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neens Job arrays

"Job arrays offer a mechanism for submitting and managing
collections of similar jobs quickly and easily”

a.k.a. parametrized jobs
Typical use cases:
- parameter sweep
- file collection processing
- line-in-file processing

https://slurm.schedmd.com/job_array.html



neens Job arrays

# Submit a job array with index values between 0 and 31
$ shatch --array=0-31 -N1 ...

# Submit a job array with index values of 1, 3, 5 and 7
$ sbatch --array=1,3,5,7 -N1 ...

# Submit a job array with index values between 1 and 7
# with a step size of 2 (i.e. 1, 3, 5 and 7)
$ sbatch --array=1-7:2 -N1 ...

https://slurm.schedmd.com/job_array.html



Job arrays IDs

SLURM_JOB_ID=36
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=1
SLURM_ARRAY_TASK_COUNT=3

SLURM_JOB_ID=37
SLURM_ARRAY_JOB_ID=36
SLURM_ARRAY_TASK_ID=2
SLURM_ARRAY_TASK_COUNT=3
[...]

You can address multiple jobs in the array : for instance
'scancel 36 _[1-2]

https://slurm.schedmd.com/job_array.html



“°% Job array file names

#SBATCH --output slurm-%A_%a.out
#SBATCH --error slurm-%A_%a.err

%A -> SLURM_ARRAY_JOB_ID
%a -> SLURM_ARRAY_TASK_ID

https://slurm.schedmd.com/job_array.html



Teen Job array indices

#! /bin/bash

#

#SBATCH [...]

#SBATCH --array=0-9

module load [..]

some_program $SLURM_ARRAY_TASK_ID

Submits a 10-job array, each job runs 'some_program’ with a
parameter value from 0 to 9. Jobs are independent but can be
managed as a whole.



“e%% Caveat: integers only

The parameter must be The parameter cannot be

- categorical,
- real valued,
- multi-dimensional,
- larger than ‘MaxArraySize .

- integer,

- non-negative,

- one-dimensional,
- bounded.

S Y e .

Solution: Bash array



neens Bash array

#! /bin/bash

H#

#SBATCH [...]

#SBATCH --array=0-9
module load [..]

PARAMS=([...])

some program ${PARAMS[$SLURM_ARRAY_TASK ID]}

Submits a 10-job array, each job runs 'some_program’ with a
parameter value taken from the 'PARAMS" array

https://slurm.schedmd.com/job_array.html



“°%% Bash array : explicit

#! /bin/bash

iSBATCH [...]

#SBATCH --array=0-2
module load [..]
PARAMS=(red blue green)

some_program ${PARAMS[$SLURM_ARRAY_TASK ID]}

Submits a 3-job array, each job runs 'some_program’, once with
parameter value red’, the other ‘blue” and the final one, ‘green’

https://slurm.schedmd.com/job_array.html



Bash array : globbing

#! /bin/bash

ﬁSBATCH [...]

#SBATCH --array=0-2

module load [..]

PARAMS=(~/data/*.csv) # list of .csv files in data/

some_program “${PARAMS[$SLURM_ARRAY_TASK ID]}”

Submits a 3-job array, each job runs 'some_program with a file
matching the ~/data/*.csv pattern, in alphanumerical order.

https://www.gnu.org/software/bash/manual/bash.html#Filename-Expansion



0O00.. .
Bash array : brace expansion

#'! /bin/bash

iSBATCH [...]

#SBATCH --array=0-9

module load [..]

PARAMS=(1.{0..9}) # expands to 1.0 1.1 1.2 .. 1.9

some_program ${PARAMS[$SLURM_ARRAY TASK ID]}

Submits a 10-job array, each job runs 'some_program’ with a
parameter equal to 1.0, 1.1,1.2, ... 1.9,

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion



0O00.. .
Bash array : brace expansion

#! /bin/bash

#

#SBATCH [...]

#SBATCH --array=0-8

module load [..]

PARAMS=({1..3} {red,green,blue}) # = 1 red 1 green 1_blue 2 _red ..

some_program ${PARAMS[$SLURM_ARRAY TASK ID1/_/ }

Submits a 9-job array, each job runs 'some_program’ with two
parameters equal to 1red’, 1green, .., 3 green, 3 blue’.

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion



neens Bash array : seo

#! /bin/bash

#

#SBATCH [...]

#SBATCH --array=0-9

module load [..]

PARAMS=$(seq --format %.3E 1 0.1 2) #= 1.000E+00 1.100E+00 ..

some_program ${PARAMS[$SLURM_ARRAY_TASK ID]}

Submits a 10-job array, each job runs 'some_program’ with a
parameter equal to 1.000E+00, 1.100E+00, ..., 1.900+E0

https://www.gnu.org/software/bash/manual/bash.html#Brace-Expansion



“°%"%  Bash array : mapfile

#! /bin/bash

ﬁSBATCH [...]

#SBATCH --array=0-9

module load [..]

mapfile PARAMS < /path/to/parameterfile # reads file into variable

some_program ${PARAMS[$SLURM_ARRAY TASK ID]}

Submits a 9-job array, each job runs 'some_program  with as
parameter one line from the parameterfile’ file.
https://www.gnu.org/software/bash/manual/bash.html



"®%"Caveat: nb jobs hardcoded

The 'SBATCH  lines are comments in Bash, variable
expansion is ignored.

‘HSBATCH --array=1-$N’

. » sbatch: error: Batch job submission failed: Invalid

job array specification

Solutions: CLI option or
“stdin® submission



CLI option

#! /bin/bash
H
#SBATCH [...]

module load [..]
echo ${PARAMS[@]}

some_program “${PARAMS[$SLURM_ARRAY_TASK_ID]}”

$ PARAMS=([..])
$ N=${#PARAMS[Q]}
$ sbatch --array=0-$N submit_script.sh

Give the argument in the command line rather than in the script

https://slurm.schedmd.com/sbatch.html



OO0 < .« < . .
stdin submission

#! /bin/bash
#SBATCH [...]
#SBATCH --array=1-$N

module load [..]
echo ${PARAMS[@Q]}

some_program “${PARAMS[$SLURM_ARRAY_TASK ID]}”

$ PARAMS=([..])
$ N=${#PARAMS[Q]}
$ cat submit_script.sh | envsubst '${N}' | sbatch

Feed the script to 'sbatch’ through ‘stdin rather than as file path

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html



reene Scripted submissions

Submission scripts are not always necessary ; jobs can be
submitted directly on the command line.

Typical use cases:
- jobs too different for job arrays
- submission from within a pre-existing script

- only a few jobs

workflows



OO0 . . .
INnline submissions

#! /bin/bash

H

#SBATCH --time=[...]
#SBATCH --ntasks=[..]

module load [..] OpenMPI

mpilrun some_program

The script can be replaced with a single call to ‘shatch

$ module load [..] OpenMPI
$ sbatch --time=[..] --ntasks=[..] --wrap “mpirun some_program”




"e%% Scripted submissions

$ module load OpenMPI
$ for i in 4 8 16 32; do sbatch -n=$i --wrap “mpirun some_program”; done

Typical use case: scaling studies

#! /bin/bash #! /bin/bash

for file in ~/data/=*.dat for file in ~/data/*.dat

do —» do

compress “$file” sbatch --wrap “compress \“$file\"””
done done

Typical use case: when you already have a script that works on your
laptop without Slurm and want to use it on the cluster.



0« 0«0

Job dependencies

“-d, --dependency=<dependency_list>

Defer the start of this job until the specified dependencies
have been satisfied completed.”

Typical use cases:
1. pre-processing job
2. processing job

3. post-processing job
https://slurm.schedmd.com/sbhatch.html|#0PT_dependency



0« 0«0

Job dependencies

Possible ‘dependency_list items:

after:job_id[[+time][:jobid[+time]..]] # after job(s) start (+ time)
afterany:job_id[:jobid..] # after job(s) have terminated
afterburstbuffer:job_id[:jobid..] # after job+bbuffer is done
aftercorr:job_id[:jobid..] # job arrays

afternotok:job_id[:jobid..] # after jobs failed
afterok:job_id[:jobid..] # after jobs completed successfully

singleton

Comma-separated list- AND ; ?-separated list- OR

https://slurm.schedmd.com/sbhatch.html|#0PT_dependency



; Job dependencies

Example

$ sbatch preprocess.sh
$ sbatch -d afterok:1 processi.sh
$ sbatch -d afterok:1 process2.sh

$ sbatch -d afterok:2:3 postprocess.sh
$ sbatch -d afterany:1:2:3 cleanup.sh

$ sbatch -d afternotok:1?afternotok:2?afternotok:3 cancel.sh

Jobs whose dependency will never be satisfied must be dealt with



;Caveat:l Ds unknown until submitted
}

Solutions: CL| option --parsable



0« 0«0

Job dependencies

JID=999999 # If jobid does not exist, no dependency 1s set
for i in {1..4};
do

JID=$(sbatch --parsable --dependency=afterok:$JID submit_script_$i.sh)

done

Submits 4 jobs ('submit_script_1.sh" -> 'submit_script_4.sh’]
chained together with N-1dependency

https://slurm.schedmd.com/sbhatch.html|#0PT_dependency



<« @<« 0

Job dependencies

chainsubmit.sh

#!/bin/bash
ID=$(sbatch --parsable $1)
shift
for script in "$@"; do
ID=$(sbatch --parsable --dependency=afterok:${ID%%;=*} $script)

done

/chainsubmit.sh jobl.slurm job2.slurm job3.slurm job4.slurm




0« 0«0

Packed jobs (serial)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash
#SBATCH [..]

for 1 in {1..4};
do

srun [..] some_program $i

done

Submits 1job running 4 steps in series (dependency is implicit)
All steps inherit the full allocation.




Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash

#SBATCH [..]

#SBATCH -n 4 # can be <= 4; srun 1nstances will start when possible
for 1 in {1..4};

do

srun -nl -cl --exact some_program $i &

done

wailt

Submits 1job running 4 steps in parallel
Each step gets a subset of the allocation.



Packed jobs (parallel)

When jobs are small you can pack them into multi-step jobs to
ease overhead.

#!/bin/bash

#SBATCH [..]

#SBATCH -n 4 # can be <= 4; srun 1nstances will start when possible
for 1 in {1..4};

do

srun -nl -cl --exact some_program $i &

done

wailt

If there are mores steps than the allocation allows, they are
gueued unless --overlap is specified.



“°%"% Packed jobs: --exclusive

#SLURM change log
* Changes 1n Slurm 20.11.0rcl

-- Make --exclusive the default with srun as a step adding --overlap to
reverse behavior.

-- Add --whole option to srun to allocate all resources on a node 1in an
allocation.
* Changes 1n Slurm 20.11.3

-- Partially revert changes made in 20.11.0 to srun step behavior. [..]
This reverts the behavior such that all resources on a node are assigned
to the job step by default.

-- srun - add a new --exact option, and deprecate the --whole option
(which has been restored as the default behavior).
# and now --exclusive implies --exact
* Changes 1n Slurm 21.08.0rcl

-- --cpus-per-task and --threads-per-core now imply --exact.
* Changes 1n Slurm 21.08.6

-- Remove implicit --exact when --cpus-per-task 1s used.

Older Slurm versions will prefer --exclusive



ZI Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH [...]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

1f some_condition; do
scontrol requeue $SLURM_JOB_ID
fi




z] Job requeuing

A job can requeue itself if it has not finished working

#!/bin/bash
#SBATCH [...]

SBATCH --append

echo “Restart count: ${SLURM_RESTART_COUNT}“
some_program

1f some_condition; do
exit 99
fi

[dfr@lemaitre3 ~] (StdEnv) $ scontrol show config | grep RequeueExit
RequeueExit = 99

RequeueExitHold = 98




z] IN-job submission

A job can submit itself again.

#!/bin/bash
#SBATCH [..]

some_program

1f some_condition; do
sbatch $0
fi

The same submission script will be used even if modified since.



Part Il: Workflows with GNU tools & Slurm



Xargs

"xargs reads items from the standard input, [..] and executes the
command [...] with items read from standard input”

Typical use cases:
- execute same command on multiple files
- line-in-file processing
- process each line output from another program

https://en.wikipedia.org/wiki/Xargs



Xargs

$ find . -name \*.csv -print® [\
xargs -I{} -0 sbatch [..] --wrap ‘some_program “{}"’

Submits one job for each CSV file, passed as argument to ‘'some_program’

#!/bin/bash
#SBATCH [..]

module load [..]

find . -name \*.csv -print0 |\
xargs -P $SLURM_NTASKS -I{} -0 srun --exact [..] some_program “{}"”

Generates one job step for each CSV file found (max
$SLURM _NTASKS at a time)

https://en.wikipedia.org/wiki/Xargs



Xargs

$ cat parameters.csv |\
xargs -I{} sbatch [..] --wrap “some_program {}”

Submits one job for each line in ‘parameters.csv

#!/bin/bash
#SBATCH [..]

module load [..]

cat parameters.csv |\
xargs -P $SLURM _NTASKS -I{} srun --exact [..] some_program {}

Generates one job step for each line in ‘parameters.csv’ (max
$SLURM _NTASKS at a time)

https://en.wikipedia.org/wiki/Xargs



envsubst

"standard input is copied to standard output, with references to
environment variables of the form $VARIABLE or ${VARIABLE} being
replaced with the corresponding values. ”

Typical use case:

- when program parameters are in a file rather than on
command line

https://www.gnu.org/software/gettext/manual/html_node/envsubst-Invocation.html



envsubst

$ cat input.txt
nprocs=$NPROCS
tol=$TOL
MaxIter=$MAXITER

$ export NPROCS=4; export TOL=0.01; export MAXITER=10000

$ envsubst < input.txt
nprocs=4

tol=0.01
MaxIter=100090




envsubst

$ NPROCLIST=(2 4 8)
$ TOLLIST=(0.01 0.001 0.001)
$ MAXITERLIST=(1000 10000 100000)

$ for i in {0..2}; do

> NPROC=${NPROCLIST[$i]} ; TOL=${TOLLIST[$1i]}; MAXITER=${MAXITERLIST[1i]}
> envubst < input.txt > input.job$i.txt

> sbatch [..] --wrap “some_program input.job$i.txt”

> done

Submits one job for each triplet (NPROC, TOL, MAXITER], creating
the needed input file from the environment variables.

https://en.wikipedia.org/wiki/Xargs



GNU Parallel

"GNU parallel is a shell tool for executing jobs in parallel using one
or more computers. ”

Typical use cases:
- for generating parameters (scripted submissions)
- for managing parallel processes (job packing]

https://www.gnu.org/software/parallel/



Pee"®GNU Parallel and Slurm

$ parallel sbatch [..] --wrap “some_program {}” ::: *.csv

Submits one job for each CSV file found

#!/bin/bash
#SBATCH [..]

module load [..]
parallel -j $SLURM_NTASKS srun --exclusive [..] some_program {} ::: x.csv

Generates one job step for each CSV file found, max
$SLURM _NTASK at a time



0« @<« 0

GNU Make

"GNU Make is a tool which controls the generation of executables
and other non-source files of a program from the program’s
source files."

Typical use case:

- for building software
https://www.gnu.org/software/make/



0« @<« 0

GNU Make

"GNU Make is a tool which controls the generation of executables
and other non-source files of a program from the program’s
source files. [..] Make is not limited to building a package. You can
also use Make to control installing or deinstalling a package,
generate tags tables for it, or anything else you want to do often
enough to make it worth while writing down how to do it."

Highjacked use case:

- for managing processes dependencies (job packing]
https://www.gnu.org/software/make/



GNU Make

0« @<« 0

$ cat Makefile

# comment

targetl: dependenciesl .. target2
commands1

target2: dependencies2 ..
commands?2

Running make’ builds the file ‘targetl by first building file target?’

https://www.gnu.org/software/make/



0« @<« 0

GNU Make

$ cat Makefile

# Create archive and compress

archive.tar.gz: archive.tar
gzip -k archive.tar

archive.tar: filel.txt
tar cvzf archive.tar directory

filel.txt:
mkdir -p directory
touch directory/filel.txt

https://www.gnu.org/software/make/



0« @<« 0

GNU Make

$ make

mkdir -p directory

touch directory/filel.txt

tar cvzf archive.tar directory
directory/

directory/filel.txt

gzip -k archive.tar

$ make

make: "archive.tar.gz' is up to date.

$ rm archive.tar.gz
$ make
gzip -k archive.tar

Make only builds what is needed (based on timestamps]

https://www.gnu.org/software/make/



GNU Make: shell

0« @<« 0

$ cat Makefile
# default shell is /bin/sh

.ONESHELL:
SHELL = /bin/bash

targetl: dependencies .. target2
commands1

target2: dependencies ..
commands?2

Make will use Bash and run all commands for a given target in the

same shell invocation (otherwise, one invocation per ling)
https://www.gnu.org/software/make/



GNU Make: //

0« @<« 0

$ make --jobs 4 --output-sync

The -j or --jobs option tells make to execute many recipes
simultaneously, while --output-sync prevents mingled outputs

https://www.gnu.org/software/make/



0« @<« 0

GNU Make and Slurm

$ cat Makefile

.ONESHELL:

SHELL=srun

.SHELLFLAGS= -nl1 -cl1 --exact bash -c

[...]

#!/bin/bash
#SBATCH [..]

module load [..]
make -j $SLURM_NTASKS

Will run every command as a Slurm step. in parallel, honoring

dependencies.
http://plindenbaum.blogspot.com/2014/09/parallelizing-gnu-make-4-in-slurm.html
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How to submit a master/slave job >

Use srun --multi-prog

You want You ask
N CPUs to launch N processes --ntasks=WN
= #! /usr/bin/env bash
o #SBATCH --ntasks=3
;‘j cp /CECI/proj/training/slurm/coordinator.sh
@ cp /CECI/proj/training/slurm/worker.sh .
© cp /CECI/proj/training/slurm/multi.conf .
=
» srun --multi-prog multi.conf
E # multi.conf for --multi-prog
: 0 ./coordinator.sh
E 1-2 ./worker.sh
e




Heterogeneous job

A job where all processes do not require the same resources. E.g.
- a master/worker setup
- a coupled simulation model (MPMD]

#! /bin/bash

#SBATCH --cpus-per-task=2
#SBATCH --mem-per-cpu=1g
#SBATCH --ntasks=1
#SBATCH --partition=mailn

#SBATCH packjob

#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4g
#SBATCH --ntasks=4

#SBATCH --partition=large

[...]




Het. MPMD job

A job where all processes do not require the same resources. E.qg.

- a master/worker setup
(Nomulti.conf file)

[...]

srun --het-group=0 coordinator.sh &
srun --het-group=1 worker.sh &

wait

Distinct steps, distinct MPI world



Het. master/worker job

A job where all processes do not require the same resources. E.qg.
- a coupled simulation model

[...]

srun model.exe : 1omanager.exe

Single step, single MPI world




Part |. Workflows with Slurm
Part I1: Workflows with GNU tools & Slurm
Part Ill: Heterogeneous jobs
Part IV: Process placement



Remember:

Process placement

How to submit an MPI job >

Specify a number of “tasks”
and optionally a number of “nodes”

N CPUs spread across distinct nodes ntasks N --nodes=N

ntasks N --ntasks-per-node=1

N CPUs spread across N/2 nodes --ntasks=N --ntasks-per-node=2

How are
ranks
distributed?



PROCID
1

o

PROCID
2

PROCID
3

. B

PROCID
1

Rank distribution across nodes

PROCID
4

!

PROCID
2

PROCID
3

!

PROCID
4




Rank distribution across nodes
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Rank distribution across nodes

The -m/--distribution option controls the strategy for placement

$ srun -1 -n 4 -N 2 -m block --exclusive hostname | sort
O: Im3-wOl4.cluster

1: lm3-wO1l4.cluster

2: Lm3-w018.cluster

3: lm3-w01l8.cluster
$
0
1
2
3

srun -1 -n 4 -N 2 -m cyclic --exclusive hostname | sort
: Lm3-wOl4.cluster
: Lm3-w018.cluster
: Lm3-w0l4.cluster
: Lm3-w018.cluster

Other options: arbitrary, plane=n




‘Rank distribution inside the node




“  Rank distribution per socket

The -m/--distribution second option controls the strategy for
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -1 -n 4 -c4 -m block:block --exclusive bash -c 'taskset -cp $$'

O: pid 3156907's current affinity list: 0-3
1: pid 3156908's current affinity list: 4-7
2: pid 3156909's current affinity list: 8-11
3: pid 3156910's current affinity list: 12-15

$ srun -1 -n 4 -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$°

O: pid 3156982's current affinity list: 0-3
: pid 3156983's current affinity list: 32-35
: pld 3156984's current affinity list: 4-7
: pid 3156985's current affinity list: 36-39

WN B




“  Rank distribution per socket

The -m/--distribution second option controls the strategy for
placement on sockets. E.g. on a two-socket node (2x32 cores):

$ srun -1 -n 4 -c4 -m block:cyclic --exclusive bash -c 'taskset -cp $$'

O: pid 3156982's current affinity list: 0-3
1: pid 3156983's current affinity list: 32-35
2: pid 3156984's current affinity list: 4-7
3: pid 3156985's current affinity list: 36-39

$ srun -1 -n 4 -c4 -m block:fcyclic --exclusive bash -c 'taskset -cp $$'

O: pid 3157056's current affinity list: 0,1,32,33
: pid 3157057's current affinity list: 2,3,34,35
: pid 3157058's current affinity list: 4,5,36,37
: pid 3157059's current affinity list: 6,7,38,39

WN B




Rank distribution per SMT thread

The -m/--distribution third option controls the strategy for

placement on cores.

- Can be replaced with --hint=[no]lmultithread

- Unfortunately there
are intermediate levels
that Slurm does not
take into account.

Machine (32G8)

Socket P#0 (16GB)

Socket P#1 (16GB)

NUMANode P#0 (8192MB)

NUMANcde P42 (8192ME)

| il |
| L3 (8192KE) | | L3 (8192KB) |
| L2 (2048KE) | | L2 (2048K8] | | L2 (2048KB) | | L2 (2048KE) | | L2 (2048KB) | | L2 (2048KE) | | L2 (2048KB) | | L2(2048KB) |
| L1i (64KB) | | L1i (B4KB) | | L1i (64KB) | | L1i (64KB) | | L1i (64KB) | | L1 (64KB) | | L1i (B4KB) | | L1i (64KB) |
| L1d (16KB) | L1d (16K8] | | L1d (16K8) | L1d (16KB) | | L1d (16KB} | L1d (16K8) | | L1d (16KE) | L1d (16K8) | | L1d (16KB) | L1d (16KE) | | L1d (16KE) | L1d (16K8] | | L1d (16K8] | L1d (16KB} | | L1d (16KB} | L1d (16K8) |

CoreP#0 | Core P£1 Core P#2 Core P#3 Core P4 Core P#5 CoreP#s | Core P#7 Core P#D Core Pl CoreP#2 | Core P#3 Core PE4 Core P#5. Core Pit6. Core P#7

| PUPHD | | PU PEL | | PU PE2 | | PUP#3 | | PUP#A | | PU PES | | PUPEG | | PU PET | | Puwnsl | Puwul | puwml | PU wt19| | PU wtzo| | PUP#lll | PLIP#lZl | U Pﬂal
| NUMANode P#1 (8192MB) | | NUMANode P#3 (8192MB) |
| L3 (8192KE) | | L3 (8192KB) |
| L2 (2048KE) | | L2 (2045K8) | | L2 (2048KB) | | L2 (2045KE) | | L2 (2048KB) | | L2 (2048KE) | | L2 (2048KB) | | L2 (2048KEB) |
| L1i (64KB) | | L1i (64KEB) | | L1i (64KB) | | L1i (64KB) | | L1i (64KB) | | L1i (64KB) | | L1i (64KB) | | LLi (64KB) |
| L1d (16KE) | L1d (16KB) | | L1d (16KB) | L1d (16KB) | | L1d (16KB) | L1d (16KB) | | L1d (16KE) | L1d (16KB) | | L1d (16KB) | L1d (16KE) | | L1d (16KE) | L1d (16KB) | | L1d (16KB) | L1d (16KE) | | L1d (16KB) | L1d (16KB) |
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“ Arbitra ry intra-node distribution

With the --cpu-bind=map_cpu: ... option you can specify the
(ordered] list of CPUs to distribute the processes on.

WNNPFP O &~

srun -1 -n 4

. pid 18258
. pid 18259
. pid 18260

S
S
S
: pid 18261's

--cpu-bind=map_cpu:3,0,22,12 bash -c 'taskset -cp $$'

current
current
current
current

affinity list:
affinity list:
affinity list:
affinity list:

3
0
22
12

Use --bind-mask if each tasks must use multiple CPUs

https://slurm.schedmd.com/srun.html#0PT_cpu-bind



“ Rank distribution helper tool

OpenMPI's utility tool hwloc-distrib can be used to build an optimally-
spread placement based on the server hardware configuration.

$ D=$(hwloc-distrib --single 16 | xargs hwloc-calc --pulist)
$ echo $D

0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120
$ srun -1 -n 4 --cpu-bind=map_cpu:$D bash -c 'taskset -cp $$'

: pid 18258's current affinity list: ©
: pid 18259's current affinity list: 8
: pid 18260's current affinity list: 16
: pid 18261's current affinity list: 24

..

W N RO

https://linux.die.net/man/1/hwloc-distrib



“ Rank and binary distribution

In case of MPMD job, you might want to distribute executable binaries
as well with --multi-prog or with a [auncher script.

# multi.conf for --multi-prog

0-3 ./modell.exe
L-7 ./model2.exe
8-11 ./modell.exe
12-15 ./model2.exe

$ hwloc-distrib 4 | xargs -L1 hwloc-calc --pulist \
| cut -d, -f 1-4 | paste -s -d,
0,1,2,3,32,33,34,35,64,65,66,67,96,97,98,99

$ srun -1 --cpu-bind=map_cpu:0,1,2,3,32,33,... --multi-prog=multi.conf

https://linux.die.net/man/1/hwloc-distrib



Rank and binary distribution

In case of MPMD job, you might want to distribute executable binaries
as well with --multi-prog or with a launcher script.

#! /bin/bash

EXE=(./modell.exe ./model2.exe)
PATTERN=(0 0 0 0 1 1 1 1)

INDEX=$( (SLURM_PROCID % ${#PATTERN[®]}))
exec ${EXE[${PATTERN[INDEX]}]1}

$ srun -1 —-cpu-bind=map_cpu:0,1,2,3,32,33,... helper.sh




Part |. Workflows with Slurm
Part I1: Workflows with GNU tools
Part Ill: Heterogeneous jobs
Part IV: Process placement
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