusive bash -c 'taskset -cp $$' 

0: pid 3157056's current affinity list: 0,1,32,33
1: pid 3157057's current affinity list: 2,3,34,35
2: pid 3157058's current affinity list: 4,5,36,37
3: pid 3157059's current affinity list: 6,7,38,39



  

Rank distribution per SMT thread
The -m/--distribution third option controls the strategy for 
placement on cores.

- Can be replaced with --hint=[no]multithread

- Unfortunately there 
are intermediate levels 
that Slurm does not 
take into account.



  

Generic intra-node distribution

1 3 42

1

3 4

2 1

3 4

2

Spread Packed

Cache size available per process                        good                    bad
Memory bandwidth available per process         good                    bad
Latency to common shared memory                 bad                     good



  

Arbitrary intra-node distribution
With the --cpu-bind=map_cpu:... option you can specify the 
(ordered) list of CPUs to distribute the processes on.

https://slurm.schedmd.com/srun.html#OPT_cpu-bind

$  srun -l -n 4  --cpu-bind=map_cpu:3,0,22,12  bash -c 'taskset -cp $$' 

0: pid 18258's current affinity list: 3
1: pid 18259's current affinity list: 0
2: pid 18260's current affinity list: 22
3: pid 18261's current affinity list: 12

Use --bind-mask if each tasks must use multiple CPUs



  

Rank distribution helper tool
OpenMPI’s utility tool hwloc-distrib can be used to build an optimally-
spread placement based on the server hardware configuration.

https://linux.die.net/man/1/hwloc-distrib

$ D=$(hwloc-distrib --single 16 | xargs hwloc-calc --pulist) #128-CPUs node
$ echo $D

0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120

$  srun -l -n 4  --cpu-bind=map_cpu:$D  bash -c 'taskset -cp $$' 

0: pid 18258's current affinity list: 0
1: pid 18259's current affinity list: 8
2: pid 18260's current affinity list: 16
3: pid 18261's current affinity list: 24
[...]



  

Rank and binary distribution
In case of MPMD job, you might want to distribute executable binaries 
as well with --multi-prog or with a launcher script.

https://linux.die.net/man/1/hwloc-distrib

# multi.conf for --multi-prog

0-3   ./model1.exe
4-7   ./model2.exe
8-11  ./model1.exe
12-15 ./model2.exe

$ hwloc-distrib  4 | xargs -L1 hwloc-calc --pulist \
                   | cut -d, -f 1-4 | paste  -s -d,
0,1,2,3,32,33,34,35,64,65,66,67,96,97,98,99

$ srun -l --cpu-bind=map_cpu:0,1,2,3,32,33,... --multi-prog=multi.conf



  

Rank and binary distribution
In case of MPMD job, you might want to distribute executable binaries 
as well with --multi-prog or with a launcher script.

#! /bin/bash

EXE=(./model1.exe ./model2.exe)
PATTERN=(0 0 0 0 1 1 1 1)

INDEX=$((SLURM_PROCID % ${#PATTERN[@]}))
exec ${EXE[${PATTERN[INDEX]}]}

$ srun -l –cpu-bind=map_cpu:0,1,2,3,32,33,... helper.sh



  

Part I. Workflows with Slurm
Part II: Workflows with GNU tools
Part III: Heterogeneous jobs
Part IV: Process placement
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