@&

EURO
BELGIUM

Advanced Slurm job submission

o 00

UCLouvain

Part |. Workflows with Slurm
Part |l: Workflows with GNU tools & Slurm
Part Ill: Heterogeneous jobs
Part IV: Process placement

wide

Job arrays
Scripted submissions

deep

Job dependencies
Packed jobs

Requeuing
In-job submissions

neens Job arrays

"Job arrays offer a mechanism for submitting and managing
collections of similar jobs quickly and easily”

a.k.a. parametrized jobs
Typical use cases:
- parameter sweep
- file collection processing
- line-in-file processing

https://slurm.schedmd.com/job_array.html

neens Job arrays

Submit a job array with index values between 0 and 31
$ shatch --array=0-31 -N1 ...

Submit a job array with index values of 1, 3, 5 and 7
$ sbatch --array=1,3,5,7 -N1 ...

Submit a job array with index values between 1 and 7
with a step size of 2 (i.e. 1, 3, 5 and 7)
$ sbatch --array=1-7:2 -N1 ...

https://slurm.schedmd.com/job_array.html

Job arrays IDs

SLURM_JOB_ID=36
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=1
SLURM_ARRAY_TASK_COUNT=3

SLURM_JOB_ID=37
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=2
SLURM_ARRAY_TASK_COUNT=3
[...]

You can address multiple jobs in the array : for instance
'scancel 36 _[1-2]

https://slurm.schedmd.com/job_array.html

“°% Job array file names

#SBATCH --output slurm-%A_%a.out
#SBATCH --error slurm-%A_%a.err

%A -> SLURM_ARRAY_JOB_ID
%a -> SLURM_ARRAY_TASK_ID

https://slurm.schedmd.com/job_array.html

Teen Job array indices

#! /bin/bash

#

#SBATCH [...]

#SBATCH --array=0-9

module load [..]

some_program $SLURM_ARRAY_TASK_ID

Submits a 10-job array, each job runs 'some_program’ with a
parameter value from 0 to 9. Jobs are independent but can be
managed as a whole.

“e%% Caveat: integers only

The parameter must be The parameter cannot be

- categorical,
- real valued,
- multi-dimensional,
- larger than ‘MaxArraySize .

- integer,

- non-negative,

- one-dimensional,
- bounded.

S Y e .

Solution: Bash array

neens Bash array

#! /bin/bash

H#

#SBATCH [...]

#SBATCH --array=0-9
module load [..]

PARAMS=([...])

some program ${PARAMS[$SLURM_ARRAY_TASK ID]}

Submits a 10-job array, each job runs 'some_program’ with a
parameter value taken from the 'PARAMS" array

https://slurm.schedmd.com/job_array.html

“°%% Bash array : explicit

#! /bin/bash

iSBATCH [...]

#SBATCH --array=0-2
module load [..]
PARAMS=(red blue green)

some_program ${PARAMS[$SLURM_ARRAY_TASK ID]}

Submits a 3-job array, each job runs 'some_program’, once with
parameter value red’, the other ‘blue” and the final one, ‘green’

https://slurm.schedmd.com/job_array.html

Bash array : globbing

#! /bin/bash

ﬁSBATCH [...]

#SBATCH --array=0-2

module load [..]

PARAMS=(~/data/*.csv) # list of .csv files in data/

some_program “${PARAMS[$SLURM_ARRAY_TASK ID]}”

Submits a 3-job array, each job runs 'some_program with a file
matching the ~/data/*.csv pattern, in alphanumerical order.

https://www.gnu.org/software/bash/manual/bash.html#Filename-Expansion

0O00.. .
Bash array : brace expansion

#'! /bin/bash

iSBATCH [...]

#SBATCH --array=0-9

module load [..]

PARAMS=(1.{0..9}) # expands to 1.0 1.1 1.2 .. 1.9

some_program ${PARAMS[$SLURM_ARRAY TASK ID]}

Submits a 10-job array, each job runs 'some_program’ with a
parameter equal to 1.0, 1.1,1.2, ... 1.9,

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion

0O00.. .
Bash array : brace expansion

#! /bin/bash

#

#SBATCH [...]

#SBATCH --array=0-8

module load [..]

PARAMS=({1..3} {red,green,blue}) # = 1 red 1 green 1_blue 2 _red ..

some_program ${PARAMS[$SLURM_ARRAY TASK ID1/_/ }

Submits a 9-job array, each job runs 'some_program’ with two
parameters equal to 1red’, 1green, .., 3 green, 3 blue’.

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion

neens Bash array : seo

#! /bin/bash

#

#SBATCH [...]

#SBATCH --array=0-9

module load [..]

PARAMS=$(seq --format %.3E 1 0.1 2) #= 1.000E+00 1.100E+00 ..

some_program ${PARAMS[$SLURM_ARRAY_TASK ID]}

Submits a 10-job array, each job runs 'some_program’ with a
parameter equal to 1.000E+00, 1.100E+00, ..., 1.900+E0

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion

“°%"% Bash array : mapfile

#! /bin/bash

ﬁSBATCH [...]

#SBATCH --array=0-9

module load [..]

mapfile PARAMS < /path/to/parameterfile # reads file into variable

some_program ${PARAMS[$SLURM_ARRAY TASK ID]}

Submits a 9-job array, each job runs 'some_program with as
parameter one line from the parameterfile’ file.
https://www.gnu.org/software/bash/manual/bash.html

"®%"Caveat: nb jobs hardcoded

The 'SBATCH lines are comments in Bash, variable
expansion is ignored.

‘HSBATCH --array=1-$N’

. » sbatch: error: Batch job submission failed: Invalid

job array specification

Solutions: CLI option or
“stdin® submission

CLI option

#! /bin/bash
H
#SBATCH [...]

module load [..]
echo ${PARAMS[@]}

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

$ PARAMS=([..])
$ N=${#PARAMS[Q]}
$ sbatch --array=0-$N submit_script.sh

Give the argument in the command line rather than in the script

https://slurm.schedmd.com/sbatch.html

OO0 < .« < . .
stdin submission

#! /bin/bash
#SBATCH [...]
#SBATCH --array=1-$N

module load [..]
echo ${PARAMS[@Q]}

some_program “${PARAMS[$SLURM_ARRAY_TASK ID]}”

$ PARAMS=([..])
$ N=${#PARAMS[Q]}
$ cat submit_script.sh | envsubst '${N}' | sbatch

Feed the script to 'sbatch’ through ‘stdin rather than as file path

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html

reene Scripted submissions

Submission scripts are not always necessary ; jobs can be
submitted directly on the command line.

Typical use cases:
- jobs too different for job arrays
- submission from within a pre-existing script

- only a few jobs

workflows

OO0 . . .
INnline submissions

#! /bin/bash

H

#SBATCH --time=[...]
#SBATCH --ntasks=[..]

module load [..] OpenMPI

mpilrun some_program

The script can be replaced with a single call to ‘shatch

$ module load [..] OpenMPI
$ sbatch --time=[..] --ntasks=[..] --wrap “mpirun some_program”

"e%% Scripted submissions

$ module load OpenMPI
$ for i in 4 8 16 32; do sbatch -n=$i --wrap “mpirun some_program”; done

Typical use case: scaling studies

#! /bin/bash #! /bin/bash

for file in ~/data/=*.dat for file in ~/data/*.dat

do —» do

compress “$file” sbatch --wrap “compress \“$file\"””
done done

Typical use case: when you already have a script that works on your
laptop without Slurm and want to use it on the cluster.

0« 0«0

Job dependencies

“-d, --dependency=<dependency_list>

Defer the start of this job until the specified dependencies
have been satisfied completed.”

Typical use cases:
1. pre-processing job
2. processing job

3. post-processing job
https://slurm.schedmd.com/sbhatch.html|#0PT_dependency

0« 0«0

Job dependencies

Possible ‘dependency_list items:

after:job_id[[+time][:jobid[+time]..]] # after job(s) start (+ time)
afterany:job_id[:jobid..] # after job(s) have terminated
afterburstbuffer:job_id[:jobid..] # after job+bbuffer is done
aftercorr:job_id[:jobid..] # job arrays

afternotok:job_id[:jobid..] # after jobs failed
afterok:job_id[:jobid..] # after jobs completed successfully

singleton

Comma-separated list- AND ; ?-separated list- OR

https://slurm.schedmd.com/sbhatch.html|#0PT_dependency

; Job dependencies

Example

$ sbatch preprocess.sh
$ sbatch -d afterok:1 processi.sh
$ sbatch -d afterok:1 process2.sh

$ sbatch -d afterok:2:3 postprocess.sh
$ sbatch -d afterany:1:2:3 cleanup.sh

$ sbatch -d afternotok:1?afternotok:2?afternotok:3 cancel.sh

Jobs whose dependency will never be satisfied must be dealt with

;Caveat:l Ds unknown until submitted
}

Solutions: CL| option --parsable

0« 0«0

Job dependencies

JID=999999 # If jobid does not exist, no dependency 1s set
for i in {1..4};
do

JID=$(sbatch --parsable --dependency=afterok:$JID submit_script_$i.sh)

done

Submits 4 jobs ('submit_script_1.sh" -> 'submit_script_4.sh’]
chained together with N-1dependency

https://slurm.schedmd.com/sbhatch.html|#0PT_dependency

<« @<« 0

Job dependencies

chainsubmit.sh

#!/bin/bash
ID=$(sbatch --parsable $1)
shift
for script in "$@"; do
ID=$(sbatch --parsable --dependency=afterok:${ID%%;=*} $script)

done

/chainsubmit.sh jobl.slurm job2.slurm job3.slurm job4.slurm

0« 0«0

Packed jobs (serial)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash
#SBATCH [..]

for 1 in {1..4};
do

srun [..] some_program $i

done

Submits 1job running 4 steps in series (dependency is implicit)
All steps inherit the full allocation.

Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash

#SBATCH [..]

#SBATCH -n 4 # can be <= 4; srun 1nstances will start when possible
for 1 in {1..4};

do

srun -nl -cl --exact some_program $i &

done

wailt

Submits 1job running 4 steps in parallel
Each step gets a subset of the allocation.

Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash

#SBATCH [..]

#SBATCH -n 4 # can be <= 4; srun 1nstances will start when possible
for 1 in {1..4};

do

srun -nl -cl --exact some_program $i &

done

wailt

If there are mores steps than the allocation allows, they are
gueued unless --overlap is specified.

“°%"% Packed jobs: --exclusive

#SLURM change log
* Changes 1n Slurm 20.11.0rcl

-- Make --exclusive the default with srun as a step adding --overlap to
reverse behavior.

-- Add --whole option to srun to allocate all resources on a node 1in an
allocation.
* Changes 1n Slurm 20.11.3

-- Partially revert changes made in 20.11.0 to srun step behavior. [..]
This reverts the behavior such that all resources on a node are assigned
to the job step by default.

-- srun - add a new --exact option, and deprecate the --whole option
(which has been restored as the default behavior).
and now --exclusive implies --exact
* Changes 1n Slurm 21.08.0rcl

-- --cpus-per-task and --threads-per-core now imply --exact.
* Changes 1n Slurm 21.08.6

-- Remove implicit --exact when --cpus-per-task 1s used.

Older Slurm versions will prefer --exclusive

ZI Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH [...]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

1f some_condition; do
scontrol requeue $SLURM_JOB_ID
fi

z] Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH [...]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

1f some_condition; do
exit 99
fi

[dfr@lemaitre3 ~] (StdEnv) $ scontrol show config | grep RequeueExit
RequeueExit = 99

RequeueExitHold = 98

z] IN-job submission

A job can submit itself again.

#!/bin/bash
#SBATCH [..]

some_program

1f some_condition; do
sbatch $0
fi

The same submission script will be used even if modified since.

Part Il: Workflows with GNU tools & Slurm

Xargs

"xargs reads items from the standard input, [..] and executes the
command [...] with items read from standard input”

Typical use cases:
- execute same command on multiple files
- line-in-file processing
- process each line output from another program

https://en.wikipedia.org/wiki/Xargs

Xargs

$ find . -name *.csv -print® [\
xargs -I{} -0 sbatch [..] --wrap ‘some_program “{}"’

Submits one job for each CSV file, passed as argument to ‘'some_program’

#!/bin/bash
#SBATCH [..]

module load [..]

find . -name *.csv -print0 |\
xargs -P $SLURM_NTASKS -I{} -0 srun --exact [..] some_program “{}"”

Generates one job step for each CSV file found (max
$SLURM _NTASKS at a time)

https://en.wikipedia.org/wiki/Xargs

Xargs

$ cat parameters.csv |\
xargs -I{} sbatch [..] --wrap “some_program {}”

Submits one job for each line in ‘parameters.csv

#!/bin/bash
#SBATCH [..]

module load [..]

cat parameters.csv |\
xargs -P $SLURM _NTASKS -I{} srun --exact [..] some_program {}

Generates one job step for each line in ‘parameters.csv’ (max
$SLURM _NTASKS at a time)

https://en.wikipedia.org/wiki/Xargs

envsubst

"standard input is copied to standard output, with references to
environment variables of the form $VARIABLE or ${VARIABLE} being
replaced with the corresponding values. ”

Typical use case:

- when program parameters are in a file rather than on
command line

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html

envsubst

$ cat input.txt
nprocs=$NPROCS
tol=$TOL
MaxIter=$MAXITER

$ export NPROCS=4; export TOL=0.01; export MAXITER=10000

$ envsubst < input.txt
nprocs=4

tol=0.01
MaxIter=100090

envsubst

$ NPROCLIST=(2 4 8)
$ TOLLIST=(0.01 0.001 0.001)
$ MAXITERLIST=(1000 10000 100000)

$ for i in {0..2}; do

> NPROC=${NPROCLIST[$i]} ; TOL=${TOLLIST[$1i]}; MAXITER=${MAXITERLIST[1i]}
> envubst < input.txt > input.job$i.txt

> sbatch [..] --wrap “some_program input.job$i.txt”

> done

Submits one job for each triplet (NPROC, TOL, MAXITER], creating
the needed input file from the environment variables.

https://en.wikipedia.org/wiki/Xargs

GNU Parallel

"GNU parallel is a shell tool for executing jobs in parallel using one
or more computers. ”

Typical use cases:
- for generating parameters (scripted submissions)
- for managing parallel processes (job packing]

https://www.gnu.org/software/parallel/

Pee"®GNU Parallel and Slurm

$ parallel sbatch [..] --wrap “some_program {}” ::: *.csv

Submits one job for each CSV file found

#!/bin/bash
#SBATCH [..]

module load [..]
parallel -j $SLURM_NTASKS srun --exclusive [..] some_program {} ::: x.csv

Generates one job step for each CSV file found, max
$SLURM _NTASK at a time

0« @<« 0

GNU Make

"GNU Make is a tool which controls the generation of executables
and other non-source files of a program from the program’s
source files."

Typical use case:

- for building software
https://www.gnu.org/software/make/

0« @<« 0

GNU Make

"GNU Make is a tool which controls the generation of executables
and other non-source files of a program from the program’s
source files. [..] Make is not limited to building a package. You can
also use Make to control installing or deinstalling a package,
generate tags tables for it, or anything else you want to do often
enough to make it worth while writing down how to do it."

Highjacked use case:

- for managing processes dependencies (job packing]
https://www.gnu.org/software/make/

GNU Make

0« @<« 0

$ cat Makefile

comment

targetl: dependenciesl .. target2
commands1

target2: dependencies2 ..
commands?2

Running make’ builds the file ‘targetl by first building file target?’

https://www.gnu.org/software/make/

0« @<« 0

GNU Make

$ cat Makefile

Create archive and compress

archive.tar.gz: archive.tar
gzip -k archive.tar

archive.tar: filel.txt
tar cvzf archive.tar directory

filel.txt:
mkdir -p directory
touch directory/filel.txt

https://www.gnu.org/software/make/

0« @<« 0

GNU Make

$ make

mkdir -p directory

touch directory/filel.txt

tar cvzf archive.tar directory
directory/

directory/filel.txt

gzip -k archive.tar

$ make

make: "archive.tar.gz' is up to date.

$ rm archive.tar.gz
$ make
gzip -k archive.tar

Make only builds what is needed (based on timestamps]

https://www.gnu.org/software/make/

GNU Make: shell

0« @<« 0

$ cat Makefile
default shell is /bin/sh

.ONESHELL:
SHELL = /bin/bash

targetl: dependencies .. target2
commands1

target2: dependencies ..
commands?2

Make will use Bash and run all commands for a given target in the

same shell invocation (otherwise, one invocation per ling)
https://www.gnu.org/software/make/

GNU Make: //

0« @<« 0

$ make --jobs 4 --output-sync

The -j or --jobs option tells make to execute many recipes
simultaneously, while --output-sync prevents mingled outputs

https://www.gnu.org/software/make/

0« @<« 0

GNU Make and Slurm

$ cat Makefile

.ONESHELL:

SHELL=srun

.SHELLFLAGS= -nl1 -cl1 --exact bash -c

[...]

#!/bin/bash
#SBATCH [..]

module load [..]
make -j $SLURM_NTASKS

Will run every command as a Slurm step. in parallel, honoring

dependencies.
http://plindenbaum.blogspot.com/2014/09/parallelizing-gnu-make-4-in-slurm.html

Part |. Workflows with Slurm
Part I1: Workflows with GNU tools & Slurm
Part Ill: Heterogeneous jobs
Part IV: Process placement

How to submit a master/slave job >

Use srun --multi-prog

You want You ask
N CPUs to launch N processes --ntasks=WN
= #! /usr/bin/env bash
o #SBATCH --ntasks=3
;‘j cp /CECI/proj/training/slurm/coordinator.sh
@ cp /CECI/proj/training/slurm/worker.sh .
© cp /CECI/proj/training/slurm/multi.conf .
=
» srun --multi-prog multi.conf
E # multi.conf for --multi-prog
: 0 ./coordinator.sh
E 1-2 ./worker.sh
e

Heterogeneous job

A job where all processes do not require the same resources. E.g.
- a master/worker setup
- a coupled simulation model (MPMD]

#! /bin/bash

#SBATCH --cpus-per-task=2
#SBATCH --mem-per-cpu=1g
#SBATCH --ntasks=1
#SBATCH --partition=mailn

#SBATCH packjob

#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4g
#SBATCH --ntasks=4

#SBATCH --partition=large

[...]

Het. MPMD job

A job where all processes do not require the same resources. E.qg.

- a master/worker setup
(Nomulti.conf file)

[...]

srun --het-group=0 coordinator.sh &
srun --het-group=1 worker.sh &

wait

Distinct steps, distinct MPI world

Het. master/worker job

A job where all processes do not require the same resources. E.qg.
- a coupled simulation model

[...]

srun model.exe : 1omanager.exe

Single step, single MPI world

Part |. Workflows with Slurm
Part I1: Workflows with GNU tools & Slurm
Part Ill: Heterogeneous jobs
Part IV: Process placement

Remember:

Process placement

How to submit an MPI job >

Specify a number of “tasks”
and optionally a number of “nodes”

N CPUs spread across distinct nodes ntasks N --nodes=N

ntasks N --ntasks-per-node=1

N CPUs spread across N/2 nodes --ntasks=N --ntasks-per-node=2

How are
ranks
distributed?

PROCID
1

o

PROCID
2

PROCID
3

. B

PROCID
1

Rank distribution across nodes

PROCID
4

!

PROCID
2

PROCID
3

!

PROCID
4

Rank distribution across nodes

Node 1 Node 2
PROCID PROCID
B -
1 2
PR%CID e PRCZCID

Node 1
PROCID PROCID
1 2
PROCID PROCID
3 4

Node 2

Rank distribution across nodes

The -m/--distribution option controls the strategy for placement

$ srun -1 -n 4 -N 2 -m block --exclusive hostname | sort
O: Im3-wOl4.cluster

1: lm3-wO1l4.cluster

2: Lm3-w018.cluster

3: lm3-w01l8.cluster
$
0
1
2
3

srun -1 -n 4 -N 2 -m cyclic --exclusive hostname | sort
: Lm3-wOl4.cluster
: Lm3-w018.cluster
: Lm3-w0l4.cluster
: Lm3-w018.cluster

Other options: arbitrary, plane=n

‘Rank distribution inside the node

“ Rank distribution per socket

The -m/--distribution second option controls the strategy for
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -1 -n 4 -c4 -m block:block --exclusive bash -c 'taskset -cp $$'

O: pid 3156907's current affinity list: 0-3
1: pid 3156908's current affinity list: 4-7
2: pid 3156909's current affinity list: 8-11
3: pid 3156910's current affinity list: 12-15

$ srun -1 -n 4 -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$°

O: pid 3156982's current affinity list: 0-3
: pid 3156983's current affinity list: 32-35
: pld 3156984's current affinity list: 4-7
: pid 3156985's current affinity list: 36-39

WN B

“ Rank distribution per socket

The -m/--distribution second option controls the strategy for
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -1 -n 4 -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$'

O: pid 3156982's current affinity list: 0-3
1: pid 3156983's current affinity list: 32-35
2: pid 3156984's current affinity list: 4-7
3: pid 3156985's current affinity list: 36-39

$ srun -1 -n 4 -c4 -m block:fcyclic --exclusive bash -c 'taskset -cp $$'

O: pid 3157056's current affinity list: 0,1,32,33
: pid 3157057's current affinity list: 2,3,34,35
: pid 3157058's current affinity list: 4,5,36,37
: pid 3157059's current affinity list: 6,7,38,39

WN B

Rank distribution per SMT thread

The -m/--distribution third option controls the strategy for

placement on cores.

- Can be replaced with --hint=[no]lmultithread

- Unfortunately there
are intermediate levels
that Slurm does not
take into account.

Machine (32G8)

Socket P#0 (16GB)

Socket P#1 (16GB)

NUMANode P#0 (8192MB)

NUMANcde P42 (8192ME)

| il |
L3 (8192KE)		L3 (8192KB)																				
L2 (2048KE)		L2 (2048K8]		L2 (2048KB)		L2 (2048KE)		L2 (2048KB)		L2 (2048KE)		L2 (2048KB)		L2(2048KB)								
L1i (64KB)		L1i (B4KB)		L1i (64KB)		L1i (64KB)		L1i (64KB)		L1 (64KB)		L1i (B4KB)		L1i (64KB)								
L1d (16KB)	L1d (16K8]		L1d (16K8)	L1d (16KB)		L1d (16KB}	L1d (16K8)		L1d (16KE)	L1d (16K8)		L1d (16KB)	L1d (16KE)		L1d (16KE)	L1d (16K8]		L1d (16K8]	L1d (16KB}		L1d (16KB}	L1d (16K8)

CoreP#0 | Core P£1 Core P#2 Core P#3 Core P4 Core P#5 CoreP#s | Core P#7 Core P#D Core Pl CoreP#2 | Core P#3 Core PE4 Core P#5. Core Pit6. Core P#7

| PUPHD | | PU PEL | | PU PE2 | | PUP#3 | | PUP#A | | PU PES | | PUPEG | | PU PET | | Puwnsl | Puwul | puwml | PU wt19| | PU wtzo| | PUP#lll | PLIP#lZl | U Pﬂal
NUMANode P#1 (8192MB)		NUMANode P#3 (8192MB)																				
L3 (8192KE)		L3 (8192KB)																				
L2 (2048KE)		L2 (2045K8)		L2 (2048KB)		L2 (2045KE)		L2 (2048KB)		L2 (2048KE)		L2 (2048KB)		L2 (2048KEB)								
L1i (64KB)		L1i (64KEB)		L1i (64KB)		L1i (64KB)		L1i (64KB)		L1i (64KB)		L1i (64KB)		LLi (64KB)								
L1d (16KE)	L1d (16KB)		L1d (16KB)	L1d (16KB)		L1d (16KB)	L1d (16KB)		L1d (16KE)	L1d (16KB)		L1d (16KB)	L1d (16KE)		L1d (16KE)	L1d (16KB)		L1d (16KB)	L1d (16KE)		L1d (16KB)	L1d (16KB)

Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#T Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#6 Core P#7

| PUPHE | | PUPEY | | PU P#10 | | PUP#IL | | PUP#12 | | PUP#I3 | | PUP#I4 | | PU PELS | | PUP#24 | | PUP#25 | | PUP#26 | | PU P#27 | | PU P#28 | | PUP#29 | | PU P#30 | | PU P31 |

Gener

1IC N

Machine (326B)

Socket P#0 (1668)

Socket P#1 (1668)

tra-node distribution

Machine (3268)

Socket P#0 (1668)

Socket P#1 (1668)

NUMANode P#0 (8192M8)

NUMANoge P#2 (8192M8)

NUMANode P#0 (8192M8)

NUMANoge P#2 (8192MB)

e [s] [oanew [vanor | [uswoe | vanso ||

o [o

P | P)

| [[| [cower [e

[oome o | = 11} =

[cavaa ==][cemmn | [(oo [[[| [coom = | [| [||| [eem | [= = |
| L1i (64KB) | | L1i (64KB) || L1i (64KB) || L1i (64KB) | L1i (64KB) || L1i (64KB) || L1i (64KB) || L1i (64KB) | | LLi (64KB) || L1i(64k8) || L1i (64KB) || L1i (64KB) | L1i (64KB) || L1i (64KB) || L1i (64KB) |
| |] (oo [suom | [cuanacr | o | [cocmer [oo | [oo | coiom ||| || [[couoer | oo | oo | e | o] [s [corner |

[Gom]

e [oo] oo | caor | o | oo ||

e [o

e | v | o | cavem

| [[| [comer [couom

Core P1

Coreps2 | CoreP#3 Core P4

CoreP#5

Core P#6

CoreP#7

Core P#1

Coreps2 | Corepa3

CoreP#a | Corepas

Core Pas

Core P#7

BES4)

Core a3

Core P4

Core P#5 Core Pas

CoreP#7

Corep#0 | CoreP#1 Coreps2 | Corepa3

Core P4

Core a5

Core Pas

CoreP#7

—— T e T T P e [:)am3 v P [ey preree 1] [y P [y o [y P [ey pomes
[rore | [ror] [roren] [rorez]

[== | [onmeerommn === |

(oo = | [ommo ||| e

e e e e e e e e | | i | Cr i || E— C— | o

e e e e e e e b= (TR ETR | TR | Cr—] E— — | ET— | o —

| W] (oo [suom | [cuanacr | o | [cocmer [oo | [oo | coiom ||| || [[couoer | oo | oo | e | o] [s [corner |

Cache size available per process

Memory bandwidth available per process
Latency to common shared memory

good
good
bad

Packed

bad
bad
good

Machine (3268)

Socket P#0 (1668)

‘Socket P#1(1668)

NUMANode P#0 (8192M8)

NUMANoge P#2 (8152MB)

| |
[owsn o e]
[z | [crowa | [ceoa | [ceoa e | [ceoa | [cova | [cowa |
[| [cown | [crown | [crown e | [crown = | [coown |
[sase [suse | [cusnser | vaaer | [uenser [usoser] [asose | somsa coer | v | [anoer | vavscr | [oo | asusa | [nsose | venser |

Core Pid

Core P#5

Core Pi

Core P&

Core Pi0

Core P#1 CoreP#2 | CorePi3 CoreP#a | CorePas

CoeP#6

Core P&

(1I2}3k4

NUMANode P#1 (8192M8)

NUMANoge P#3 (8152MB)

) o
) | [| [emn | [emn o | [ono | [cee]
e | [[[e [| [| [

oo [oomo ||

S oo ||

oo [oaomo ||

e | e

e s | s [ssaser | [swasor [conocn ||

e]

e | e

Core P#0

Core P1

Core P2

Core a3

Core P4

Core P#5 Core Pas

CoreP#7

Core P#0

Core P#1

Core P2

Core a3

Corep#a | Corepas

CoreP#6

CoreP#7

“ Arbitra ry intra-node distribution

With the --cpu-bind=map_cpu: ... option you can specify the
(ordered] list of CPUs to distribute the processes on.

WNNPFP O &~

srun -1 -n 4

. pid 18258
. pid 18259
. pid 18260

S
S
S
: pid 18261's

--cpu-bind=map_cpu:3,0,22,12 bash -c 'taskset -cp $$'

current
current
current
current

affinity list:
affinity list:
affinity list:
affinity list:

3
0
22
12

Use --bind-mask if each tasks must use multiple CPUs

https://slurm.schedmd.com/srun.html#0PT_cpu-bind

“ Rank distribution helper tool

OpenMPI's utility tool hwloc-distrib can be used to build an optimally-
spread placement based on the server hardware configuration.

$ D=$(hwloc-distrib --single 16 | xargs hwloc-calc --pulist)
$ echo $D

0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120
$ srun -1 -n 4 --cpu-bind=map_cpu:$D bash -c 'taskset -cp $$'

: pid 18258's current affinity list: ©
: pid 18259's current affinity list: 8
: pid 18260's current affinity list: 16
: pid 18261's current affinity list: 24

..

W N RO

https://linux.die.net/man/1/hwloc-distrib

“ Rank and binary distribution

In case of MPMD job, you might want to distribute executable binaries
as well with --multi-prog or with a [auncher script.

multi.conf for --multi-prog

0-3 ./modell.exe
L-7 ./model2.exe
8-11 ./modell.exe
12-15 ./model2.exe

$ hwloc-distrib 4 | xargs -L1 hwloc-calc --pulist \
| cut -d, -f 1-4 | paste -s -d,
0,1,2,3,32,33,34,35,64,65,66,67,96,97,98,99

$ srun -1 --cpu-bind=map_cpu:0,1,2,3,32,33,... --multi-prog=multi.conf

https://linux.die.net/man/1/hwloc-distrib

Rank and binary distribution

In case of MPMD job, you might want to distribute executable binaries
as well with --multi-prog or with a launcher script.

#! /bin/bash

EXE=(./modell.exe ./model2.exe)
PATTERN=(0 0 0 0 1 1 1 1)

INDEX=$((SLURM_PROCID % ${#PATTERN[®]}))
exec ${EXE[${PATTERN[INDEX]}]1}

$ srun -1 —-cpu-bind=map_cpu:0,1,2,3,32,33,... helper.sh

Part |. Workflows with Slurm
Part I1: Workflows with GNU tools
Part Ill: Heterogeneous jobs
Part IV: Process placement

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

