

Advanced Slurm job submission

Part I. Workflows with Slurm
Part II: Workflows with GNU tools & Slurm
Part III: Heterogeneous jobs
Part IV: Process placement

•••

wide deep cyclic
workflows

Job arrays
Scripted submissions

Job dependencies
Packed jobs

Requeuing
In-job submissions

workflowsworkflows

•••

https://slurm.schedmd.com/job_array.html

Job arrays

“Job arrays offer a mechanism for submitting and managing
collections of similar jobs quickly and easily”

 a.k.a. parametrized jobs
Typical use cases:

- parameter sweep
- file collection processing
- line-in-file processing

•••

https://slurm.schedmd.com/job_array.html

Job arrays
Submit a job array with index values between 0 and 31
$ sbatch --array=0-31 -N1 ...

Submit a job array with index values of 1, 3, 5 and 7
$ sbatch --array=1,3,5,7 -N1 ...

Submit a job array with index values between 1 and 7
with a step size of 2 (i.e. 1, 3, 5 and 7)
$ sbatch --array=1-7:2 -N1 ...

•••

https://slurm.schedmd.com/job_array.html

Job arrays IDs
SLURM_JOB_ID=36
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=1
SLURM_ARRAY_TASK_COUNT=3

SLURM_JOB_ID=37
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=2
SLURM_ARRAY_TASK_COUNT=3
[…]

You can address multiple jobs in the array : for instance
`scancel 36_[1-2]`

•••

https://slurm.schedmd.com/job_array.html

Job array file names

#SBATCH --output slurm-%A_%a.out
#SBATCH --error slurm-%A_%a.err

%A -> SLURM_ARRAY_JOB_ID

%a -> SLURM_ARRAY_TASK_ID

•••

Job array indices
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

some_program $SLURM_ARRAY_TASK_ID

Submits a 10-job array, each job runs `some_program` with a
parameter value from 0 to 9. Jobs are independent but can be
managed as a whole.

•••

Caveat: integers only

The parameter must be

- integer,
- non-negative,
- one-dimensional,
- bounded.

The parameter cannot be

- categorical,
- real valued,
- multi-dimensional,
- larger than `MaxArraySize`.

Solution: Bash array

•••

Bash array
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

PARAMS=([…])

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 10-job array, each job runs `some_program` with a
parameter value taken from the `PARAMS` array

https://slurm.schedmd.com/job_array.html

•••

Bash array : explicit
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-2

module load […]

PARAMS=(red blue green)

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 3-job array, each job runs `some_program`, once with
parameter value `red`, the other `blue` and the final one, `green`

https://slurm.schedmd.com/job_array.html

•••

Bash array : globbing
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-2

module load […]

PARAMS=(~/data/*.csv) # list of .csv files in data/

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

Submits a 3-job array, each job runs `some_program` with a file
matching the `~/data/*.csv` pattern, in alphanumerical order.

https://www.gnu.org/software/bash/manual/bash.html#Filename-Expansion

•••

Bash array : brace expansion
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

PARAMS=(1.{0..9}) # expands to 1.0 1.1 1.2 … 1.9

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 10-job array, each job runs `some_program` with a
parameter equal to 1.0, 1.1, 1.2, … 1.9.

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion

•••

Bash array : brace expansion
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-8

module load […]

PARAMS=({1..3}_{red,green,blue}) # = 1_red 1_green 1_blue 2_red …

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]/_/ }

Submits a 9-job array, each job runs `some_program` with two
parameters equal to `1 red`, `1 green`, …, `3 green`, `3 blue`.

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion

•••

Bash array : seq
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

PARAMS=$(seq --format %.3E 1 0.1 2) #= 1.000E+00 1.100E+00 …

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 10-job array, each job runs `some_program` with a
parameter equal to 1.000E+00, 1.100E+00, …, 1.900+E0

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion

•••

Bash array : mapfile
#! /bin/bash
#
#SBATCH […]
#SBATCH --array=0-9

module load […]

mapfile PARAMS < /path/to/parameterfile # reads file into variable

some_program ${PARAMS[$SLURM_ARRAY_TASK_ID]}

Submits a 9-job array, each job runs `some_program` with as
parameter one line from the `parameterfile` file.

https://www.gnu.org/software/bash/manual/bash.html

•••

Caveat: nb jobs hardcoded

The `SBATCH` lines are comments in Bash, variable
expansion is ignored.

`#SBATCH --array=1-$N`

Solutions: CLI option or
`stdin` submission

sbatch: error: Batch job submission failed: Invalid
job array specification

•••

CLI option
#! /bin/bash
#
#SBATCH […]

module load […]
echo ${PARAMS[@]}

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

Give the argument in the command line rather than in the script
https://slurm.schedmd.com/sbatch.html

$ PARAMS=([…])
$ N=${#PARAMS[@]}
$ sbatch --array=0-$N submit_script.sh

•••

`stdin` submission
#! /bin/bash
#SBATCH […]
#SBATCH --array=1-$N

module load […]
echo ${PARAMS[@]}

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

Feed the script to `sbatch` through `stdin` rather than as file path

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html

$ PARAMS=([…])
$ N=${#PARAMS[@]}
$ cat submit_script.sh | envsubst '${N}' | sbatch

•••

workflows

Scripted submissions

Submission scripts are not always necessary ; jobs can be
submitted directly on the command line.

Typical use cases:
- jobs too different for job arrays
- submission from within a pre-existing script

- only a few jobs

•••

Inline submissions
#! /bin/bash
#
#SBATCH --time=[…]
#SBATCH --ntasks=[…]

module load […] OpenMPI

mpirun some_program

$ module load […] OpenMPI
$ sbatch --time=[…] --ntasks=[…] --wrap “mpirun some_program”

The script can be replaced with a single call to `sbatch`

•••

Scripted submissions

$ module load OpenMPI
$ for i in 4 8 16 32; do sbatch -n=$i --wrap “mpirun some_program”; done

Typical use case: scaling studies

#! /bin/bash

for file in ~/data/*.dat
do
compress “$file”
done

Typical use case: when you already have a script that works on your
laptop without Slurm and want to use it on the cluster.

#! /bin/bash

for file in ~/data/*.dat
do
sbatch --wrap “compress \“$file\””
done

https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

“-d, --dependency=<dependency_list>

 Defer the start of this job until the specified dependencies
have been satisfied completed.”

Typical use cases:

1. pre-processing job
2. processing job
3. post-processing job

https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

after:job_id[[+time][:jobid[+time]…]] # after job(s) start (+ time)

afterany:job_id[:jobid…] # after job(s) have terminated

afterburstbuffer:job_id[:jobid…] # after job+bbuffer is done

aftercorr:job_id[:jobid…] # job arrays

afternotok:job_id[:jobid…] # after jobs failed

afterok:job_id[:jobid…] # after jobs completed successfully

singleton

Comma-separated list→ AND ; ?-separated list→ OR

Possible `dependency_list` items:

https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

$ sbatch preprocess.sh
submitted batch job 1

$ sbatch -d afterok:1 process1.sh
submitted batch job 2

$ sbatch -d afterok:1 process2.sh
submitted batch job 3

$ sbatch -d afterok:2:3 postprocess.sh

$ sbatch -d afterany:1:2:3 cleanup.sh

$ sbatch -d afternotok:1?afternotok:2?afternotok:3 cancel.sh

Jobs whose dependency will never be satisfied must be dealt with

Example

Caveat:IDs unknown until submitted

The dependency jobs must have been submitted before the
dependent job and their job IDs be captured.

Solutions: CLI option --parsable

https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

JID=999999 # If jobid does not exist, no dependency is set
for i in {1..4};
do

JID=$(sbatch --parsable --dependency=afterok:$JID submit_script_$i.sh)

done

Submits 4 jobs (`submit_script_1.sh` -> `submit_script_4.sh`)
chained together with N-1 dependency

https://slurm.schedmd.com/sbatch.html#OPT_dependency

Job dependencies

#!/bin/bash

ID=$(sbatch --parsable $1)

shift

for script in "$@"; do

 ID=$(sbatch --parsable --dependency=afterok:${ID%%;*} $script)

done

/chainsubmit.sh job1.slurm job2.slurm job3.slurm job4.slurm

chainsubmit.sh

Packed jobs (serial)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash
#SBATCH […]

for i in {1..4};
do

srun […] some_program $i

done

Submits 1 job running 4 steps in series (dependency is implicit)
All steps inherit the full allocation.

Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash
#SBATCH […]
#SBATCH -n 4 # can be <= 4; srun instances will start when possible
for i in {1..4};
do
srun -n1 -c1 --exact some_program $i &
done
wait

Submits 1 job running 4 steps in parallel
Each step gets a subset of the allocation.

•••

Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash
#SBATCH […]
#SBATCH -n 4 # can be <= 4; srun instances will start when possible
for i in {1..4};
do
srun -n1 -c1 --exact some_program $i &
done
wait

If there are mores steps than the allocation allows, they are
queued unless --overlap is specified.

•••

Packed jobs: --exclusive
•••

#SLURM change log
* Changes in Slurm 20.11.0rc1
 -- Make --exclusive the default with srun as a step adding --overlap to
reverse behavior.
 -- Add --whole option to srun to allocate all resources on a node in an
allocation.
* Changes in Slurm 20.11.3
 -- Partially revert changes made in 20.11.0 to srun step behavior. […]
This reverts the behavior such that all resources on a node are assigned
to the job step by default.
 -- srun - add a new --exact option, and deprecate the --whole option
(which has been restored as the default behavior).
and now --exclusive implies --exact
* Changes in Slurm 21.08.0rc1
 -- --cpus-per-task and --threads-per-core now imply --exact.
* Changes in Slurm 21.08.6
 -- Remove implicit --exact when --cpus-per-task is used.

Older Slurm versions will prefer `--exclusive`

Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH […]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

if some_condition; do
scontrol requeue $SLURM_JOB_ID
fi

Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH […]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

if some_condition; do
exit 99
fi

In-job submission

A job can submit itself again.

#!/bin/bash
#SBATCH […]

some_program

if some_condition; do
sbatch $0
fi

The same submission script will be used even if modified since.

Part I. Workflows with Slurm
Part II: Workflows with GNU tools & Slurm
Part III: Heterogeneous jobs
Part IV: Process placement

xargs

https://en.wikipedia.org/wiki/Xargs

“xargs reads items from the standard input, […] and executes the
command […] with items read from standard input“

Typical use cases:

- execute same command on multiple files
- line-in-file processing
- process each line output from another program

xargs

https://en.wikipedia.org/wiki/Xargs

$ find . -name *.csv -print0 |\
 xargs -I{} -0 sbatch […] --wrap ‘some_program “{}”’

Submits one job for each CSV file, passed as argument to `some_program`

#!/bin/bash
#SBATCH […]

module load […]

find . -name *.csv -print0 |\
 xargs -P $SLURM_NTASKS -I{} -0 srun --exact […] some_program “{}”

Generates one job step for each CSV file found (max
$SLURM_NTASKS at a time)

xargs

https://en.wikipedia.org/wiki/Xargs

$ cat parameters.csv |\
 xargs -I{} sbatch […] --wrap “some_program {}”

Submits one job for each line in `parameters.csv`

#!/bin/bash
#SBATCH […]

module load […]

cat parameters.csv |\
 xargs -P $SLURM_NTASKS -I{} srun --exact […] some_program {}

Generates one job step for each line in `parameters.csv` (max
$SLURM_NTASKS at a time)

envsubst

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html

“standard input is copied to standard output, with references to
environment variables of the form $VARIABLE or ${VARIABLE} being
replaced with the corresponding values. “

Typical use case:

- when program parameters are in a file rather than on
command line

https://en.wikipedia.org/wiki/Xargs

$ cat input.txt
nprocs=$NPROCS
tol=$TOL
MaxIter=$MAXITER

$ export NPROCS=4; export TOL=0.01; export MAXITER=10000

$ envsubst < input.txt
nprocs=4
tol=0.01
MaxIter=100090

envsubst

https://en.wikipedia.org/wiki/Xargs

$ NPROCLIST=(2 4 8)
$ TOLLIST=(0.01 0.001 0.001)
$ MAXITERLIST=(1000 10000 100000)

$ for i in {0..2}; do
> NPROC=${NPROCLIST[$i]} ; TOL=${TOLLIST[$i]}; MAXITER=${MAXITERLIST[i]}
> envubst < input.txt > input.job$i.txt
> sbatch […] --wrap “some_program input.job$i.txt”
> done

Submits one job for each triplet (NPROC, TOL, MAXITER), creating
the needed input file from the environment variables.

envsubst

GNU Parallel

https://www.gnu.org/software/parallel/

•••

“GNU parallel is a shell tool for executing jobs in parallel using one
or more computers. “

Typical use cases:

- for generating parameters (scripted submissions)
- for managing parallel processes (job packing)

GNU Parallel and Slurm•••

$ parallel sbatch […] --wrap “some_program {}” ::: *.csv

Submits one job for each CSV file found

#!/bin/bash
#SBATCH […]

module load […]

parallel -j $SLURM_NTASKS srun --exclusive […] some_program {} ::: *.csv

Generates one job step for each CSV file found, max
$SLURM_NTASK at a time

GNU Make

https://www.gnu.org/software/make/

“GNU Make is a tool which controls the generation of executables
and other non-source files of a program from the program's
source files.“

Typical use case:
- for building software

GNU Make

https://www.gnu.org/software/make/

“GNU Make is a tool which controls the generation of executables
and other non-source files of a program from the program's
source files. […] Make is not limited to building a package. You can
also use Make to control installing or deinstalling a package,
generate tags tables for it, or anything else you want to do often
enough to make it worth while writing down how to do it.“

Highjacked use case:

- for managing processes dependencies (job packing)

GNU Make

https://www.gnu.org/software/make/

$ cat Makefile
comment
target1: dependencies1 … target2
 commands1
 …

target2: dependencies2 …
 commands2
 …

Running `make` builds the file `target1` by first building file `target2`

GNU Make

https://www.gnu.org/software/make/

$ cat Makefile
Create archive and compress
archive.tar.gz: archive.tar
 gzip -k archive.tar

archive.tar: file1.txt
 tar cvzf archive.tar directory

file1.txt:
 mkdir -p directory
 touch directory/file1.txt

GNU Make

https://www.gnu.org/software/make/

$ make
mkdir -p directory
touch directory/file1.txt
tar cvzf archive.tar directory
directory/
directory/file1.txt
gzip -k archive.tar

$ make
make: `archive.tar.gz' is up to date.

$ rm archive.tar.gz
$ make
gzip -k archive.tar

Make only builds what is needed (based on timestamps)

GNU Make: shell

https://www.gnu.org/software/make/

Make will use Bash and run all commands for a given target in the
same shell invocation (otherwise, one invocation per line)

$ cat Makefile
default shell is /bin/sh

.ONESHELL:
SHELL = /bin/bash

target1: dependencies … target2
 commands1
 …

target2: dependencies …
 commands2
 …

GNU Make: //

https://www.gnu.org/software/make/

The `-j` or `--jobs` option tells make to execute many recipes
simultaneously, while `--output-sync` prevents mingled outputs

$ make --jobs 4 --output-sync

GNU Make and Slurm

http://plindenbaum.blogspot.com/2014/09/parallelizing-gnu-make-4-in-slurm.html

Will run every command as a Slurm step, in parallel, honoring
dependencies.

$ cat Makefile
.ONESHELL:
SHELL=srun
.SHELLFLAGS= -n1 -c1 --exact bash -c
[…]

#!/bin/bash
#SBATCH […]

module load […]

make -j $SLURM_NTASKS

Part I. Workflows with Slurm
Part II: Workflows with GNU tools & Slurm
Part III: Heterogeneous jobs
Part IV: Process placement

You want You ask

N CPUs to launch N processes --ntasks=N

Use srun --multi-prog

#! /usr/bin/env bash
#SBATCH --ntasks=3

cp /CECI/proj/training/slurm/coordinator.sh .
cp /CECI/proj/training/slurm/worker.sh .
cp /CECI/proj/training/slurm/multi.conf .

srun --multi-prog multi.confsu
bm
i
t-
ma
st
er
s
la
ve
.s
h

multi.conf for --multi-prog
0 ./coordinator.sh
1-2 ./worker.sh

mu
lt
i
.c

on
f

How to submit a master/slave job >

Heterogeneous job
A job where all processes do not require the same resources. E.g.
- a master/worker setup
- a coupled simulation model (MPMD)
#! /bin/bash
#SBATCH --cpus-per-task=2
#SBATCH --mem-per-cpu=1g
#SBATCH --ntasks=1
#SBATCH --partition=main

#SBATCH packjob

#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4g
#SBATCH --ntasks=4
#SBATCH --partition=large

[...]

Het. MPMD job

A job where all processes do not require the same resources. E.g.
- a master/worker setup
(No multi.conf file)

Distinct steps, distinct MPI world

[…]

srun --het-group=0 coordinator.sh &

srun --het-group=1 worker.sh &

wait

Het. master/worker job

A job where all processes do not require the same resources. E.g.
- a coupled simulation model

Single step, single MPI world

[…]

srun model.exe : iomanager.exe

or

mpirun model.exe : iomanager.exe

Part I. Workflows with Slurm
Part II: Workflows with GNU tools & Slurm
Part III: Heterogeneous jobs
Part IV: Process placement

Process placement
Remember:

How are
ranks
distributed?

Rank distribution across nodes

PROCID
1

PROCID
2

PROCID
3

PROCID
4

PROCID
1

PROCID
2

PROCID
3

PROCID
4

Rank distribution across nodes

PROCID
1

PROCID
2

PROCID
3

PROCID
4

PROCID
1

PROCID
2

PROCID
3

PROCID
4

Node 1 Node 2

Node 2

Node 1

Rank distribution across nodes

The -m/--distribution option controls the strategy for placement

Other options: arbitrary, plane=n

$ srun -l -n 4 -N 2 -m block --exclusive hostname | sort
0: lm3-w014.cluster
1: lm3-w014.cluster
2: lm3-w018.cluster
3: lm3-w018.cluster

$ srun -l -n 4 -N 2 -m cyclic --exclusive hostname | sort
0: lm3-w014.cluster
1: lm3-w018.cluster
2: lm3-w014.cluster
3: lm3-w018.cluster

Rank distribution inside the node

https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-numa/

(NUMA)

(SMP)
vs.

Rank distribution per socket
The -m/--distribution second option controls the strategy for
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -l -n 4 -c4 -m block:block --exclusive bash -c 'taskset -cp $$'

0: pid 3156907's current affinity list: 0-3
1: pid 3156908's current affinity list: 4-7
2: pid 3156909's current affinity list: 8-11
3: pid 3156910's current affinity list: 12-15

$ srun -l -n 4 -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$'

0: pid 3156982's current affinity list: 0-3
1: pid 3156983's current affinity list: 32-35
2: pid 3156984's current affinity list: 4-7
3: pid 3156985's current affinity list: 36-39

Rank distribution per socket
The -m/--distribution second option controls the strategy for
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -l -n 4 -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$'

0: pid 3156982's current affinity list: 0-3
1: pid 3156983's current affinity list: 32-35
2: pid 3156984's current affinity list: 4-7
3: pid 3156985's current affinity list: 36-39

$ srun -l -n 4 -c4 -m block:fcyclic --exclusive bash -c 'taskset -cp $$'

0: pid 3157056's current affinity list: 0,1,32,33
1: pid 3157057's current affinity list: 2,3,34,35
2: pid 3157058's current affinity list: 4,5,36,37
3: pid 3157059's current affinity list: 6,7,38,39

Rank distribution per SMT thread
The -m/--distribution third option controls the strategy for
placement on cores.

- Can be replaced with --hint=[no]multithread

- Unfortunately there
are intermediate levels
that Slurm does not
take into account.

Generic intra-node distribution

1 3 42

1

3 4

2 1

3 4

2

Spread Packed

Cache size available per process good bad
Memory bandwidth available per process good bad
Latency to common shared memory bad good

Arbitrary intra-node distribution
With the --cpu-bind=map_cpu:... option you can specify the
(ordered) list of CPUs to distribute the processes on.

https://slurm.schedmd.com/srun.html#OPT_cpu-bind

$ srun -l -n 4 --cpu-bind=map_cpu:3,0,22,12 bash -c 'taskset -cp $$'

0: pid 18258's current affinity list: 3
1: pid 18259's current affinity list: 0
2: pid 18260's current affinity list: 22
3: pid 18261's current affinity list: 12

Use --bind-mask if each tasks must use multiple CPUs

Rank distribution helper tool
OpenMPI’s utility tool hwloc-distrib can be used to build an optimally-
spread placement based on the server hardware configuration.

https://linux.die.net/man/1/hwloc-distrib

$ D=$(hwloc-distrib --single 16 | xargs hwloc-calc --pulist) #128-CPUs node
$ echo $D

0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120

$ srun -l -n 4 --cpu-bind=map_cpu:$D bash -c 'taskset -cp $$'

0: pid 18258's current affinity list: 0
1: pid 18259's current affinity list: 8
2: pid 18260's current affinity list: 16
3: pid 18261's current affinity list: 24
[...]

Rank and binary distribution
In case of MPMD job, you might want to distribute executable binaries
as well with --multi-prog or with a launcher script.

https://linux.die.net/man/1/hwloc-distrib

multi.conf for --multi-prog

0-3 ./model1.exe
4-7 ./model2.exe
8-11 ./model1.exe
12-15 ./model2.exe

$ hwloc-distrib 4 | xargs -L1 hwloc-calc --pulist \
 | cut -d, -f 1-4 | paste -s -d,
0,1,2,3,32,33,34,35,64,65,66,67,96,97,98,99

$ srun -l --cpu-bind=map_cpu:0,1,2,3,32,33,... --multi-prog=multi.conf

Rank and binary distribution
In case of MPMD job, you might want to distribute executable binaries
as well with --multi-prog or with a launcher script.

#! /bin/bash

EXE=(./model1.exe ./model2.exe)
PATTERN=(0 0 0 0 1 1 1 1)

INDEX=$((SLURM_PROCID % ${#PATTERN[@]}))
exec ${EXE[${PATTERN[INDEX]}]}

$ srun -l –cpu-bind=map_cpu:0,1,2,3,32,33,... helper.sh

Part I. Workflows with Slurm
Part II: Workflows with GNU tools
Part III: Heterogeneous jobs
Part IV: Process placement

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

