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Distributed Memory 2/110

In a distributed memory architecture:

• Each processing element (process) has 
access only to its own local memory or 
address space

• There is no globally shared address space

Consequence:

• Data exchange and communication occur 
explicitly through message passing over a 
communication network
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The fact that data exchange and communication 
occur explicitly through message passing over a 
communication network creates the need for a 
message-passing library that is:

• Flexible, efficient and portable

• Capable of hiding low-level hardware and 
software communication details from the user
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The Message Passing Interface (MPI) is a standard to enable portable, efficient, and 
scalable parallel programming, especially on distributed-memory systems:

• Portability: the same MPI-code should run on many platforms without changes

• Efficiency and scalability: minimize overhead, allow overlap of computation and 
communication, avoid unnecessary data copying

• Flexibility: support various programming models (point-to-point, collective, one-
sided/remote memory access), …

• Standardization: define syntax, semantics clearly; define bindings for multiple 
languages: C, Fortran, C++ (deprecated)
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MPI was not the first attempt at implementing a message-passing library. Earlier efforts 
included Express (ParaSoft), P4 (Argonne), PARMACS (GMD), PVM (Oak Ridge), NX/2 
(Intel), and Vertex (Cornell)

• Early 1990s: Recognition that many incompatible message-passing systems 
existed and a standard was needed

• April 1992: Workshop on Standards for Message Passing in a Distributed Memory 
Environment launched the effort

• November 1992: First draft proposals (MPI-1) were put forward, followed by 
revisions in early 1993

• November 1993: Draft standard presented at Supercomputing 931

• June 1994: MPI-1.0 officially released

1https://dl.acm.org/doi/pdf/10.1145/169627.169855

https://dl.acm.org/doi/pdf/10.1145/169627.169855
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As of today, MPI2 is the most widely used programming paradigm for distributed-
memory high-performance computing and continue to evolve3:

• The most recent officially approved version is MPI-4.1, approved in November 2023

• MPI-3 and 4 introduced improvements in collective operations and remote memory 
access

• MPI-5.0 has been approved as of June 5, 2025, bringing new features including a 
standard Application Binary Interface (ABI)

MPI is designed and updated to fully exploit the computational power of large-scale 
supercomputers, making it the de facto standard for scientific and engineering 
applications that require scalability and high performance.

2https://www.mpi-forum.org/docs/
3https://www.mpi-forum.org/implementation-status/

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/implementation-status/
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• MPI is a standard, not a specific software or implementation.

• It defines a specification: a set of rules, functions, and behaviors that ensure 
portability and interoperability across systems

• Multiple independent implementations of the MPI standard exist, developed by 
different organizations and optimized for various architectures

• Popular implementations include OpenMPI4, (Cray) MPICH5 and Intel MPI

• Programs written using the MPI standard can run on any compliant implementation 
without code changes, ensuring portability.

4https://www.open-mpi.org/
5https://www.mpich.org/

https://www.open-mpi.org/
https://www.mpich.org/


A FIRST MPI APPLICATION: 
COMPILING AND RUNNING
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#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
    MPI_Init(&argc, &argv);

    int num_ranks;
    MPI_Comm_size(MPI_COMM_WORLD, &num_ranks);

    int rank;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);

    char processor_name[MPI_MAX_PROCESSOR_NAME];
    int name_len;
    MPI_Get_processor_name(processor_name, &name_len);

    printf("Hello world from processor %s,"
           "rank %d out of %d ranks\n",
           processor_name, rank, num_ranks);

    MPI_Finalize();
    return 0;
}

This simple Hello World program illustrates 
the fundamental structure of any MPI 
application:

• It starts by initializing the MPI 
environment, enabling all processes to 
run in parallel

• Each process queries the total number 
of processes and determines its own 
rank within the global communicator

• Every process then prints a message 
identifying itself

• Finally, the program finalizes the MPI 
environment for a clean shutdown



MPI Hello World (Fortran) 10/110

program hello_mpi
  use mpi_f08
  implicit none

  integer :: ierr, num_ranks, rank, name_len
  character(len=MPI_MAX_PROCESSOR_NAME) :: processor_name

  call MPI_Init(ierr)

  call MPI_Comm_size(MPI_COMM_WORLD, num_ranks, ierr)
  call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

  call MPI_Get_processor_name(processor_name, & 
                              name_len, ierr)

  print *, 'Hello world from processor ',         &
           trim(processor_name), ', rank ', rank, &
           ' out of ', num_ranks, ' ranks.'

  call MPI_Finalize(ierr)
end program

This simple Hello World program illustrates 
the fundamental structure of any MPI 
application:

• It starts by initializing the MPI 
environment, enabling all processes to 
run in parallel

• Each process queries the total number 
of processes and determines its own 
rank within the global communicator

• Every process then prints a message 
identifying itself

• Finally, the program finalizes the MPI 
environment for a clean shutdown
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MPI_Init initializes the MPI execution 
environment:

• Must be called before any other MPI 
routine.

• In C/C++, the argc and argv 
arguments from main can be passed, 
though most implementations ignore 
them

• Returns an error code in C/C++. In 
Fortran, the error code is returned via 
the last argument

C/C++ Syntax

#include <mpi.h>
int MPI_Init(int *argc, char ***argv)

Fortran Syntax

USE MPI
MPI_INIT(IERROR)
INTEGER   IERROR

Fortran 2008 Syntax

USE mpi_f08
MPI_Init(ierror)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



MPI finalization 12/110

MPI_Finalize terminates MPI execution 
environment:

• Cleans up all MPI states

• Once this routine is called, no MPI 
routine (not even MPI_Init) may be 
called

• All pending communications 
involving a process need to be 
completed before the process calls 
MPI_Finalize

C/C++ Syntax

int MPI_Finalize()

Fortran Syntax

MPI_FINALIZE(IERROR)
INTEGER   IERRO

Fortran 2008 Syntax

MPI_Finalize(ierror)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Querying the number of processes/ranks 13/110

MPI_Comm_size returns the size of the 
group associated with a communicator:

• The number of processes involved in 
the communicator comm is returned 
via the size argument

• A communicator is an abstract type 
describing a group of processes

• If MPI_COMM_WORLD, a communicator 
available by default, is used for the 
comm argument it returns the total 
number of processes available

C/C++ Syntax

int MPI_Comm_size(MPI_Comm comm, int *size)

Fortran Syntax

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

Fortran 2008 Syntax

MPI_Comm_size(comm, size, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI_Comm_rank returns rank of the calling 
process in the communicator:

• The rank of the calling process within 
the communicator comm is returned in 
the rank argument

• An MPI process rank is an integer 
ranging from 0 to NRANKS - 1, where 
NRANKS is the total number of 
processes in the communicator.

• When MPI_COMM_WORLD is used as the 
communicator, the function returns 
the rank of the process among all 
processes

C/C++ Syntax

int MPI_Comm_rank(MPI_Comm comm, int 
*rank)      

Fortran Syntax

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

Fortran 2008 Syntax

 MPI_Comm_rank(comm, rank, ierror)
 TYPE(MPI_Comm), INTENT(IN) :: comm
 INTEGER, INTENT(OUT) :: rank
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Querying the hardware name 15/110

MPI_Get_processor_name gets the name of the “processor”. Most of the time this is the 
name of the compute node

C/C++ Syntax

int MPI_Get_processor_name(char *name, int *resultlen)

Fortran Syntax

 MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)
 CHARACTER*(*)  NAME
 INTEGER        RESULTLEN, IERROR

Fortran 2008 Syntax

 MPI_Get_processor_name(name, resultlen, ierror)
 CHARACTER(LEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name
 INTEGER, INTENT(OUT) :: resultlen
 INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Compile an MPI application (OpenMPI) 16/110

All CÉCI clusters have an MPI implementation available:

• The most commonly used implementation is OpenMPI which is accessible by 
loading the corresponding environment module (module load OpenMPI)

• Compilation is done using the provided compiler wrappers

C mpicc [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

C++ mpicxx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

Fortran mpifort [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES 

Compiler wrappers are not compilers themselves. They add the necessary compiler and 
linker flags for Open MPI, then invoke the underlying compiler (GNU compilers) to 
perform the build (see output of mpicc -show)



Compile an MPI application (Intel MPI) 17/110

CÉCI clusters also offer the Intel MPI implementation which is accessible by loading the 
corresponding environment module (module load impi) and then use the wrappers:

Intel compilers:

C mpiicx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

C++ mpiicpx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

Fortran mpiifx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES 

GNU compilers:

C mpigcc [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

C++ mpigxx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

Fortran mpif90 [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES 
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To start NPROCESSES copies of the EXECUTABLE application, you can use mpirun

mpirun -np NPROCESSES EXECUTABLE

• mpirun will usually automatically use the resource manager process starter (srun for 
SLURM) or use SSH/RSH if no resource manager is available

• In a SLURM job, mpirun automatically detects the number of processes to launch, so 
the -np option can be omitted. However, on a login node, omitting -np will cause MPI 
to use all available cores. Therefore, always specify a value for -np when running on 
a login node.

• You may sometimes see mpiexec used instead of mpirun. In most cases, the two 
commands are interchangeable. While mpiexec is the launcher recommended by the 
MPI standard, mpirun remains the most commonly used in practice.
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To start NPROCESSES copies of the EXECUTABLE application with the builtin SLURM 
launcher, you can use srun

srun --ntasks=NPROCESSES EXECUTABLE

A minimal SLURM batch job to run an MPI application would look like this

#!/bin/bash
#SBATCH --ntasks=NPROCESSES
#SBATCH --time=TIME

module load OpenMPI # or impi
srun EXECUTABLE

or use mpirun as an alternative to srun
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With OpenMPI, if you see an error message starting with this

The application appears to have been direct launched using "srun", but OMPI was 
not built with SLURM's PMI support and therefore cannot execute.

then, you need to pass the --mpi=pmix option to srun

srun --mpi=pmix OTHER_OPTIONS EXECUTABLE

You can also make this option permanent by setting the value of SLURM_MPI_TYPE to pmix 
in your bashrc

echo 'export SLURM_MPI_TYPE=pmix' >> ~/.bashrc



Common pitfalls with srun and Intel MPI 21/110

With Intel MPI, if you see an error message looking like this

MPI startup(): PMI server not found. Please set I_MPI_PMI_LIBRARY variable if it 
is not a singleton case.

then, you need to pass the --mpi=pmi2 option to srun and set the value of the 
I_MPI_PMI_LIBRARY environment variable to point to the pmi2 library

export I_MPI_PMI_LIBRARY="/usr/lib64/libpmi2.so"
srun --mpi=pmi2 OTHER_OPTIONS EXECUTABLE
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First, on the login node, we compile the C version of the hello world with mpicc

module load OpenMPI
mpicc -o mpi_hello mpi_hello.c

Then, we prepare batch job by creating a file named mpi_hello.job with content

#!/bin/bash
#SBATCH --ntasks=4
#SBATCH --time=01:00
#SBATCH --output=mpi_hello.out

module load OpenMPI
srun ./mpi_hello

Finally, we submit the job using the SLURM sbatch command

sbatch mpi_hello.job



Running the MPI hello world 23/110

Once the job is finished, we can inspect the output:

$ cat mpi_hello.out
Hello world from processor nic5-w041, rank 2 out of 4 ranks
Hello world from processor nic5-w041, rank 3 out of 4 ranks
Hello world from processor nic5-w041, rank 1 out of 4 ranks
Hello world from processor nic5-w041, rank 0 out of 4 ranks

From the output we can see

• The four processes of our application ran on a single compute node nic5-w041. 
However, this is not always the case. SLURM may distribute processes across 
different nodes.

• The output shown is not sorted: rank 2 prints first. This illustrates a key aspect of 
parallel execution. Without explicit synchronization, processes run independently, 
and the order of operations is nondeterministic.
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SLURM provide options to control how your MPI job is distributed across the available 
compute nodes in the cluster by defining both the number of processes to launch and 
how these processes are mapped to the allocated nodes:

--ntasks/-n NTASKS

specifies the total number of MPI processes to 
start for the job. This is the main option for 
determining the overall level of parallelism

--nodes/-N MIN_NODES

requests that a minimum of MIN_NODES compute 
nodes be allocated. The actual number of nodes 
used depends on availability

--ntasks-per-node NTASKS

defines how many MPI processes to launch on 
each node. This setting helps control process 
placement by controlling the distribution of the 
ranks to the compute nodes
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Calling MPI_Abort will terminates MPI 
execution environment:

• In theory, MPI_Abort is designed to 
abort all processes that belong to the 
specified communicator comm. This 
allows a controlled shutdown of a 
subset of processes if needed

• In practice, most MPI implementations 
interpret this call as a fatal error and 
terminate the entire MPI job, not just 
the communicator group

• After MPI_Abort is called, the MPI 
environment becomes invalid. No 
further MPI calls should be made

C/C++ Syntax

int MPI_Abort(MPI_Comm comm, int errorcode)   

Fortran Syntax

MPI_ABORT(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

Fortran 2008 Syntax

MPI_Comm_rank(comm, rank, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: errorcode
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Measuring wallclock time 26/110

MPI_Wtime returns an double precision 
value representing an elapsed time in 
seconds on the calling processor:

double start_time = MPI_Wtime();

//...  stuff to be timed  ...

double end_time = MPI_Wtime();

printf("That took %g seconds\n",
       end_time - start_time);

C/C++ Syntax

double MPI_Wtime()  

Fortran Syntax

DOUBLE PRECISION MPI_WTIME()

Fortran 2008 Syntax

DOUBLE PRECISION MPI_Wtime()



WORK DISTRIBUTION AND POINT 
TO POINT COMMUNICATION



Computing 𝜋 with trapezoidal rule (C) 28/110

const uint64_t NUM_STEPS = 1000000000;

const double step = 1.0 / ((double)NUM_STEPS);

double sum = 0.0;
for (uint64_t i = 0; i < NUM_STEPS; i++)
{
    const double x = ((double)i + 0.5) * step; 
    sum += 4.0 / (1.0 + x * x); 
} 

const double pi = step * sum;

As a first example on how to parallelize 
and distribute work with MPI, we will 
consider a simple application: computing 
the value of 𝜋 using trapezoidal rule.

∫
1

0

1
𝑥2 + 1

𝑑𝑥 = 𝜋
4

To parallelize this code we need to

• distribute the work of the loop among 
the MPI processes

• communicate in order to compute the 
final sum



Computing 𝜋 with trapezoidal rule (Fortran) 29/110

integer, parameter :: dp = kind(1.0d0)
integer(kind=8), parameter :: num_steps &
  = 1000000000_8

real(dp) :: step, x, sum, pi, elapsed
integer :: count_rate, count_start, count_end
integer(kind=8) :: istep

step = 1.0_dp / real(num_steps, dp)

sum = 0.0_dp
do istep = 0_8, num_steps - 1_8
    x = (real(istep, dp) + 0.5_dp) * step
    sum = sum + 4.0_dp / (1.0_dp + x * x)
end do

pi = step * sum

As a first example on how to parallelize 
and distribute work with MPI, we will 
consider a simple application: computing 
the value of 𝜋 using trapezoidal rule.

∫
1

0

1
𝑥2 + 1

𝑑𝑥 = 𝜋
4

To parallelize this code we need to

• distribute the work of the loop among 
the MPI processes

• communicate in order to compute the 
final sum
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To distribute a loop across processes, each process determines which iterations belong 
to its rank based on the total number of processes. One simple approach is to rewrite 
the loop as:

for (uint64_t i = rank; i < NUM_STEPS; i += num_ranks) 

Alternatively, the loop can be divided into contiguous chunks, where each process 
computes its own start and end indices based on its rank and the total number of ranks:

start = NumSteps ⋅ rank
NumRanks

end = NumSteps ⋅ (rank + 1)
NumRanks

− 1

While the first approach is easier to implement, we will use the second strategy because 
it is more general and applies to a wider range of problems



Computing 𝜋: distributing the work (C implementation) 31/110

  int rank, num_ranks;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &num_ranks);

  const uint64_t start = (NUM_STEPS * rank) / num_ranks;
  const uint64_t end = (NUM_STEPS * (rank + 1UL)) / num_ranks;

  double sum = 0.0;
  for (uint64_t istep = start; istep < end; istep++)
  {
      const double x = ((double)istep + 0.5) * step
      sum += 4.0 / (1.0 + x * x); 
  }  



Computing 𝜋: distributing the work (Fortran implementation) 32/110

  real(dp) :: step, x, sum, pi, elapsed
  integer :: rank, num_ranks, ierr
  integer(kind=8) :: istep, istart, iend

  call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
  call MPI_Comm_size(MPI_COMM_WORLD, num_ranks, ierr)

  istart = (num_steps * rank) / num_ranks + 1_8
  iend = (num_steps * (rank + 1_8)) / num_ranks

  step = 1.0_dp / real(num_steps, dp)

  sum = 0.0_dp
  do istep = istart, iend
      x = (real(istep, dp) + 0.5_dp) * step
      sum = sum + 4.0_dp / (1.0_dp + x * x)
  end do
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Now that the work has been distributed among the processes, we still need a way to 
compute the final sum. To achieve this, the processes must communicate their partial 
results to one designated process, which will then combine these values to produce the 
final result. We need to send and receive messages, which means

• A description of the data to send/receive: the MPI library needs to know where the 
data to send/receive begins in memory and the size of this data (number of 
elements of a given datatype)

• The rank of the sender/receiver: MPI need to be able determine which process 
should receive the message and from which process

• A way to identify the type of message: to allow multiple independent 
communications between the same pair of processes without confusion, we need a 
way to uniquely identify each message.
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C/C++ Syntax

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, 
     int tag, MPI_Comm comm)

Fortran Syntax

 MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
 <type>    BUF(*)
 INTEGER   COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Fortran 2008 Syntax

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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C/C++ Syntax

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
     int source, int tag, MPI_Comm comm, MPI_Status *status)

Fortran Syntax

 MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
 <type>    BUF(*)
 INTEGER   COUNT, DATATYPE, SOURCE, TAG, COMM
 INTEGER   STATUS(MPI_STATUS_SIZE), IERROR

Fortran 2008 Syntax

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Receiving a message: MPI_Status 36/110

• A call to MPI_Recv includes a status argument, which allows the system to return 
information about the received message

• In C, MPI_Status is a structure containing three fields: MPI_SOURCE, MPI_TAG, and 
MPI_ERROR

• In many cases, the status information is not needed; in such situations, a special 
constant can be passed instead: MPI_STATUS_IGNORE

• Inspecting the values in the status field is useful in situations where flexible receive 
operations are used. For example, when MPI_ANY_SOURCE is specified to accept a 
message from any process, or when MPI_ANY_TAG is used to accept a message with 
any tag value. In these cases, the status structure allows the receiving process to 
determine which process sent the message and which tag was used



Receiving a message: MPI_Status (Fortran) 37/110

Fortran

Status is an array of integers of size MPI_STATUS_SIZE. The constants MPI_SOURCE, 
MPI_TAG and MPI_ERROR are the indices of the entries that store the source, tag and error 
fields. Thus, status(MPI_SOURCE), status(MPI_TAG) and status(MPI_ERROR) contain, 
respectively, the source, tag and error code of the received message

Fortran 2008

The derived type TYPE(MPI_Status) contains three public INTEGER fields named 
MPI_SOURCE, MPI_TAG, and MPI_ERROR. Thus, status%MPI_SOURCE, status%MPI_TAG and 
status%MPI_ERROR contain the source, tag, and error code of a received message 
respectively
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MPI datatype C/C++ type MPI datatype C/C++ type

MPI_CHAR char MPI_UNSIGNED_CHAR unsigned char

MPI_INT int MPI_UNSIGNED unsigned int

MPI_LONG long int MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float MPI_BYTE unsigned char

MPI_DOUBLE double

MPI datatype Fortran type MPI datatype Fortran type

MPI_INTEGER integer         MPI_REAL4 real*4

MPI_REAL real            MPI_REAL8 real*8

MPI_DOUBLE_PRECISION double precision MPI_INTEGER4 integer*4

MPI_COMPLEX complex        MPI_INTEGER8 integer*8

MPI_LOGICAL logical      MPI_DOUBLE_COMPLEX double complex

MPI_CHARACTER character(1)  



About the count argument of MPI_Recv 39/110

if (rank == 0) {
    // Sender: send 4 integers
    int data[4] = {10, 20, 30, 40};
    MPI_Send(data, 4, MPI_INT, 1, tag, MPI_COMM_WORLD);
} 
else if (rank == 1) {
  MPI_Status status;
  // Receiver: prepare a buffer for 10 integers
  int buffer[10];
  MPI_Recv(buffer, 10, MPI_INT, 0, tag, 
           MPI_COMM_WORLD, &status);

  int count;
  MPI_Get_count(&status, MPI_INT, &count);

  printf("Process %d received %d elements:\n", 
         rank, count);

  for (int i = 0; i < count; i++)
    printf(" buffer[%d] = %d\n", i, buffer[i]);
}

The count argument of MPI_Recv is 
the maximum number of 
elements to receive. The actual 
value of count on the sending size 
can be lower

The exact number of elements 
actually received can be obtained 
using the MPI_Get_count function



Get the number of elements received 40/110

MPI_Get_count stores in count the number of elements actually received by the 
MPI_Recv call that returned the given status. The datatype argument must match the 
datatype specified in the corresponding MPI_Recv call.

C/C++ Syntax

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int *count)

Fortran Syntax

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
INTEGER   STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

Fortran 2008 Syntax

MPI_Get_count(status, datatype, count, ierror)
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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• Communicator: both the send and receive operations must be on the same 
communicator

• Tag: both the sender and receiver must use the same user-defined tag value. A 
receiver can use a wildcard tag (MPI_ANY_TAG) to match any tag

• Source Rank: the receiver receive operation must specify the rank of the sender, or 
use a wildcard to match any source rank (MPI_ANY_SOURCE)

• Destination Rank: the sender send operation must specify the rank of the 
destination process

• Ordering: MPI guarantees that if two messages are sent from the same sender to 
the same receiver and they both match the same receive, the messages will be 
received in the order they were sent. Similarly, if a receiver posts two receives in 
succession for the same message, the first posted receive will be matched first



Computing 𝜋: computing the final result 42/110

Now that we have discussed how to 
send and receive messages with 
MPI, we can compute the final result 
for our 𝜋 calculation code:

• Each process with a rank greater 
than 0 sends its result to rank 0

• The process with rank 0 
receives the results from all 
other ranks and combines them 
to compute the final value of 𝜋

⚠️ We will see later that this is not 
the most efficient way of doing this

if (rank == 0) {
  double pi = step * sum;
  for (int srank = 1; srank < num_ranks; srank++) {
    double remote_sum;
    MPI_Recv(&remote_sum, 1, MPI_DOUBLE, srank, TAG, 
             MPI_COMM_WORLD, MPI_STATUS_IGNORE);

    pi += step * remote_sum; 
  }

  printf(" Computed value of pi with %" PRIu64 
         " steps is %.12lf\n", NUM_STEPS, pi);
  printf(" Computation took %lf seconds\n", elapsed);
} 
else {
  MPI_Send(&sum, 1, MPI_DOUBLE, 0, TAG, MPI_COMM_WORLD);
}
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The total communication time 𝑇comm for transferring a message of size 𝑁bytes over a network 
can be modeled as:

𝑇comm = 𝑇latency +
𝑁bytes

𝐵peak

where:

• 𝑇latency is the fixed communication latency, representing the time to initiate a transfer

• 𝐵peak is the peak bandwidth of the network

The effective bandwidth 𝐵effective is then defined as the ratio of the message size to the 
total communication time:

𝐵effective =
𝑁bytes

𝑇latency +
𝑁bytes
𝐵peak
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NIC5 - latency
When we measure the bidirectional 
bandwidth, Ddta flows in both 
directions simultaneously. The 
processes sends and receives data 
at the same time

• For small messages, the 
latency is nearly constant and 
very low. This region is 
latency-limited

• For larger messages, the 
latency grows sharply. This 
region is bandwidth-limited
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NIC5 - unidirectional bandwidth

When we measure the 
unidirectional bandwidth, data 
flows in one direction only: from 
sender to receiver

• With message size <1KB, the 
communication is dominated 
by the latency

• A transfer rate plateau close to 
the theoretical performance of 
the network is observed for 
message size >1MB
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NIC5 - bidirectional bandwidth
When we measure the bidirectional 
bandwidth, data flows in both 
directions simultaneously. The 
processes sends and receives data 
at the same time.

• With message size <1KB, the 
communication is dominated 
by the latency

• Transfer rate close to the 
theoretical performance of the 
network is observed for 
message size >1MB
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MPI defines multiple protocols for sending messages between processes: the Eager and 
Rendezvous protocols

The Eager Protocol is used for small 
messages to minimize latency:

• The sender immediately sends the 
message to the receiver without 
waiting for the receiver to post a 
matching receive.

• The message is placed directly into a 
pre-allocated buffer on the receiver’s 
side.

• The receiver can later retrieve the 
data when the corresponding 
MPI_Recv is posted.
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MPI defines multiple protocols for sending messages between processes: the Eager and 
Rendezvous protocols

The Rendezvous Protocol is used for large 
messages that cannot be buffered:

• The sender does not send the 
message immediately. Instead, the 
sender first sends a Request to Send 
(RTS) control message to the receiver.

• When the receiver has posted a 
matching MPI_Recv, it replies with a 
Clear to Send (CTS) acknowledgment.

• After receiving CTS, the sender 
transfers the actual message data 
directly to the receiver.
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When MPI_Send is called, it initiates sending a message from one process to another. 
However, the point at which MPI_Send returns (i.e., when control is given back to the 
program) does not necessarily mean the message has been received by the destination 
process

What it does mean depends on the send mode and underlying protocol used:

• Eager protocol: MPI_Send can return as soon as the message has been copied into 
the system buffer

• Rendezvous protocol: MPI_Send does not return until the receiver has posted a 
matching receive and the data transfer has completed

MPI_Send is a blocking send, meaning the function won’t return until the send buffer can 
be safely reuse
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A MPI_Recv is a blocking operation:

• The call does not return until the receive buffer has been completely filled with the 
incoming message, after which control is returned to the program

• This guarantees that it is safe to access or process the data in the receive buffer

• Unlike MPI_Send, whose behavior may vary depending on the communication protocol 
used, the receive operation always follows the same blocking semantics
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The use of different communication protocols by MPI implementations can lead to cases 
where an application runs successfully on small test problems but encounters 
deadlocks when scaled to larger systems.

for (size_t buffer_size = 8; buffer_size < 32768; buffer_size *= 2) {
  // ... allocate buffers ...
  if (rank == 0) {
    MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG, MPI_COMM_WORLD);
    MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

    printf("Rank 0 - buffer size = %zu: OK\n", buffer_size);
  } else if (rank == 1) {
    MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ONE_TAG, MPI_COMM_WORLD);
    MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ZERO_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

    printf("Rank 1 - buffer size = %zu: OK\n", buffer_size);
  }
}
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Let’s consider a first scenario where the Eager protocol is used. In that case the 
application will be able to proceed and terminate successfully.

if (rank == 0) {
  // Copy to temporary buffer and returns
  MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG, MPI_COMM_WORLD);
  // Able to receive message from rank 1
  MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (rank == 1) {
  // Copy to temporary buffer and returns
  MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ONE_TAG, MPI_COMM_WORLD);
  // Able to receive message from rank 0
  MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ZERO_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
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Let’s consider a second scenario where the Rendezvous protocol is used. In that case 
the application will deadlock and will not terminate successfully.

if (rank == 0) {
  // Block until a maching Recv is posted
  MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG, MPI_COMM_WORLD);
  // Will never be posted because previous Send call is waiting for Recv from rank 1
  MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (rank == 1) {
  // Block until a maching Recv is posted
  MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ONE_TAG, MPI_COMM_WORLD);
  // Will never be posted because previous Send call is waiting for Recv from rank 0
  MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ZERO_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
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It is important to ensure that the message tags and their ordering match between the 
send and receive sides. A mismatch can lead to a deadlock when the rendezvous 
protocol is used.

for (size_t buffer_size = 8; buffer_size < 32768; buffer_size *= 2) {
  if (rank == 0) {
    // Block until a maching Recv with tag = FROM_ZERO_TAG1 is posted
    MPI_Send(send_buffer1, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG1, MPI_COMM_WORLD);
    MPI_Send(send_buffer2, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG2, MPI_COMM_WORLD);

    MPI_Recv(recv_buffer1, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
    MPI_Recv(recv_buffer2, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
  } else if (rank == 1) {
    // Block until a maching Send with tag = FROM_ZERO_TAG2 is posted
    MPI_Recv(recv_buffer1, buffer_size, MPI_DOUBLE, 0, FROM_ZERO_TAG2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
    MPI_Recv(recv_buffer2, buffer_size, MPI_DOUBLE, 0, FROM_ZERO_TAG1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

    MPI_Send(send_buffer1, buffer_size, MPI_DOUBLE, 0, FROM_ONE_TAG2, MPI_COMM_WORLD);
    MPI_Send(send_buffer2, buffer_size, MPI_DOUBLE, 0, FROM_ONE_TAG1, MPI_COMM_WORLD);
  }
}
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It is possible to force synchronous (rendezvous) communication by using the blocking send 
routine MPI_Ssend which ensures that the send operation does not complete until the matching 
receive has been initiated. The syntax is identical to that of MPI_Send.

C/C++ Syntax

int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

Fortran Syntax

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type>    BUF(*)
INTEGER   COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Fortran 2008 Syntax

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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The previous example was embarrassingly parallel, meaning that in the “update” loop

for (uint64_t istep = start; istep < end; istep++)
{
  const double x = ((double)istep + 0.5) * step
  sum += 4.0 / (1.0 + x * x); 
}

each process can compute its portion of the sum independently, without requiring any 
data or synchronization from the other processes

However, many scientific applications are tightly coupled, meaning that computations 
depend on frequent communication or synchronization between processes to exchange 
intermediate results or boundary data.
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The diffusion equation, also known as the heat equation, reads

𝜕𝑢
𝜕𝑡

= 𝛼𝜕
2𝑢

𝜕𝑥2 , 𝑥 ∈ (0, 𝐿), 𝑡 ∈ (0, 𝑇 ]

where 𝑢(𝑥, 𝑡) is the unknown function to be solved for, 𝑥 is a coordinate in space, 𝑡 is 
time and 𝛼 is the diffusion coefficient

After discretization and using a forward difference in time and a central difference in 
space, we get

𝑢𝑛+1
𝑖 − 𝑢𝑛

𝑖
Δ𝑡

= 𝛼
𝑢𝑛
𝑖+1 − 2𝑢𝑛

𝑖 + 𝑢𝑛
𝑖−1

Δ𝑥2

so that, at time step 𝑛 + 1, we can update the value of 𝑢 using

𝑢𝑛+1
𝑖 = 𝑢𝑛

𝑖 + 𝛼Δ𝑡
Δ𝑥2 (𝑢

𝑛
𝑖+1 − 2𝑢𝑛

𝑖 + 𝑢𝑛
𝑖−1)



The 1D diffusion equation: domain decomposition 60/110

In order to parallelize the 1D diffusion equation:

• The computational domain is divided into subdomains, each assigned to a process

• Updating ​𝑢𝑛+1
𝑖  requires the neighboring values 𝑢𝑛

𝑖−1 and 𝑢𝑛
𝑖+1, which belong to the left 

and right neighboring processes

• To access these boundary values, ghost cells are introduced at the edges of each 
subdomain

• The ghost cell values are exchanged between neighboring processes at each time 
step via message passing.
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const size_t subdom_start = GRID_SIZE * rank / num_ranks;
const size_t subdom_end   = GRID_SIZE * (rank + 1) / num_ranks;
const size_t subdom_size  = subdom_end - subdom_start;
    
const int left_rank  = rank > 0         ? rank - 1 : MPI_PROC_NULL;
const int right_rank = rank < num_ranks ? rank + 1 : MPI_PROC_NULL;

for (int tstep = 0; tstep < num_tsteps; tstep++) {
  MPI_Send(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD);
  MPI_Recv(&uold[0],           1, MPI_DOUBLE, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

  MPI_Send(&uold[1],             1, MPI_DOUBLE, left_rank,  1, MPI_COMM_WORLD);
  MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

  for (int i = 1; i <= subdom_size; i++) {
    unew[i] = uold[i] + alpha_dt_dx2 * (uold[i+1] - 2.0 * uold[i] + uold[i-1]);
  }
}
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subdom_start = GRID_SIZE * rank / num_ranks
subdom_end   = GRID_SIZE * (rank + 1) / num_ranks
subdom_size  = subdom_end - subdom_start
    
left_rank  = merge(rank - 1, MPI_PROC_NULL, rank > 0)
right_rank = merge(rank + 1, MPI_PROC_NULL, rank < num_ranks-1)

do tstep = 1, num_tsteps
  call MPI_Send(uold(subdom_size),  1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD)
  call MPI_Recv(uold(0),            1, MPI_DOUBLE_PRECISION, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

  call MPI_Send(uold(1),             1, MPI_DOUBLE_PRECISION, left_rank,  1, MPI_COMM_WORLD)
  call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

  do i = 1, subdom_size
    unew(i) = uold(i) + alpha_dt_dx2 * (uold(i+1) - 2.0 * uold(i) + uold(i-1))
  end do
end do
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In some situations, it is convenient to specify a “dummy” source or destination for 
communication. This simplifies boundary handling in non-periodic domains. For 
example, when performing a rank shift

const int left_rank  = rank > 0         ? rank - 1 : MPI_PROC_NULL;
const int right_rank = rank < num_ranks ? rank + 1 : MPI_PROC_NULL;

the special constant MPI_PROC_NULL can be used in place of a process rank wherever a 
source or destination argument is required. A communication involving MPI_PROC_NULL 
has no effect:

• A send to MPI_PROC_NULL returns immediately and performs no operation

• A receive from MPI_PROC_NULL also returns immediately, leaving the receive buffer 
unchanged

When a receive is issued with source = MPI_PROC_NULL, the status object is filled with 
source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0
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When implementing the exchange using blocking MPI_Send and MPI_Recv, communication 
performance can degrade significantly if the the synchronous (rendezvous) protocol is 
used:

• The send call waits for the matching receive to be posted before proceeding

• As a result, the exchange between neighboring processes becomes serialized. Each 
process must wait for its neighbor to reach the matching communication call

• This can lead to noticeable slowdowns, especially on large process counts. To 
mitigate this issue alternative communication patterns are typically preferred
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Using blocking send and receive operations in a communication pattern with cyclic 
dependencies (periodic boundary conditions) can easily lead to deadlocks:

• each process call MPI_Send first and then wait for its matching MPI_Recv

• if all processes are simultaneously waiting for each other to post their receives, none 
can proceed, and the program stalls indefinitely

To avoid this situation, the communication pattern must be designed so that not all 
processes block at the same time:

• Solution 1 odd–even pattern

• Solution 2 use the combined send–receive routine MPI_Sendrecv
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One approach is to use an odd–even communication pattern: even-ranked processes 
call MPI_Send first and MPI_Recv second, while odd-ranked processes perform the 
operations in the opposite order

if(rank % 2 == 0) {
  MPI_Send(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD);
  MPI_Recv(&uold[0],           1, MPI_DOUBLE, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

  MPI_Send(&uold[1],             1, MPI_DOUBLE, left_rank,  1, MPI_COMM_WORLD);
  MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else {
  MPI_Recv(&uold[0],           1, MPI_DOUBLE, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
  MPI_Send(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD);
    
  MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
  MPI_Send(&uold[1],             1, MPI_DOUBLE, left_rank,  1, MPI_COMM_WORLD);
}



The 1D diffusion equation: odd-even implementation (Fortan) 67/110

One approach is to use an odd–even communication pattern: even-ranked processes 
call MPI_Send first and MPI_Recv second, while odd-ranked processes perform the 
operations in the opposite order

if (modulo(rank, 2) .eq. 0) then
  call MPI_Send(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD)
  call MPI_Recv(uold(0),           1, MPI_DOUBLE_PRECISION, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
    
  call MPI_Send(uold(1),             1, MPI_DOUBLE_PRECISION, left_rank,  1, MPI_COMM_WORLD)
  call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
else
  call MPI_Recv(uold(0),           1, MPI_DOUBLE_PRECISION, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
  call MPI_Send(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD)
    
  call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
  call MPI_Send(uold(1),             1, MPI_DOUBLE_PRECISION, left_rank,  1, MPI_COMM_WORLD)
end if



Combined sendrecv: syntax 68/110

The send-receive operations combine in one call the sending of a message to one 
destination and the receiving of another message, from another process.

• The two (source and destination) are possibly the same

• When a send-receive operation is used, the communication subsystem takes care of 
the issue of preventing cyclic dependencies that may lead to deadlock

C/C++ Syntax

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype, int dest, int sendtag, 
     void *recvbuf, int recvcount, MPI_Datatype recvtype, int source, int recvtag, 
     MPI_Comm comm, MPI_Status *status)
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Fortran Syntax

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST,   SENDTAG, 
             RECVBUF, RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
<type>    SENDBUF(*), RECVBUF(*)
INTEGER   SENDCOUNT, SENDTYPE, DEST, SENDTAG
INTEGER   RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM
INTEGER   STATUS(MPI_STATUS_SIZE), IERROR

Fortran 2008 Syntax

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest,   sendtag, 
             recvbuf, recvcount, recvtype, source, recvtag, comm, status, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source, recvtag
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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With MPI_Sendrecv the exchange of the ghost cells is done in two MPI calls:

• In the first call, each process sends its leftmost interior value to its left neighbor and 
receives the right neighbor boundary value into its right ghost cell

• In the second call, the direction is reversed: each process sends its rightmost 
interior value to its right neighbor and receives the left neighbor boundary value 
into its left ghost cell.

// Send to the left and receive from the right
MPI_Sendrecv(&uold[            1], 1, MPI_DOUBLE, left_rank,  0,
             &uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

// Send to the right and receive from the left
MPI_Sendrecv(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, 1,
             &uold[          0], 1, MPI_DOUBLE, left_rank,  1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
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With MPI_Sendrecv the exchange of the ghost cells is done in two MPI calls:

• In the first call, each process sends its leftmost interior value to its left neighbor and 
receives the right neighbor boundary value into its right ghost cell

• In the second call, the direction is reversed: each process sends its rightmost 
interior value to its right neighbor and receives the left neighbor boundary value 
into its left ghost cell.

! Send to the left and receive from the right
call MPI_Sendrecv(uold(            1), 1, MPI_DOUBLE_PRECISION, left_rank,  0, &
                  uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

! Send to the right and receive from the left
call MPI_Sendrecv(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 1, &
                  uold(          0), 1, MPI_DOUBLE_PRECISION, left_rank,  1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
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In many parallel applications, communication and computation do not have to happen 
one after the other. Non-blocking communication allows processes to initiate data 
transfers without waiting for them to complete, enabling useful work to be performed 
while messages are still in transit.

This approach can help reduce idle time and improve overall performance, especially in 
large-scale systems where communication can become a bottleneck.
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MPI provides the non-blocking routine MPI_Isend, which initiates a send operation but 
returns immediately, allowing the process to continue execution without waiting for the 
data transfer to complete

• The call to MPI_Isend starts the 
communication but doesn’t guarantee 
that the data has been sent yet

• Since MPI_Isend is non-blocking, the 
process can perform other 
computations or initiate additional 
communications while the message is 
being transferred in the background

• MPI_Wait is used to check for 
completion.
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C/C++ Syntax

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,
     int tag, MPI_Comm comm, MPI_Request *request)

Fortran Syntax

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type>    BUF(*)
INTEGER   COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Fortran 2008 Syntax

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



MPI request 76/110

The arguments of MPI_Isend are identical to those of MPI_Send, except for one additional 
parameter: an MPI_Request handle

• An MPI_Request handle represents a non-blocking communication operation initiated 
by routines such as MPI_Isend or other non-blocking calls

• The MPI_Request object keeps track of the state of the operation: whether it is still in 
progress or has completed

• This handle is then used by completion routines to manage and synchronize non-
blocking operations:

• The wait functions (MPI_Wait*) block the program until one or more of the 
associated operations have finished.

• The test functions (MPI_Test*) allow the program to poll the request’s status 
without blocking
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MPI_Wait is used to wait for an MPI send or receive to complete

• A call to MPI_Wait returns when the 
operation identified by the request is 
completed

• If the request was created by a non-
blocking send or receive call, then it 
is deallocated by the call to MPI_Wait 
and the request handle is set to 
MPI_REQUEST_NULL

• The call returns, in status, 
information on the completed 
operation

C/C++ Syntax

int MPI_Wait(MPI_Request *request, 
      MPI_Status *status)

Fortran Syntax

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

Fortran 2008 Syntax

MPI_Wait(request, status, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI_Waitall blocks until multiple (count) requests to completed and return the statuses 
information for the completed requests

C/C++ Syntax

int MPI_Waitall(int count, MPI_Request array_of_requests[], MPI_Status *array_of_statuses)

Fortran Syntax

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER   COUNT, ARRAY_OF_REQUESTS(*)
INTEGER   ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Fortran 2008 Syntax

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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MPI_Waitall blocks until multiple (count) requests to completed and return the statuses 
information for the completed requests

C/C++ Syntax

int MPI_Waitall(int count, MPI_Request array_of_requests[], MPI_Status *array_of_statuses)

Fortran Syntax

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER   COUNT, ARRAY_OF_REQUESTS(*)
INTEGER   ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Fortran 2008 Syntax

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



The 1D diffusion equation: using non-blocking send 80/110

We can modify the 1D diffusion code to use non-blocking communication by replacing 
the blocking MPI_Send calls with non-blocking MPI_Isend. This change allows each 
process to initiate data transfers and immediately proceed to the receive

In this version, we still use blocking MPI_Recv calls for simplicity. Mixing blocking and 
non-blocking communication is perfectly valid in MPI

MPI_Request requests[2];

MPI_Isend(&uold[subdom_size],  1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD, &requests[0]);
MPI_Recv(&uold[0],             1, MPI_DOUBLE, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Isend(&uold[1],            1, MPI_DOUBLE, left_rank,  1, MPI_COMM_WORLD, &requests[1]);
MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Waitall(2, requests, MPI_STATUSES_IGNORE);



The 1D diffusion equation: using non-blocking send (Fortran) 81/110

We can modify the 1D diffusion code to use non-blocking communication by replacing 
the blocking MPI_Send calls with non-blocking MPI_Isend. This change allows each 
process to initiate data transfers and immediately proceed to the receive

In this version, we still use blocking MPI_Recv calls for simplicity. Mixing blocking and 
non-blocking communication is perfectly valid in MPI

type(MPI_Request) :: requests(2)

call MPI_Isend(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD, requests(1))
call MPI_Irecv(uold(0),           1, MPI_DOUBLE_PRECISION, left_rank,  0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
    
call MPI_Isend(uold(1),            1, MPI_DOUBLE_PRECISION, left_rank,  1, MPI_COMM_WORLD, requests(2))
call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

call MPI_Waitall(2, requests, MPI_STATUSES_IGNORE)
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C/C++ Syntax

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int tag, 
     MPI_Comm comm, MPI_Request *request)

Fortran Syntax

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type>  BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Fortran 2008 Syntax

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



1D diffusion equation: hiding communication 83/110

To improve performance, we can hide communication behind computation by using non-
blocking communication routines such as MPI_Isend and MPI_Irecv. The idea is to initiate 
data transfers as early as possible, then perform computations that do not depend on the 
incoming ghost cells while the communication progresses in the background

For example, in our 1D domain decomposition:

• each process can first post non-blocking sends and receives for its boundary values

• proceed to compute the interior points of its subdomain: those that do not require 
the ghost cells

• once the interior computations are complete, the process can call MPI_Wait to ensure 
that the communication has finished and then update the boundary points using the 
newly received data
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MPI_Request recv_requests[2];
MPI_Request send_requests[2];

MPI_Irecv(&uold[0],             1, MPI_DOUBLE, left_rank,  0, MPI_COMM_WORLD, &recv_requests[0]);
MPI_Irecv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, &recv_requests[1]);

MPI_Isend(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD, &send_requests[0]);
MPI_Isend(&uold[1],           1, MPI_DOUBLE, left_rank,  1, MPI_COMM_WORLD, &send_requests[1]);

for (int i = 2; i <= subdom_size-1; i++) {
  unew[i] =  uold[i] + alphadt_dx2 * (uold[i+1] - 2.0 * uold[i] + uold[i-1]);
}

MPI_Waitall(2, recv_requests, MPI_STATUSES_IGNORE);

unew[1] =  uold[1] + alphadt_dx2 * (uold[2] - 2.0 * uold[1] + uold[0]);
unew[subdom_size] =  uold[subdom_size] + alphadt_dx2 
    * (uold[subdom_size+1] - 2.0 * uold[subdom_size] + uold[subdom_size-1]);

MPI_Waitall(2, send_requests, MPI_STATUSES_IGNORE);



The 1D diffusion equation: hiding communication (Fortran) 85/110

type(MPI_Request) :: recv_requests(2), send_requests(2)

call MPI_Isend(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD, send_requests(1))  
call MPI_Isend(uold(1),           1, MPI_DOUBLE_PRECISION, left_rank,  1, MPI_COMM_WORLD, send_requests(2))
  
call MPI_Irecv(uold(0),             1, MPI_DOUBLE_PRECISION, left_rank,  0, MPI_COMM_WORLD, recv_requests(1))
call MPI_Irecv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, recv_requests(2))

do i = 2, subdom_size-1
  unew(i) = uold(i) + alphadt_dx2 * (uold(i+1) - 2.0 * uold(i) + uold(i-1))
end do

call MPI_Waitall(2, recv_requests, MPI_STATUSES_IGNORE)

unew(1) =  uold(1) + alphadt_dx2 * (uold(2) - 2.0 * uold(1) + uold(0))
unew(subdom_size) =  uold(subdom_size) + alphadt_dx2 &
    * (uold(subdom_size+1) - 2.0 * uold(subdom_size) + uold(subdom_size-1))

call MPI_Waitall(2, send_requests, MPI_STATUSES_IGNORE)



Example of the effect of communication on performance (1/2) 86/110

To illustrate the impact of communication on performance, we will examine a GPU-based 
Discontinuous Galerkin Maxwell solver, comparing results obtained with blocking and non-
blocking send and receive operations
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Example of the effect of communication on performance (2/2) 87/110

By using non-blocking send and receive operations and overlapping communication with 
computation, we achieve roughly a 30% gain in performance
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MPI AND ACCELERATORS (GPU)



GPU aware MPI 89/110

Most MPI implementations nowadays are GPU-aware. GPU-aware MPI refers 
to MPI libraries that can directly send and receive data stored in GPU memory 
without requiring the application to copy data back to the CPU first. With GPU-
aware MPI, applications can call MPI functions using device pointers directly

In traditional (non–GPU-aware) MPI:

• Data must be copied from GPU memory to the host (CPU) memory

• MPI sends the CPU buffer over the network

• The receiver copies CPU memory to GPU memory

These extra copies cost time, bandwidth, and CPU involvement



GPU aware MPI: same node communication 90/110

If two ranks are on the same node, MPI may use GPU peer-to-peer (P2P) 
transfers (via NVLink, PCIe, or xGMI), use shared memory segments exposed to 
GPUs or use CUDA IPC to map one process GPU memory into another’s address 
space



GPU aware MPI: node to node communication 91/110

For communication between nodes, GPU-aware MPI can use GPUDirect RDMA, 
which allows network interface (NIC) to read/write GPU memory directly, without 
CPU involvement and without staging through host memory



COLLECTIVE COMMUNICATION



Collective communication 93/110

So far, we have focused on point-to-point (communication, where data is explicitly 
exchanged between two specific processes using operations such as MPI_Send and 
MPI_Recv. While these routines give fine-grained control over data movement, they can 
become cumbersome and inefficient when multiple processes need to communicate in 
a coordinated way

In contrast, collective communication involves all processes in a communicator 
participating in a single, coordinated operation. Instead of managing many individual 
sends and receives between pairs of processes

Examples include operations such as:

• Broadcasts: where one process sends data to all others

• Gather and scatter: operations which collect or distribute data among processes

• Reductions: combine values from all processes (e.g., sums, minima, maxima)



Broadcast: overview 94/110

An MPI_Bcast operation broadcasts a message stored in buffer of the process with rank 
root and store it in the buffer of all other processes of the communicator comm

To avoid deadlock, all processes within the communicator comm must invoke MPI_Bcast. 
The same requirement applies to all collective communication routines in MPI



Broadcast: syntax 95/110

C/C++ Syntax

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

Fortran Syntax

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type>    BUFFER(*)
INTEGER   COUNT, DATATYPE, ROOT, COMM, IERROR

Fortran 2008 Syntax

MPI_Bcast(buffer, count, datatype, root, comm, ierror)
TYPE(*), DIMENSION(..) :: buffer
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Why Use Collective Communication in MPI 96/110

Collective communication routines in MPI, such as MPI_Bcast, can, in principle, be 
implemented using only point-to-point operations. However, a naïve broadcast 
implemented with point-to-point calls often uses a simple linear pattern resulting in 𝘖(𝘱) 
steps, where 𝘱 is the number of processes

Many MPI collectives use communication patterns based on a hypercube or binomial 
tree, which have logarithmic depth. With such patterns, the number of processes that 
“have” the data doubles at each step, the broadcast completes in 𝗅𝗈𝗀𝟤(𝘱) steps



Gather: overview 97/110

An MPI_Gather operation collects data from all processes in a communicator into a single 
receive buffer on the root process. Conceptually it is as if each process provides its local 
contribution in sendbuf, which contains sendcount elements of type sendtype

The root process gathers all these messages into its recvbuf, where the ith block of 
recvcount elements of type recvtype corresponds to the data sent from process i



Gather: syntax 98/110

C/C++ Syntax

int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
     void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran Syntax

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)
<type>  SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT
INTEGER COMM, IERROR

Fortran 2008 Syntax

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, recvcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Scatter: overview 99/110

An MPI_Scatter performs the inverse operation of MPI_Gather. Conceptually, it is as if 
the root process takes a contiguous buffer sendbuf, splits it into num_ranks equal 
segments of size sendcount, and sends the ith segment to the ith process

Meanwhile, each process performs a corresponding receive to obtain its portion of the 
data in recvbuf



Scatter: syntax 100/110

C/C++ Syntax

int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype, 
     void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran Syntax

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)
<type>  SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT
INTEGER COMM, IERROR

Fortran 2008 Syntax

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, recvcount, root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Gather and Scatter: regarding the arguments 101/110

• All arguments to MPI_Gather and MPI_Scatter are significant on process root

• On other processes:

• Gather: only arguments sendbuf, sendcount, sendtype, root and comm are 
significant

• Scatter: only arguments recvbuf, recvcount, recvtype, root and comm are 
significant

• The arguments root and comm must have identical values on all processes

• All processes in the communicator comm must call MPI_Gather/MPI_Scatter 
otherwise, the program will hang



Computing 𝜋: computing the final result with a gather 102/110

We can rewrite the way we computed the final sum for the computation of 𝜋 using an 
MPI_Gather:

if (rank == 0) {
  double* remote_sums = malloc(num_ranks * sizeof(double));
  MPI_Gather(&sum, 1, MPI_DOUBLE, remote_sums, 1, MPI_DOUBLE, MPI_COMM_WORLD);
  
  double pi = 0.0;
  for (int srank = 1; srank < num_ranks; srank++) {  
    pi += step * remote_sums[i]; 
  }

  free(remote_sums);

  printf(" Computed value of pi with %" PRIu64 " steps is %.12lf\n", NUM_STEPS, pi);
  printf(" Computation took %lf seconds\n", elapsed);
} else {
  MPI_Gather(&sum, 1, MPI_DOUBLE, NULL, 1, MPI_DOUBLE, MPI_COMM_WORLD);
}



Reduction: overview 103/110

The MPI_Reduce operation allows processes to combine data from all ranks in a 
communicator into a single result using a specified reduction operation (sum, maximum, 
minimum, …)

• Each process provides a local value, and the result of applying the operation across 
all processes is stored on a designated root process.

• This is particularly useful when aggregating results from distributed computations: 
summing partial results computed by each process to obtain a global total, finding 
the maximum value across all ranks, or combining arrays element-wise

MPI Op Operation MPI Op Operation MPI Op Operation

MPI_MIN min MPI_SUM + MPI_BAND &

MPI_MAX max MPI_PROD * MPI_BOR |

MPI_LAND && MPI_LOR ||
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C/C++ Syntax

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, 
     MPI_Op op, int root, MPI_Comm comm)

Fortran Syntax

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type>  SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

Fortran 2008 Syntax

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror



Computing 𝜋: computing the final result with a reduction 105/110

We can rewrite the way we computed the final sum for the computation of 𝜋 using an 
MPI_Reduce:

double final_sum = 0.0;
MPI_Reduce(&sum, &final_sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
  
if (rank == 0) {
  const double pi = final_sum * step;
  
  printf(" Computed value of pi with %" PRIu64 " steps is %.12lf\n", NUM_STEPS, pi);
  printf(" Computation took %lf seconds\n", elapsed);
}



DEBUGGING TIPS



Using GDB with MPI 107/110

Parallel debuggers such as Perforce TotalView and Linaro DDT provide powerful tools 
for inspecting MPI applications, but they are often expensive and not available on the 
CÉCI clusters

However, you can still perform basic debugging using a standard serial debugger like 
GDB in batch mode (--batch). In this mode, you can provide the commands to execute 
using the -ex option, for example:

-ex 'r' -ex 'GDB_COMMAND' -ex 'OTHER_GDB_COMMAND'

To run your MPI program and collect a backtrace when it crashes, you can use a 
command such as:

mpirun -np NPROCESS gdb --batch -ex 'r' -ex 'bt' --args EXECUTABLE OPTIONS



Memory debugging 108/110

The Address Sanitizer (ASan) is a powerful debugging tool that can be enabled at 
compile time to detect common memory-related errors such as use-after-free, memory 
leaks, and heap overflows. You can activate it by compiling your program with the flags:

-g -fsanitize=address

Compared to tools like Valgrind, the Address Sanitizer is significantly faster and 
therefore practical for use with HPC applications. However, it still introduces a 
noticeable performance overhead, so it should be used only during debugging and not 
for production runs



Memory debugging 109/110

The Address Sanitizer is particularly useful for diagnosing memory access issues in MPI 
programs, where traditional debuggers like GDB can sometimes produce misleading 
backtraces. For example, a segmentation fault may appear to originate from within 
MPI_Finalize:

Thread 1 "mpi_app" received signal SIGSEGV, Segmentation fault.
...
#7  0x00007ffff7de7fcd in ompi_mpi_finalize () from /lib/x86_64-linux-gnu/libmpi.so.40
#8  0x00005555555557fe in main (argc=<optimized out>, argv=<optimized out>) at ./mpi_app.c:159

In such cases, the error often stems not from MPI_Finalize itself, but from an invalid 
memory address passed to a previous MPI call. The Address Sanitizer can precisely 
identify where the invalid access occurred, helping you trace the true origin of the 
memory error rather than its downstream consequence.
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