OpenMP

Shared-Memory Parallel Programming

Orian Louant

CECI-CISM training - Fall 2025

Motivations for Parallel Computing

Most applications today are parallel applications

B in the years 2000’s the CPU manufacturers have run out of room for boosting CPU

performance

B instead of driving clock speeds and straight-line instruction throughput higher,

they turn to hyperthreading and multicore architectures

In HPC in particular, it's crucial to be able to run your application in parallel

® in HPC, recent high-end CPUs have high core count: 36-64 cores

E high core count but lower clock, single core performance of an HPC CPU can be

worse than your laptop CPU with turbo boost

Types of Parallel Systems

Distributed-memory

Shared-Memory

Processing Processing
element element
memory

Inetworh
Processing Processing
element element
memory

multiple compute nodes: distributed memory

in HPC the dominant model for distributed memory
programming is MPI, a standard that was introduced
by the MPI Forum in May 1994 and updated in June
1995, last version 4.0 (2021).

single compute node: shared memory

in HPC the dominant model for shared-memory
programming is OpenMP, a standard that was
introduced in 1997 (Fortran) and 1998 (C/C++), last
version is 5.1 (2020)

3/105

Shared Memory Systems

E OpenMP use threads to parallelize

applications for shared memory systems

Processing Processing Processing
element element element B the system consists of processing
t t t elements (CPUs, cores, GPUs) and
Interconnect memory
¥ the processing elements have access the
t entire memory of the system via an

interconnect
memory erconnec

H every processing elements can read and

write the memory (single address space)

4/105

Shared Memory Systems in the Real World

core | | core core | | core
t ¢ t ¢
e e | (e e

$

$

B3 || | B
] <X |

memory

memory

® the memory may be split into chunks leading
to some of the core being closer (faster
access) to a chunk of the memory

u different levels of cache may exist, some
shared between the cores and other private to

the core

= all the cores have access to the entire memory
of the system but the hardware complexity

may have an impact on performance

5/105

Multithreaded Application

Thread 1

Thread 2

Thread 3

Program Counter | | Program Counter | | Program Counter

Private Data

Private Data

Private Data

Shared Data

thread parallelism is one of the options for shared

memory systems

= all the threads can access the shared memory

threads can have private data, which can only be

accessed by the thread owning the data

the threads have their own program counter and

thus, can follow different control flow

6/105

Thread Communication

B most parallel applications require some form of communication

¥ in the shared memory model, threads communicate by reading and writing shared

data
Thread 1 Thread 2
mya = 123
a=mya+1 Program
mya = a + 1 3 .
T = thread 1 write to a shared variable
| —
» 123 > 125 Private Data 5 thread 2 read the value of the shared

variable

124 Shared Data

4

71105

The Synchronization Problem

B reading and writing shared data with threads executing asynchronously

¥ in the shared-memory model, we need to ensure that read and write operations

occur in the correct order

Thread 1 Thread 2
mya = 123 mya = a + 1
a=ma+ 1 4 Program = thread 1 and thread 2 execute
| —
instructions independently of each other
»123 > ? Private Data
B thread 2 read the value of the shared

variable before thread 1 write the variable

? Shared Data

8/105

Data Race

a data race occur when one or more threads in a single process access the same

memory location concurrently, and at least one of the accesses is a write
we need synchronization to ensure proper time ordering of the memory accesses

the lack of proper synchronization lead to non-deterministic behaviour

9/105

Parallelism: Tasks

B task parallelism consists in executing different

operations in parallel

—
ey
8 = in this model, each thread is responsible for the
~f oo execution of one task
2% B
i RIS B tasks may have sub-tasks that also execute in parallel

subtask 1

B writing a task parallel application consists in
identifying independent computations to be assigned

time to the tasks

10/105

Parallelism: Loop Parallelism

time

loop from 1 to 1000
¥ in scientific applications, the main source of
o parallelism is loops
‘? = if the iterations of a loop are independent then the
— loop become embarrassingly parallel
® each thread work on a portion of the iterations
end loop

r |

11/105

Shared-Memory Parallel Programming: What We Need

In order to write a shared-memory parallel application we need a way to

E run the program in parallel, to create threads

= specify which data is shared among the threads and which data is private to the

thread
¥ a way to synchronize the threads, avoiding data race

© a way to create tasks and enable loop parallelism

All these elements are provided by OpenMP

12/105

Whatis OpenMP?

B OpenMP is a shared-memory application programming interface

H OpenMP hides the low-level details and allows the programmer to describe the

parallel code with high-level constructs: compiler directives

OpenMP consist of

B compiler directive
® runtime library routines

H environment variables

13/105

OpenMP is using directives

Directives are programming language constructs that specifies how a compiler should

process its input
An OpenMP program is the combination of

B abase language (C, C++ or Fortran)

® annotations with OpenMP directives

14/105

Anatomy of an OpenMP directive

OpenMP directive in C/C++

ffpragma omp construct [clauses]

K Tells the compiler that it is a directive

OpenMP directive in Fortran

1%omp construct [clauses]

15/105

Anatomy of an OpenMP directive

OpenMP directive in C/C++

f Indicates that it is as an OpenMP directive

ffpragma omp construct [clauses]

OpenMP directive in Fortran

!$omp construct [clauses]

15/105

Anatomy of an OpenMP directive

OpenMP directive in C/C++

{#fpragma omp construct [clauses]

f

Give instruction on what to do

OpenMP directive in Fortran

!$omp construct [clauses]

15/105

Anatomy of an OpenMP directive

OpenMP directive in C/C++

Additional options (optional) \

{fpragma omp construct [clauses]

OpenMP directive in Fortran

!$omp construct [clauses]

15/105

The Advantages of Using directive

B does not modify the serial implementation, you can still compile and run the

program as a serial code
¥ they can be added incrementally allowing a gradual parallelization

= directives hide the actual parallelization work from the programmer, the compiler

replaces the directives by the appropriate calls to the OpenMP runtime and library

W easier to maintain

16/105

Going Parallel

The Parallel Construct

Parallel constructin C/C++ . .
Creates a parallel region by spawning a team of threads

{#fpragma omp parallel [clauses]
structured-block

Parallel construct in Fortran

!$omp parallel [clauses]
structured-block
'$omp end parallel

18/105

The Parallel Construct

Parallel construct in C/C++ Optional clause \

#pragma omp parallel [clauses]

structured-block

Parallel construct in Fortran

'$omp parallel [clauses]
structured-block
'$omp end parallel

18/105

The Parallel Construct

Parallel construct in C/C++

#pragma omp parallel [clauses]
structured-block

f

Block of code
Parallel construct in Fortran

'$omp parallel [clauses]
structured-block
'$omp end parallel

18/105

OpenMP Runtime Functions

#include <omp.h> use omp_lib

¥ needed to access declarations of the OpenMP runtime library routines

int omp_get_num_threads(); integer function omp_get_num_threads()

B returns the number of threads in the current team

B returns 1 if called outside of a parallel region

int omp_get_thread_num(); integer function omp_get_thread_num()

H returns the thread number, within the current team

B returns O if called outside of a parallel region

19/105

OpenMP Hello World

#include <stdio.h>
#include <omp.h>
program main
int main(int argc, charx argv[]) { use omp_lib
int tid, nthreads;

integer :: tid, nthreads
Jpragma omp parallel private(tid, nthreads)
i !$omp parallel private(tid)
tid = omp_get_thread_num(); tid = omp_get_thread_num()

nthreads = omp_get_num_threads();
print 100, tid, nthreads

printf("Hello, I'm thread %d of %d.\n", 100 format('Hello, I am thread ', &
tid, nthreads); & io, ' of ', 1i0)
¥ !$omp end parallel

end program
return 0O;

¥

20/105

Compiling the OpenMP Hello World

To compile an OpenMP program, you need to pass a specific flag to the compiler

GCC
Clang/AOCC
Intel classic
Intel DPC++
HPE Cray
NVIDIA

AMD ROCm

This flag instructs the compiler to consider OpenMP directives

gcc/gfortran
clang
icc/ifort

icx

cc/ftn
nvc/nvfortran

amdclang/amdflang

-fopenmp
-fopenmp
-gopenmp
-fopenmp
-fopenmp
-mp

-fopenmp

21/105

Compiling

For this training we will use the GCC compiler that is available on all CECI clusters.

Enabling OpenMP with GCC is done by using the flag.

These flags may be also be of interest:

Generate instructions for the compiling machine
Enable most of the compiler warning

Enable most optimizations

Enable aggressive optimizations

Provide an optimization report

Executing the OpenMP Hello World

The basic command to compile the OpenMP hello world is

$ gcc -fopenmp -o example omp_helloworld.c
$ OMP_NUM_THREADS=4 ./example

Hello, I'm thread 1 of 4.

Hello, I'm thread 2 of 4.

Hello, I'm thread 3 of 4.

Hello, I'm thread 0O of 4.

Notice that we use an environment variable in front of the command to launch our

application

23/105

Executing the OpenMP Hello World

The OMP_NUM_THREADS environment variable sets the number of threads to use for

parallel regions

export OMP_NUM_THREADS=4 4 threads for the

/example duration of the session

4 threads for thi
OMP_NUM_THREADS=4 ./example «— reads for this

execution of the program

convenient way to determines
OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK ./example <«— the number of threads from a

slurm script

24/105

Submitting an OpenMP Job

When submitting your OpenMP job to one of the CECI clusters set cpus-per-task to
specify the number of threads. For example, for NIC5:
#!/bin/bash

Basic submission script for an openmp Jjob
#SBATCH --time=01:00:00

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --mem-per-cpu=1024

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load GCC

./your_omp_app

25/105

Private and Shared Variables

In the Hello World code, we use a private (tid) clause to privatize the tid variable as

each thread need to set its own value.

shared(list) all thread see the same copy of the variables in 1ist
private(list) each thread has its own copy of the variables in 1ist

default(shared|none) define the default sharing attribute

If you set the default sharing attribute to none then, you need to specify the sharing

attribute for all the variables used in the parallel region

26/105

Private Variables

when you privatize a variable it’s as if you create a new variable, private variables

are uninitialized

it also means that, at the end of the parallel region the original variable is

unchanged
if you declare a variable inside a parallel region, this variable is private

in C++ the default constructor is called to create the variable

if you want to privatize a variable but initialize it with the value before entering the

parallel region you can use the clause

in C++ the default copy constructor is called to initialize the variable

27/105

Shared Variables

H variables are shared by default

B data allocated on heap (with amalloc) are shared and can’t be privatized

B shared variables must be handled with care to avoid data races

int x

{#fpragma omp parallel num_threads(2)

:O;

Thread1 Thread 2 x (in memory)
load x <— |0
x+1 load x — |0
store x x+1 — |1
store x — |1

28/105

Making Things Go Parallel

Creating a parallel region does not mean that that the work will be shared among the

threads. For example, if we consider this piece of code:

. . . ! arallel ivate(tid, niters
gpragma omp parallel private(tid, niters) $:Tg f ;mp_getf:;;;adfnjﬁ() iters)

tid = omp_get_thread_num(); niters = 0

it = 0;
niters do i = 1,1000

niters = niters + 1

for(int 1 = 0; i < 1000; ++1i)
end do

niters++;

print 100, i, niters
100 format ('Number of iteration for thread ', &
& i, ': ', i0)
!$omp end parallel

printf("Number of iterations performed"
"by thread %d: %d\n", i, niters);

29/105

Making Things Go Parallel

Creating a parallel region does not mean that that the work will be shared among the

threads. For example, if we consider this piece of code:

#pragma omp parallel private(tid, niters)
{

tid = omp_get_thread_num();

niters = 0;

J#pragma omp for
for(int 1 = 0; i < 1000; ++1i)
niters++;

printf("Number of iterations performed"
"by thread %d: %d\n", i, niters);

!$omp parallel private(tid, niters)
tid = omp_get_thread_num()
niters = 0

!$omp for
do i = 1,1000
niters = niters + 1
end do
!$omp end for

print 100, i, niters
100 format ('Number of iteration for thread ', &
& i, ': ', i0)
!$omp end parallel

30/105

Making Things Go Parallel

$ gcc -fopenmp -o example omp_iterations.c

$ OMP_NUM_THREADS=4 ./example

Number of iteration
Number of iteration
Number of iteration
Number of iteration

There is no worksharing: all the threads execute all the iterations of the loop

for
for
for
for

thread
thread
thread
thread

w N o

1000
1000
1000
1000

31/105

Parallel 7é Worksharing

The parallel construct means that

but

a team of threads is created, i.e. there is a fork
the code is executed redundantly by each thread

the threads in the team join at the end of the region

most scientific workloads can be parallelized by distributing the iterations of a
loop among threads
therefore the parallel construct is not sufficient we need a way to distribute the

iterations

32/105

Worksharing

Worksharing a loop is dividing the iteration space into chunks and distribute these
chunks to the threads

full iteration space

e e e

thread 0 thread 1 thread 2 thread 3
iteration space iteration space iteration space iteration space

As the threads run in parallel, we can expect a nthreads speedup as each thread works

onniters/nthreads iterations of the loop

33/105

Distributing iterations

One of the options for sharing the work between the threads is to define lower and

higher bounds of the loop depending on the thread ID.

!$omp parallel private(tid)
Ll llel
{pragma omp parat-e tid = omp_get_thread_num()
th ds = t thread
int tid = omp_get_thread_num(); nthreads = omp_get_num_threads()
int nthreads = omp_get_num_threads(); low = n % tid / nthreads + 1
high = ti 1 th
int low = n % tid / nthreads; 1g n * (tid + 1) / nthreads
int high = n % (tid + 1) / nthreads; do i = low, high
For(int i = low: i < high: ++i) 1tera§}ons(t1d) = iterations(tid) +
iterations[tid]++; ond do
5 !$omp end parallel
34/105

Distributing iterations

$ gcc -fopenmp -o example omp_iterations.c

$ OMP_NUM_THREADS=4 ./example

Number of
Number of
Number of
Number of

iteration
iteration
iteration
iteration

for
for
for
for

thread
thread
thread
thread

w N o

250
250
250
250

35/105

Distributing iterations with a directive

Instead of computing the bounds, we can use the foxr (or do) construct.

for(int i = 0; i < max_threads; ++1i)

! llel ivate (tid
iterations[i] = 0; $omp parallel private(tid)

!$omp do
doi=1,n
iterations(tid) = iterations(tid) +
1

#pragma omp parallel
i
#pragma omp for
for(int i = 0; 1 < n; ++1)
iterations[tid]++;

end do
!$omp end do
!$omp end parallel

36/105

Distributing iterations with a directive

$ gcc -fopenmp -o example omp_for_iters.c

$ OMP_NUM_THREADS=4 ./example

Number
Number
Number
Number

of
of
of
of

iteration
iteration
iteration
iteration

for thread
for thread
for thread
for thread

w N o

. 250
. 250
. 250
. 250

37/105

The Canonical for-loop

The for-loop needs to be in canonical form to be used with the for directive

#pragma omp for
for ([inttype] var = start; var < end; ++var

<= var++

> var += incr

>= var = var + incr
var--, ...)

B var, cannot be modified in the loop body. It must be an integer (signed or
unsigned), a pointer or random access iterator type
B start, end and incr must be loop invariant expressions, the number of iterations

must be computable when the loop begins

38/105

Parallel Region Binding

In order for the iterations of a loop to be shared among the threads by a for/do, the
construct needs a parallel region to bind to. If we take the previous example and remove

the parallel region:

max_threads = omp_get_max_threads()

int max_threads - omp_get max_threads(): allocate(iterations(0:max_threads-1)

int+ iterations = malloc(sizeof(int)max_threads); .
iterations = 0
for(int 1 = 0; 1 < max_threads; ++i

!
iterations[i] = 0; !$omp do

doi=1,n
iterations(tid) = iterations(tid) + 1
end do
!$omp end do

d#pragma omp for
for(int 1 = 0; i < n; ++1)
iterations[tid]++;
do 1 = 0, max_threads-1
print 100, i, iterations(i)

100 format('Number of iteration for thread ', i0, &
& toot, 10)

end do

for(int i = 0; i < max_threads; ++i
printf("Number of iteration for thread %d: %d\n",
i, iterations[i]);

39/105

Parallel Region Binding

$ OMP_NUM_THREADS=4 ./example

Number of iteration for thread 0: 1000
Number of iteration for thread 1: 0O
Number of iteration for thread 2: 0
Number of iteration for thread 3: 0

As there was no parallel region to bind to, the foxr/do construct binds to the master

thread.

40/105

Combined Directive

The following code snippet,

#pragma omp parallel
3
itpragma omp for
for(int 1 = 0; i < n; ++1)
do_something()

may also be written as combined parallel

{#pragma omp parallel for
for(int 1 = 0; 1 < n; ++1)
do_something();

!$omp parallel
!$omp do
doi=1,n
call do_something()
end do
!$omp end do
!$omp end parallel

and for directives

!$omp parallel do
doi=1,n
call do_something()
end do
!$omp end parallel do

41105

Orphaning

Directives are active in the dynamic scope of a parallel region, not just its lexical

scope. This allows for orphaned directives.

Orphaning is a situation when directives related to a parallel region are outside the

lexical extent of the parallel region.

Typical situation is calling a function containing a worksharing directive from a

parallel region.

42/105

Orphaning Example

void ax(int n, double alpha, doublex x) {
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();

printf("Executing ax by thread %d of %d threads.\n", tid,
nthreads);

int niters = 0;

ffpragma omp for

for (int 1 = 0; i < n; ++1i) {
x[1] = alpha = x[i];
niters++;

3

printf("Thread with id %d did %d iterations.\n", tid, niters);

int main (int arge, char xargv[]) {
.1

ffpragma omp parallel
i
ax(n, 3.0, x);

3

ax(n, 5.0, y);

100

200

!$omp parallel
call ax(n, 3.0d0O, x)
!$omp end parallel

call ax(n, 5.0d0, y)

contains

subroutine ax(n, alpha, x)

print 100, tid, nthreads

format('Executing ax by thread ', iO,

"of ', i@,

!$omp do
dodi=1,n

' threads."')

x(i) = alpha * x(i)
niters = niters + 1

end do
!$omp end do

print 200, tid, niters
format ('Thread with id

'did ', ie,

', 10, &
iterations."')

43/105

Orphaning Example

$ gcc -fopenmp -o example omp_orphaned.c

$ OMP_NUM_THREADS=4 ./example

Executing ax by thread 0O
Executing ax by thread 2
Executing ax by thread 1
Executing ax by thread 3
Thread with id 0 did 250
Thread with id 1 did 250
Thread with id 2 did 250
Thread with id 3 did 250
Executing ax by thread 0

of 4 threads.
of 4 threads.
of 4 threads.
of 4 threads.

iterations.
iterations.
iterations.
iterations.

of 1 threads.

Thread with id 0 did 1000 iterations.

44/105

Loop collapsing

In some cases, you can collapse the loops into one in order to increase the run trip of the

loop.

{#fpragma omp parallel for collapse(2)
for (int 1 =0; 1 < 3; ++1) {
for (int 7 =0; j < n; ++j) {
ali][j] = do_something();
k

1$omp parallel do collapse(2)
do j =1,3
doi=1,n
a(i, j) = do_something()
end do
end do
!$omp end parallel do

This is particularly useful when one of the loops is not of sufficient length to have

efficient parallelization.

45/105

Loop collapsing

The collapse clause, collapse the iterations of the n-associated loops to which the
clause applies into one larger iteration space. This clause can only apply on tightly

nested loops, meaning that there is no code between the loops.

{#fpragma omp for collapse(n) !$omp do collapse(n)
nested-for-loops nested-do-loops

46/105

Loop Scheduling

Loop scheduling, specify how iterations of a loop are divided into contiguous non-empty
subsets (chunks), and how these chunks are distributed to the threads. Changing the
loop scheduling is possible to use the schedule clause.

!$omp do schedule(kind, chunk)

do-loop
!$omp end do

#pragma omp for schedule(kind, chunk)
for-loop

Where the value of kind can be static, dynamic, guided or runtime. The default
scheduling is static. The optional chunk may have different behaviour depending on

the scheduling.

47/105

Static Loop Scheduling

With static loop scheduling, iterations are divided into chunks and the chunks are

assigned to the threads. Each chunk contains the same number of iterations, except for

the chunk that contains the last iteration, which may have fewer iterations.

{#pragma omp for schedule(static)
for-loop

You can also provide a chunk size

#pragma omp for schedule(static, 100)
for-loop

!$omp do schedule(static)
do-loop
!$omp end do

!$omp do schedule(static, 100)
do-loop
!$omp end do

48/105

Dynamic Loop Scheduling

With dynamic loop scheduling, the iterations are distributed to threads in chunks. Each

thread executes a chunk of iterations, then requests another chunk, until no chunks

remain to be distributed.

{#pragma omp for schedule(dynamic)
for-loop

You can also provide a chunk size

#pragma omp for schedule(dynamic, 100)
for-loop

!$omp do schedule(dynamic)
do-loop
!$omp end do

!$omp do schedule(dynamic, 100)
do-loop
!$omp end do

49/105

Dynamic Loop Scheduling

Dynamic scheduling particularly relevant when the amount of work of the loop iteration
is not constant.

_ Dynamic
pool of chunks thread 0
oo thread 1
—_— —
thread 2 improvement
thread 3 v
full iteration =
ull iterati .)
space < Static
__ chunks thread 0
F== thread 1
— |
I thread 2
thread 3
L time

50/105

Guided Loop Scheduling

The guided loop scheduling is similar to the dynamic scheduling except that the size of
each chunk is proportional to the number of unassigned iterations, decreasing to one.
!$omp do schedule(guided)

do-loop
!$omp end do

#pragma omp for schedule(guided)
for-loop

full iteration space

!
HEER
AEEE
ooon

51/105

Why Using the Scheduling Clause?

" The default scheduling, static witha chunk size equalsto niter/nthreads

is not ideal for all workload.

¥ It may be the case that iterations of high index represent more work. In that case,
some of the threads will finish early and have nothing to do. We have a load

imbalance.

® Changing the scheduling may help balance the amount of work between the

threads.

52/105

Example: Number of Prime Numbers

int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
1
#pragma omp for reduction(+:sum)
for (int 1 = 2; 1 <= n; i++) {
prime = 1;
Trip count of this loop may be very low or

for (int j = 2; j < 1; j++) { <—— very high depending if the number is prime
if(1%3==0) 1 or not
prime = 0;
break;

¥
¥

sum += prime;
t
f

53/105

Example: Number of Prime Numbers

int prime, sum = 0;
{#fpragma omp parallel shared(n) private(prime)
1

#pragma omp for reduction(+:sum)

for (int 1 = 2; 1 <= n; i++) {

prime = 1;
for (int j = 2; j < 1i; j++) 1
if (1% 7 ==) 1
prime = 0;
break; <«——— If the number is not a prime number, we have an early exit
k;

§

sum += prime;

§

§
53/105

Example: Number of Prime Numbers

$ gcc -fopenmp -0 example omp_schedule_prime.c
$ OMP_NUM_THREADS=4 ./example

Default Static Dynamic

N Pi(N) Time Time Time

1024 172 0.000182 0.000120 0.000104
2048 309 0.000561 0.000359 0.000425
4096 564 0.001987 0.001309 0.001216
8192 1028 0.007116 0.004474 0.004375
16384 1900 0.029730 0.015594 0.015902
32768 3512 0.099248 0.058475 0.056940
65536 6542 0.358250 0.218291 0.244626
131072 12251 1.416871 0.848736 0.788619
262144 23000 5.207946 3.193940 3.062080
524288 43390 20.565462 12.638959 12.086839

[V ol oo oMo oo

[EN
N

Guided
Time

.000121
.000393
.001239
.005114
.015161
.057160
.254815
.819390
.064527
.102800

54/105

Example: Triangular Loop

{#pragma omp parallel shared(a, n)

i
#pragma omp for
for (int 1 = 0; 1 < n; ++1) {
ali] = 0.0;

for (int § =0; j < 1i; ++j) 4
ali] += cos(-3.1 % sin(2.3 % cos ((double) 7))) ;
%

55/105

Example: Triangular Loop

$ gcc -fopenmp -o example omp_schedule_triangular.c

$ OMP_NUM_THREADS=4 ./example

1024
2048
4096
8192
16384
32768
65536

o PO O o

Default

Time

.025865
.100062
.383107
.515341
.064787
24
97.

041088
495829

w o o o o

Static
Time

.016811
.070023
.238520
.905186
.540685
15.
59.

465762
291353

w o o o o

14.
59.

Dynamic

Time
.018739
.082587
.232556
.895541
.526388
088137
403173

w o o o o

Guided
Time

.018241
.091206
.226914
.880046
.590453
14.
60.

539937
252156

56/105

Synchronization

Synchronization

Synchronization ensures that two or more threads do not simultaneously execute some

part of the program.

Synchronization may be needed for various reasons:

makes sure that a particular operation is only executed once
to avoid conflicts when accessing shared data

ensure the order in which tasks are executed

Barrier

A directive is a synchronization point at which the threads in a parallel region

will wait until all other threads in that section reach the same point.

When a first thread reaches the barrier, it waits
When a second thread reaches the barrier, it does the same thing and so on

When the last thread reaches the barrier, all the threads resume execution

Barrier

Most common usage of a barrier is to make sure that the value set by a thread is

correctly defined before reading it from another thread.

#pragma omp parallel private(tid, neighb)
1

tid = omp_get_thread_num();

neighb = tid - 1;

if (tid == 0)
neighb = omp_get_num_threads() - 1;

altid] = a[tid] = 3.5;
{#pragma omp barrier

b[tid] = a[neighb] + c;

!$omp parallel private(tid, neighb, nthreads)
tid = omp_get_thread_num()
nthreads = omp_get_num_threads()
neighb = tid - 1

if (tid .eq. 0) then
neighb = nthreads - 1

end if

a(tid) = a(tid) = 3.5

!$omp barrier

b(tid) = a(neighb) + ¢
!$omp end parallel

60/105

Implicit Barrier

Some constructs in OpenMP have an implicit barrier. This is the case for the parallel

and for/do constructs.

#pragma omp parallel
i

{#fpragma omp for
for (int 1 =0; 1 < n; ++1) $

t <«—— Implicit barrier, wait for all the threads to finish their iterations

t <«—— Implicit barrier, wait for all the threads to join

61/105

Master Directive

A master construct specifies a block of code that should be executed only by the
master thread of the team.
!$omp master

structured-block
!$omp end master

{#pragma omp master
structured-block

master section
master thread (0)

thread 1
thread 2
thread 3

parallel region

62/105

Hello World, Master Edition

Let’s revisit the hello world program but, this time, only the master thread print the

number of threads in the team.

#pragma omp parallel

3
printf("Hello, I'm thread %d\n",
omp_get_thread_num());

#pragma omp master
3
printf("There is %d threads in the team\n",
omp_get_num_threads());

100

200

!$omp parallel
print 100, omp_get_thread_num()
format('Hello, I am thread ', i0)

!$omp master
print 200, omp_get_num_threads()
format('There is ', 10, &
' threads in the team')
!$omp end master
!$omp end parallel

63/105

Hello World, Master Edition

$ gcc -fopenmp -o example omp_helloworld_master.c
$ OMP_NUM_THREADS=4 ./example

Hello, I'm thread 3

Hello, I'm thread O

There i1is 4 threads in the team

Hello, I'm thread 2

Hello, I'm thread 1

64/105

Single Directive

A single directive is executed by only one of the threads in the team (not necessarily
the master thread). There is an implicit barrier at the end.
!$omp single

structured-block
!$omp end single

{ffpragma omp single
structured-block

single section
master thread (0) —

thread 1
thread 2
thread 3

parallel region

65/105

Hello World, Single Edition

Let’s revisit the hello world program using the single construct. This time we illustrate
the most common usage of the single construct, that is, assign a value to a shared

variable.

#pragma omp parallel private(tid) !$omp parallel private(tid)
tid = omp_get_thread_num()

tid = omp_get_thread_num();
!$omp single

{#pragma omp single

nthreads = omp_get_num_threads();

nthreads = omp_get_num_threads()

print 100, tid, nthreads

100 format('Hello, I am thread ', i0, &
printf("Hello, I'm thread %d of %d" & "of ', 10, &
" in the single construct.\n", & ' in the single construct."')
tid, nthreads); !$omp end single
b
print 200, tid, nthreads
printf("Hello, I'm thread %d of %d.\n", 200 format('Hello, I am thread ', 10, &
tid, nthreads); & "of ', 10, '.")

!$omp end parallel

66/105

Hello World, Single Edition

$ gcc -fopenmp -o example omp_helloworld_single.c
$ OMP_NUM_THREADS=4 ./example

Hello, I'm thread 3 of 4 in the single construct.
Hello, I'm thread 3 of 4.

Hello, I'm thread 2 of 4.

Hello, I'm thread 0 of 4.

Hello, I'm thread 1 of 4.

67/105

Critical Section

A critical section restricts execution of the associated structured block to one thread
at atime
!$omp critical
structured-block
!$omp end critical

{#fpragma omp critical
structured-block

critical section

master thread (0)

thread 1
thread 2
thread 3

parallel region

68/105

Critical Section

Critical section is mostly used to update shared variables avoiding a data race.

J#pragma omp parallel private(tid, local_sum)

{
tid = omp_get_thread_num();

local_sum = 0;
ffpragma omp for
for (int i = 0; 1 < n; ++1i)

local_sum += a[il;

Jfpragma omp critical

1
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",
tid, local_sum, sum);
¥
¥

printf("Sum after parallel region: %d.\n", sum);

!$omp parallel private(tid, local_sum)
tid = omp_get_thread_num()
local_sum = 0

!$omp do
doi=1,n
local_sum = local_sum + a(i)
end do
!$omp end do

!$omp critical
global_sum = global_sum + local_sum

print 100, tid, local_sum, global_sum
100 format('Thread ', i0, ': local sum = ', i0, &
& ',osum = ', 40, .Y
!$omp end critical
!$omp end parallel

print%, 'Sum after parallel region:', global_sum
69/105

Critical Section

Critical section is mostly used to update shared variables avoiding a data race.

#pragma omp parallel shared(sum) private(tid, local_sum)
{

tid = omp_get_thread_num();

local_sum = 0;

{#fpragma omp for
for (int i = 0; 1 < n; ++1)
local_sum += a[i];
Critical section to update the global sum. Without the critical section,

#pragma omp critical «—
5 there is a potential data race here

sum += local_sum;

printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
I
¥

printf("Sum after parallel region: %d.\n", sum);

70/105

Critical Section

$ gcc -fopenmp -o example omp_critical.c
$ OMP_NUM_THREADS=4 ./example
Thread 0: local sum = 300, sum = 300.
Thread 3: local sum 2175, sum = 2475.
Thread 1: local sum 925, sum = 3400.
Thread 2: local sum 1550, sum = 4950.
Sum after parallel region: 4950.

71/105

Named Critical Section

Optional name clause

ffpragma omp critical (name)
structured-block

B A thread waits at the beginning of a critical section until no other thread is

executing a critical section with the same name
E All unnamed critical directives map to the same name

H Critical section names are global to the program

72/105

Named Critical Section

#pragma omp critical (sum)
4
sum += local_sum;
printf("Thread %d: local sum =
" sum = %d.\n",
tid, local_sum, sum);

{#pragma omp critical (max)
1
max = MAX(max, local_max);
printf("Thread %d: local max =
" max = %d.\n",
tid, local_max, max);

%d, "

%d, "

!$omp critical (sum)
global_sum = global_sum + local_sum
print 100, tid, 'sum', local_sum, &
& "sum', global_sum
!$omp end critical (sum)

!$omp critical (max)
global_max = max(global_max,
local _max)
print 100, tid, 'max', local_max, &
& 'max', global_max
!$omp end critical (max)

73/105

Named Critical Section

{#pragma omp critical (sum) <«—— First critical section for the global sum
]
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",
tid, local_sum, sum);

{#fpragma omp critical (max)
1
max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",
tid, local_max, max);

74/105

Named Critical Section

{#pragma omp critical (sum) <«—— First critical section for the global sum
]
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",
tid, local_sum, sum);

Second critical section for the global maximum.
ffpragma omp critical (max) <——— Athread can be in the first section while an other
i is in the second one

max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",
tid, local_max, max);

74/105

Named Critical Section

$ gcc -fopenmp -o example omp_critical_named.c
$ OMP_NUM_THREADS=4
3:

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

0:

N O NP P W

local
local
local
local
local
local
local
local

sum
max
sum
max
sum
sum
max
max

Sum after parallel region:
Max after parallel region:

3100.

= 4650.

./example
2175, sum = 2175.
99, max = 99.
925, sum =
49, max = 99.
1550, sum
300, sum = 4950.
74, max = 99.
24, max = 99.
4950.
99.

75/105

The nowait Clause

{#fpragma omp for
for (int i = 0; 1 < n; ++i) §
local sum += a[i];

t There is an implicit barrier here

{#pragma omp critical
]
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",
tid, local_sum, sum);

76/105

The nowait Clause

{#fpragma omp for
for (int i = 0; 1 < n; ++i) §
local sum += a[i];

.. There is no need to wait for the other threads to finish
{#fpragma omp critical

h the iterations to execute the critical section

sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",
tid, local_sum, sum);

76/105

The nowait Clause

{fpragma omp for nowalt «————— Weaddanowait clause to the directive
for (int 1 = 0; 1 < n; ++i) {
local_sum += a[i];

t The implicit barrier at the end of the loop is lifted

{#pragma omp critical
]
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",
tid, local_sum, sum);

76/105

The howait Clause

The nowait clause applied to a for construct remove the implicit barrier at the end of
the construct.
!$omp do

structured-block
!$omp end do nowait

{#fpragma omp for nowait
structured-block

The nowait clause can also be applied to a single directive.

!$omp do
structured-block
!$omp end single nowait

{#fpragma omp single nowait
structured-block

77/105

The nowait Clause

The nowait clause can also be convenient when the work in two different loops are

independent from each other.

{#fpragma omp parallel
]
{#pragma omp for nowait
for (int 1 =0; 1 < n; ++1) {
dfi] = af[i] + b[i];
ky

{#fpragma omp for nowait
for (int 1 =0; 1 < n; ++1) {
e[i] = ali] + c[il;
§
ky

!$omp parallel
!$omp do
doi=1,n
d(i) = a(i) + b(i)
end do
!$omp end do nowait

!$omp do
doi=1,n
e(i) = a(i) + c(i)
end do
!$omp end do nowait
!$omp end parallel

78/105

The howait Clause

The nowait clause can also be convenient when the work in two different loops are

independent from each other.

{#fpragma omp parallel
i
{#pragma omp for nowait
for (int 1 =0; 1 < n; ++1) {
dfi]l = ali] + b[il;
3t No barrier at the end of the loop

{#pragma omp for nowait
for (int 1 =0; 1 < n; ++1) {
e[i] = ali] + c[i];

The threads start the iterations of this loop as

soon as they finish their work in the first loop

ky
ky

79/105

The nowait Clause

The nowait clause can also be convenient when the work in two different loops are

independent from each other.

{#fpragma omp parallel
1
{#pragma omp for nowait
for (int 1 =0; 1 < n; ++1) {
d[i] = a[i] + b[i];
¥

{#pragma omp for nowait

for (int 1 =0; 1 < n; ++1) {
e[i] = ali] + c[i];

ky

t <«——— Implicit barrier at the end of the parallel region

79/105

Reduction
The reduction clause avoid data races when summing or combining values. This
clause can be applied to the parallel and foxr constructs
reduction(op:list)

op is an operator:
5 Arithmetic reductions: + = — max min

B Logical operator reductions: & && | ||

80/105

Reduction

The sum and maximum example using critical region can be rewritten with reduction

clauses instead

ipragma omp parallel for reduction(+:sum) \
reduction(max:max)
for (int i = 0; 1 < n; ++1i) 4%
sum += a[i];
max = MAX(max, a[i]);

printf("Sum after parallel region: %d.\n", sum);
printf("Max after parallel region: %d.\n", max);

!$omp parallel for reduction(+:sum) &
! $omp& reduction(max:imax)
doi=1,n
sum += sum + a(i)
imax = max(imax, a(i))
end do
!$omp end parallel for

printx, 'Sum after parallel region: ', sum
printx, 'Max after parallel region: ', imax

81/105

Atomic operation

An atomic operation is an operation that will always be executed without any other

thread being able to read or change state that is read or changed during the operation.

{#fpragma omp atomic [atomic-clause]
expression-statement

82/105

Atomic operation

{#fpragma omp atomic atomic-clause
expression-statement

The value of atomic-clause can be one of the following: read, write, update and

capture. If no atomic-clause is specified, the default value is update.

83/105

Atomic operation: Read and Write

The read clause allows for the atomic read of x.

{fpragma omp atomic read
Vo= X;

The write clause allows for the atomic write of x. Here, expx is an expression with

scalar type, i.e. the result of the expression is a scalar.

{fpragma omp atomic write
X = expr;

84/105

Atomic operation: Update

The update clause allows for the atomic update of x.

{#fpragma omp atomic update
expression-statement

Expression statement

X++;

T

X--; ++X; --X;

X Op= expr; X = X 0p expr; X = expr op X;

85/105

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while also

capturing the original or final value of the location designated by x.

{ffpragma omp atomic capture
expression-statement

Expression statement

V = Xt++; V = X--; V = ++X; V = --X;

Il
X
Il

V = X 0p= expr; v X Op expr;

V = X = expr op Xx;

86/105

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while also

capturing the original or final value of the location designated by x.

{#fpragma omp atomic update
structured-block

Structured block (part. 1)

3 vV = X; X op= expr; % i X op= expr; v = X; ¢
Y,
3 X

X; X = X op expr; ¢ 3 v X; X = expr op X; ¢

X 0p expr; v = x; ¢ 3 X expr op x; Vv = X; ¢

87/105

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while also

capturing the original or final value of the location designated by x.

{#fpragma omp atomic update
structured-block

Structured block (part. 2)

SV o= X; X++; F o3 vo=x; ++x; P o5 +4x; v = x; ¢

X; b o1V

3 OX++; Vv

I
>
>

1

1

Ly
A
<

1l
X

1

1
>

Ly

i --X; v=Xx;F {4 Xx--; v=x; %

87/105

Atomic example

The previous example of the summation of the elements of an array usinga critical

construct can be rewritten using an atomic update.

{#fpragma omp for
for (int i = 0; i < n; ++i) ¥
local_sum += a[i];

hy

{#fpragma omp atomic
sum += local_sum;

!$omp do
doi=1,n
local sum += local sum + a(i)
end do
!$omp end do

!$omp atomic

sum = sum + local_sum
!$omp end atomic

88/105

Atomic example

for (i = 0; 1 < 10000; ++i) {1
index[i] = 1 % 1000;
I

for (i

x[1]

0; 1 < 1000; ++1)
0.0;

{#fpragma omp parallel for

for (i = 0; 1 < 10000; ++i) 1
{#pragma omp atomic update
x[index[1]] += 1.0 % 1i;

£

do 1 = 1,10000
inds(i) = mod(i, 1000)

end do

do i = 1,1000
x(1i) = 0.0

end do

!$omp parallel do
do i = 1,10000
!$omp atomic update
x(inds(i)) = x(inds(i)) + 1.0 % 1
end do
!$omp end parallel do

89/105

f

f

f

Atomic example

or (1 = 0; i < 10000; ++i) %
index[i] = 1 % 1000;

or (1 =0; 1 < 1000; ++1)
x[1] = 0.0;

{#pragma omp parallel for

f

§

or (1 =0; 1 < 10000; ++1i) %
{#pragma omp atomic update
x[index[i]] += 1.0 % 1i;

The advantage of using atomic in this example is that
it allows updates of two different elements of x
in parallel. If a critical construct were used,

all updates to elements of x would be executed serially

90/105

Atomic vs. Critical

Safely increasing the value of in parallel can be done either by using an
ora directive
{fpragma omp atomic #pragma omp critical
count++; count++;
An atomic operation has much lower A critical section can surround any
overhead but the set of possible arbitrary block of code

operations is restricted There is a significant overhead when

It can take advantage of hardware a thread enters and exits the critical

support for atomic operations section

91/105

Atomic vs. Reduction

Don't use atomic operation this way:

ipragma omp parallel for

for (int i = 0; 1 < n; ++1i) 4%
J#pragma omp atomic
sum += a[i];

}

It is better to use a reduction clause:

i#pragma omp parallel for reduction(+sum)
for (int i =0; 1 < n; ++1i) %
sum += afli];

¥

!$omp parallel do
doi=1,n
!$omp atomic
sum = sum + a(i)
end do
!$omp end parallel do

!$omp parallel do reduction(+sum)
doi=1,n
sum = sum + a(i)
end do
!$omp end parallel do

92/105

Performance Considerations

= Avoid or minimize the use of barrier and critical sections.
B Use the nowait clause where possible to eliminate unnecessary barriers

B Favour the use of master instead of single

93/105

OpenMP and NUMA

NUMA

Non-uniform memory access (NUMA) is a memory design where the memory access
time depends on the memory location relative to the NUMA node

Compute node

¥ access to the memory

— main memory — main memory within the same NUMA

node is faster (local

access)

local access (fast)
Lo d

remote access (slow)

¥ access to the memory
outside of the NUMA

1
'

node is slower (remote

NUMA node 1 NUMA node 2 access)

95/105

OpenMP and cc-NUMA

doublex A = (doublex)malloc(N * sizeof(double));

{#pragma omp parallel for
for (int 1 = 0; 1 < N; 1i++) {
Ali] = 0.0;
§
 For a serial code: all array elements are allocated in the memory of the NUMA
node containing the core executing the thread
H For a parallel code on an OS with a first touch policy the array elements are
allocated in the memory of the NUMA node containing the core executing the

thread initializing

96/105

OpenMP and cc-NUMA

You also have two options for the placement of your threads. The first is put the threads

far apart, i.e. on different sockets.
may improve the aggregated memory bandwidth available to your application
may improve the combined cache size available to your application

may decrease performance of synchronization constructs

The second option is to put the threads close together, i.e. on two adjacent cores.
may improve performance of synchronization constructs

may decrease the available memory bandwidth and cache size

97/105

OpenMP and cc-NUMA

For the placement, you can use the OMP_PROC_BIND environment variable with the

values:
B close: successively through the available places

B spread: which spreads the threads over the places

The second option is the OMP_PLACES environment variable with the values:
W cores: places correspond to the cores

B sockets: places correspond to the sockets

98/105

False Sharing

False Sharing in Action

Another thing you need to consider if you want to get the best out of OpenMP is false
sharing. To discuss this we will start with this piece of code:

double local_sum[omp_get_max_threads()];
double sum = 0.0;

{#pragma omp parallel shared(sum)
1
int tid = omp_get_thread_num();
local_sum[tid] = 0.0;

{#pragma omp omp for
for (int 1 = 0; 1 < n; ++1)
local_sum[tid] += 0.5 % x[i] + y[i];

{#fpragma omp atomic
sum += local_sum[tid];

100/105

False Sharing in Action

Let’s measure the time spend in the parallel region (using the omp_get_wtime ()

function).
Threads | Time (s)
1 0.535418
2 0.421140
4 0.554419
8 0.597622

B The speedup from 1 thread to 2 threads is bad

® When going to 4 and 8 threads the time spend in the

parallel region is worse than with 1 thread

101/105

False Sharing

False sharing is when threads impact the performance of each other while modifying

independent variables sharing the same cache line

Core 0 Core1
H If one core writes, the cache line
L
— — holding the memory line is
v cacheline cache line ! : f
invalidated on other cores.
l EEEEENINIEEEEEENE |
I load [i
|‘ flush cache helmeofarel i Even though another core is not
ine to memory is invalidated line

using that data, the second core will

need to reload the line before it can

W access its own data again.

102/105

False Sharing: Solution

Solution: introduce a padding.

double local_sum[LINESIZExomp_get_max_threads()];
double sum = 0.0;

{#pragma omp parallel shared(sum)
1
int tid = omp_get_thread_num();
local_sum[LINESIZExtid] = 0.0;

#pragma omp omp for

for (int 1 = 0; 1 < n; ++1)
local_sum[LINESIZExtid] += 0.5 % x[i] + y[i];

#pragma omp atomic

sum += local_sum[LINESIZExtid];

103/105

False Sharing: Solution

Timing for different padding on a CPU with a cache line size of 64 bytes.

Threads | Time (s) Time (s) Time (s)
padding = 4 | padding = 8 | padding = 16

1 0.535418 0.535418 0.535418

2 0.601417 0.270089 0.270843

4 0.441149 0.152651 0.149363

104/105

False sharing

When threads access global or dynamically allocated shared data structures there

is a potential source of false sharing

False sharing may be difficult to spot. For example, when threads access
completely different global variables that happen to be relatively close together in

memory.

Use thread-local copies of data when possible. The thread-local copy can be read
and frequently modified and only when complete, be copied back to the global

data structure

105/105

	Introduction
	Going Parallel
	Synchronization
	OpenMP and NUMA
	False Sharing

