DISTRIBUTED MEMORY
PROGRAMMING WITH MPI

Orian Louant

‘ C i C l CECI/CISM training sessions

November 26 2025 - Louvain-La-Neuve

Distributed Memory

In a distributed memory architecture:

« Each processing element (process) has
access only to its own local memory or
address space

» There is no globally shared address space

Consequence:

» Data exchange and communication occur
explicitly through message passing over a
communication network

P | [P2 || P || Pa
| | | |
core core core core
| | | |
mem mem mem mem
| | | |
NIC NIC NIC NIC
| | | |

Communication network

Message Passing Library 3110

The fact that data exchange and communication
occur explicitly through message passing over a
communication network creates the need for a
message-passing library that is:

» Flexible, efficient and portable

» Capable of hiding low-level hardware and
software communication details from the user

P | [P2 || P || Pa
| | | |
core core core core
| | | |
mem mem mem mem
| | | |
NIC NIC NIC NIC
| | | |

Communication network

The Message Passing Interface 4/10

The Message Passing Interface (MPI) is a standard to enable portable, efficient, and
scalable parallel programming, especially on distributed-memory systems:

» Portability: the same MPI-code should run on many platforms without changes

» Efficiency and scalability: minimize overhead, allow overlap of computation and
communication, avoid unnecessary data copying

 Flexibility: support various programming models (point-to-point, collective, one-
sided/remote memory access), ...

» Standardization: define syntax, semantics clearly; define bindings for multiple
languages: C, Fortran, C++ (deprecated)

The History of MPI 5/110

MPI was not the first attempt at implementing a message-passing library. Earlier efforts
included Express (ParaSoft), P4 (Argonne), PARMACS (GMD), PVM (Oak Ridge), NX/2
(Intel), and Vertex (Cornell)

« Early 1990s: Recognition that many incompatible message-passing systems
existed and a standard was needed

o April 1992: Workshop on Standards for Message Passing in a Distributed Memory
Environment launched the effort

« November 1992: First draft proposals (MPI-1) were put forward, followed by
revisions in early 1993

« November 1993: Draft standard presented at Supercomputing 93’
* June 1994: MPI-1.0 officially released

'https://dl.acm.org/doi/pdf/10.1145/169627.169855

https://dl.acm.org/doi/pdf/10.1145/169627.169855

MPI today 6/110

As of today, MPI” is the most widely used programming paradigm for distributed-
memory high-performance computing and continue to evolve®:

» The most recent officially approved version is MPI-4.1, approved in November 2023

« MPI-3 and 4 introduced improvements in collective operations and remote memory
access

» MPI-5.0 has been approved as of June 5, 2025, bringing new features including a
standard Application Binary Interface (ABI)

MPI is designed and updated to fully exploit the computational power of large-scale
supercomputers, making it the de facto standard for scientific and engineering
applications that require scalability and high performance.

?https://www.mpi-forum.org/docs/
*https://www.mpi-forum.org/implementation-status/

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/implementation-status/

Standard vs Implementation 7/M0

« MPI is a standard, not a specific software or implementation.

« It defines a specification: a set of rules, functions, and behaviors that ensure
portability and interoperability across systems

» Multiple independent implementations of the MPI standard exist, developed by
different organizations and optimized for various architectures

« Popular implementations include OpenMPI*, (Cray) MPICH® and Intel MPI

» Programs written using the MPI standard can run on any compliant implementation
without code changes, ensuring portability.

*https://www.open-mpi.org/
*https://www.mpich.org/

https://www.open-mpi.org/
https://www.mpich.org/

A FIRST MPI APPLICATION:
COMPILING AND RUNNING

MPI Hello World (C/C++) 9/110

#include <mpi.h> This simple Hello World program illustrates
fanctude <stdio.h> the fundamental structure of any MPI
int main(int argc, char*x argv) { application:

MPI_Init(&argc, &argv);
. « |t starts by initializing the MPI
int num_ranks;

MPI_Comm_size(MPI_COMM_WORLD, &num_ranks); environment, enabling all processes to

int rank; run in parallel
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

» Each process queries the total number
char processor_name[MPI_MAX_PROCESSOR_NAME];

int name_len: of processes and determines its own
MPI_Get_processor_name(processor_name, &name_len); rank Wlthln the glObaI Communicator
printf("Hello world from processor %s," .

urank %d out of %d ranks\n", « Every process then prints a message

processor_name, rank, num_ranks);

identifying itself

MPI_Finalize(); . . .
return 0; Finally, the program finalizes the MPI

environment for a clean shutdown

MPI Hello World (Fortran) 10/110

This simple Hello World program illustrates

program hello_mpi the fundamental structure of any MPI
use mpi_f0O8 . .
implicit none appllcatlon:
integer :: ierr, num_ranks, rank, name_len o |t starts by InItIaIIZIng the MPI

character(len=MPI_MAX_PROCESSOR_NAME) :: processor_name . .
environment, enabling all processes to

call MPI_Init(ierr) .
run in parallel

call MPI_Comm_size(MPI_COMM_WORLD, num_ranks, ierr)

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr) » Each process queries the total number
call MPI_Get_processor_name(processor_name, & Of prOCeSSGS and determines |tS own
name_len, ierr) rank within the global communicator
print *, 'Hello world from processor ', & .
trim(processor_name), ', rank ', rank, & » Every process then prints a message
" out of ', num_ranks, ' ranks.'

identifying itself

call MPI_Finalize(ierr)

end program « Finally, the program finalizes the MPI
environment for a clean shutdown

MPI initialization 1110

MPI_Init initializes the MPI execution C/C++ Syntax

environment: #include <mpi.h>
int MPI_Init(int *argc, char xxxargv)

» Must be called before any other MPI

routine. Fortran Syntax
» In C/C++, the argc and argv USE MPI

arguments from main can be passed, MPI_INIT(IERROR)

though most implementations ignore INTEGER — IERROR

them

, Fortran 2008 Syntax

» Returns an error code in C/C++. In

Fortran, the error code is returned via ~ USE mpi_f08

MPI_Init(ierror)
the last argument INTEGER, OPTIONAL, INTENTCOUT) :: ierror

MPI finalization 12/10

MPI_Finalize terminates MPI execution

. C/C++ Syntax
environment:

int MPI_Finalize()
» Cleans up all MPI states

« Once this routine is called, no MPI Fortran Syntax
routine (not even MPI_Init) may be MPI_FINALIZE(IERROR)
called INTEGER IERRO

» All pending communications
involving a process need to be

completed before the process calls MPI_Finalize(ierror)
. . INTEGER, OPTIONAL, INTENT(COUT) :: ierror
MPI_Finalize

Fortran 2008 Syntax

Querying the number of processes/ranks 13/110

MPI_Comm_size returns the size of the C/C++ Syntax

r associated with a communicator:
grotp int MPI_Comm_size(MPI_Comm comm, int *size)

« The number of processes involved in
the communicator comm is returned Fortran Syntax

via the size argument MPI_COMM_SIZE(COMM, SIZE, IERROR)

. . INTEGER COMM, SIZE, IERROR
» A communicator is an abstract type

describing a group of processes
. Fortran 2008 Syntax
o |f MPI_COMM_WORLD, a communicator
MPI_Comm_size(comm, size, ierror)

avallable by default, is used for the TYPE(MPI_Comm), INTENTCIN) :: comm
comm argument it returns the total INTEGER, INTENT(OUT) :: size
number of processes available INTEGER, OPTIONAL, INTENT(COUT) :: ierror

Querying the processes/ranks identifier 14/10

MPI_Comm_rank returns rank of the calling

process in the communicator: C/C++ Syntax

» The rank of the calling process within
the communicator comm is returned in
the rank argument

» An MPI process rank is an integer
ranging from 0 to NRANKS - 1, where
NRANKS is the total number of
processes in the communicator.

« When MPI_COMM_WORLD is used as the
communicator, the function returns
the rank of the process among all
processes

int MPI_Comm_rank(MPI_Comm comm, int
*rank)

Fortran Syntax

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

Fortran 2008 Syntax

MPI_Comm_rank(comm, rank, ierror)
TYPECMPI_Comm), INTENTCIN) :: comm
INTEGER, INTENTCOUT) :: rank

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

Querying the hardware name 15/110

MPI_Get_processor_name gets the name of the “processor”. Most of the time this is the
name of the compute node

C/C++ Syntax

int MPI_Get_processor_name(char *name, int *resultlen)

Fortran Syntax

MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)
CHARACTER=(*) NAME
INTEGER RESULTLEN, IERROR

Fortran 2008 Syntax

MPI_Get_processor_name(name, resultlen, ierror)
CHARACTER(CLEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name
INTEGER, INTENT(COUT) :: resultlen

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

Compile an MPI application (OpenMPI) 16/110

All CECI clusters have an MPI implementation available:

» The most commonly used implementation is OpenMPI which is accessible by
loading the corresponding environment module (module load OpenMPI)

» Compilation is done using the provided compiler wrappers

C mpicc [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES
C++ mpicxx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES
Fortran mpifort [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

Compiler wrappers are not compilers themselves. They add the necessary compiler and
linker flags for Open MPI, then invoke the underlying compiler (GNU compilers) to
perform the build (see output of mpicc -show)

Compile an MPI application (Intel MPI) 17/110

CECI clusters also offer the Intel MPI implementation which is accessible by loading the
corresponding environment module (module load impi) and then use the wrappers:

Intel compilers:

C mpiicx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES
C++ mpiicpx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES
Fortran mpiifx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

GNU compilers:
C mpigcc [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES
C++ mpigxx [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES
Fortran mpif90 [COMPILER_OPTIONS] [-o EXECUTABLE_NAME] SOURCES

Run an MPI application (mpirun) 18/110

To start NPROCESSES copies of the EXECUTABLE application, you can use mpirun

mpirun —np NPROCESSES EXECUTABLE

» mpirun will usually automatically use the resource manager process starter (srun for
SLURM) or use SSH/RSH if no resource manager is available

* Ina SLURM job, mpirun automatically detects the number of processes to launch, so
the -np option can be omitted. However, on a login node, omitting —np will cause MPI
to use all available cores. Therefore, always specify a value for -np when running on
a login node.

« You may sometimes see mpiexec used instead of mpirun. In most cases, the two
commands are interchangeable. While mpiexec is the launcher recommended by the
MPI standard, mpirun remains the most commonly used in practice.

Run an MPI application (srun) 19/110

To start NPROCESSES copies of the EXECUTABLE application with the builtin SLURM
launcher, you can use srun

srun ——ntasks=NPROCESSES EXECUTABLE

A minimal SLURM batch job to run an MPI application would look like this
#!/bin/bash

#SBATCH ——ntasks=NPROCESSES
#SBATCH —-time=TIME

module load OpenMPI # or impi
srun EXECUTABLE

or use mpirun as an alternative to srun

Common pitfalls with srun and OpenMPI 20/110

With OpenMPI, if you see an error message starting with this

The application appears to have been direct launched using "srun", but OMPI was
not built with SLURM's PMI support and therefore cannot execute.

then, you need to pass the ——mpi=pmix option to srun
srun ——mpi=pmix OTHER_OPTIONS EXECUTABLE

You can also make this option permanent by setting the value of SLURM_MPI_TYPE t0 pmix
in your bashrc

echo 'export SLURM_MPI_TYPE=pmix' >> ~/.bashrc

Common pitfalls with srun and Intel MPI 21/110

With Intel MPI, if you see an error message looking like this

MPI startup(): PMI server not found. Please set I_MPI_PMI_LIBRARY variable if it
is not a singleton case.

then, you need to pass the ——mpi=pmi2 option to srun and set the value of the
I_MPI_PMI_LIBRARY environment variable to point to the pmi2 library

export I_MPI_PMI_LIBRARY="/usr/libé6u/1libpmi2.so"
srun ——mpi=pmi2 OTHER_OPTIONS EXECUTABLE

Running the MPI hello world 22/110

First, on the login node, we compile the C version of the hello world with mpicc
module load OpenMPI

mpicc —o mpi_hello mpi_hello.c

Then, we prepare batch job by creating a file named mpi_hello. job with content

#!/bin/bash

#SBATCH —--ntasks=4

#SBATCH ——time=01:00

#SBATCH —-output=mpi_hello.out

module load OpenMPI
srun ./mpi_hello

Finally, we submit the job using the SLURM sbatch command

sbatch mpi_hello. job

Running the MPI hello world 23/110

Once the job is finished, we can inspect the output:

$ cat mpi_hello.out

Hello world from processor nic5-wOu4l, rank 2 out of U ranks
Hello world from processor nic5-wOudl, rank 3 out of 4 ranks
Hello world from processor nic5-wOud4l, rank 1 out of 4 ranks
Hello world from processor nic5-wOud4l, rank 0 out of 4 ranks

From the output we can see

» The four processes of our application ran on a single compute node nic5-w0Oul.
However, this is not always the case. SLURM may distribute processes across
different nodes.

» The output shown is not sorted: rank 2 prints first. This illustrates a key aspect of
parallel execution. Without explicit synchronization, processes run independently,
and the order of operations is nondeterministic.

Playing with the SLURM options 24/110

SLURM provide options to control how your MPI job is distributed across the available
compute nodes in the cluster by defining both the number of processes to launch and
how these processes are mapped to the allocated nodes:

specifies the total number of MPI processes to
——ntasks/—n NTASKS start for the job. This is the main option for
determining the overall level of parallelism

requests that a minimum of MIN_NODES compute
——nodes/—N MIN_NODES nodes be allocated. The actual number of nodes
used depends on availability

defines how many MPI processes to launch on
each node. This setting helps control process
placement by controlling the distribution of the
ranks to the compute nodes

——ntasks—per—-node NTASKS

Early exit of MPI application 25/110

Calling MPI_Abort will terminates MPI

execution environment:
C/C++ Syntax
» In theory, MPI_Abort is designed to

abort all processes that belong to the
specified communicator comm. This
allows a controlled shutdown of a

subset of processes if needed MPI_ABORT(COMM, ERRORCODE, IERROR)
INTEGER COMM, ERRORCODE, IERROR

int MPI_Abort(MPI_Comm comm, int errorcode)

Fortran Syntax

 In practice, most MPIl implementations

interpret this call as a fatal error and Fortran 2008 Syntax
terminate the entire MPI job, not just
) MPI_Comm_rank(comm, rank, ierror)
the communicator group TYPE(MPI_Comm), INTENTCIN) :: comm
] INTEGER, INTENTCIN) :: errorcode
 After MPI_Abort is called, the MPI INTEGER, OPTIONAL, INTENTCOUT) :: ierror

environment becomes invalid. No
further MPI calls should be made

Measuring wallclock time 26/110

MPI_Wtime returns an double precision

. . . ++
value representing an elapsed time in C/C++ Syntax
seconds on the calling processor: double MPI_Wtime()
double start_time = MPI_Wtime(); Fortran Syntax
//... stuff to be timed ... DOUBLE PRECISION MPI_WTIME()
double end_time = MPI_Wtime(); Fortran 2008 Syntax
printf("That took %g seconds\n", DOUBLE PRECISION MPI_Wtime()

end_time - start_time);

WORK DISTRIBUTION AND POINT
TO POINT COMMUNICATION

Computing = with trapezoidal rule (C)

const uinted_t NUM_STEPS = 1000000000;
const double step = 1.0 / ((double)NUM_STEPS);

double sum = 0.0;

for (uintéld_t i = O; i < NUM_STEPS; i++)

{
const double x = ((double)i + 0.5) * step;
sum += 4.0 / (1.0 + x * x);

}

const double pi = step * sum;

28/110

As a first example on how to parallelize
and distribute work with MPI, we will
consider a simple application: computing
the value of = using trapezoidal rule.

1
1 7
dr = —
/Ox2—|—1x 4

To parallelize this code we need to

« distribute the work of the loop among
the MPI processes

e communicate in order to compute the
final sum

Computing = with trapezoidal rule (Fortran)

dp = kind(1.0d0)
num_steps &

integer, parameter ::
integer(kind=8), parameter ::
= 1000000000_8

real(dp) :: step, x, sum, pi, elapsed
integer :: count_rate, count_start, count_end
integer(kind=8) :: istep

step = 1.0_dp / real(num_steps, dp)

sum = 0.0_dp
do istep = 0_8, num_steps - 1_8
x = (real(istep, dp) + 0.5_dp) * step
sum = sum + 4.0_dp / (1.0_dp + x * x)
end do

pi = step * sum

29/110

As a first example on how to parallelize
and distribute work with MPI, we will
consider a simple application: computing
the value of = using trapezoidal rule.

1
1 7
dr = —
,/g x?2+1 YTy

To parallelize this code we need to

« distribute the work of the loop among
the MPI processes

e communicate in order to compute the
final sum

Computing =: distributing the work 30/110

To distribute a loop across processes, each process determines which iterations belong
to its rank based on the total number of processes. One simple approach is to rewrite
the loop as:

for (uint64 t i = rank; i < NUM STEPS; i += num ranks)

Alternatively, the loop can be divided into contiguous chunks, where each process
computes its own start and end indices based on its rank and the total number of ranks:

NumSteps - rank
NumRanks

start =

NumSteps - (rank + 1)
NumRanks

end = —1

While the first approach is easier to implement, we will use the second strategy because
it is more general and applies to a wider range of problems

Computing =: distributing the work (C implementation) 31/10

int rank, num_ranks;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &num_ranks);

const uinted_t start = (NUM_STEPS * rank) / num_ranks;
const uintéed_t end = (NUM_STEPS * (rank + 1UL)) / num_ranks;

double sum = 0.0;
for (uinteld_t istep = start; istep < end; istep++)
{
const double x = ((double)istep + 0.5) * step
sum += 4.0 / (1.0 + x * x);

Computing =: distributing the work (Fortran implementation) s2/mo

real(dp) :: step, x, sum, pi, elapsed
integer :: rank, num_ranks, ierr
integer(kind=8) :: istep, istart, iend

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
call MPI_Comm_size(MPI_COMM_WORLD, num_ranks, ierr)

istart = (num_steps * rank) / num_ranks + 1_8
iend = (num_steps * (rank + 1_8)) / num_ranks

step = 1.0_dp / real(num_steps, dp)
sum = 0.0_dp
do istep = istart, iend
X = (real(istep, dp) + 0.5_dp) * step
sum = sum + 4.0_dp / (1.0_dp + x * x)
end do

Sending and receiving messages: requirements 33/10

Now that the work has been distributed among the processes, we still need a way to
compute the final sum. To achieve this, the processes must communicate their partial
results to one designated process, which will then combine these values to produce the
final result. We need to send and receive messages, which means

» A description of the data to send/receive: the MPI library needs to know where the
data to send/receive begins in memory and the size of this data (number of
elements of a given datatype)

« The rank of the sender/receiver: MPI| need to be able determine which process
should receive the message and from which process

« A way to identify the type of message: to allow multiple independent
communications between the same pair of processes without confusion, we need a
way to uniquely identify each message.

Sending a message: syntax 34110

C/C++ Syntax

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

Fortran Syntax

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Fortran 2008 Syntax

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENTCIN) :: buf

INTEGER, INTENTCIN) :: count, dest, tag
TYPE(MPI_Datatype), INTENTCIN) :: datatype
TYPE(MPI_Comm), INTENTCIN) :: comm

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

Receiving a message: syntax 35/110

C/C++ Syntax

int MPI_Recv(void #*buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status #*status)

Fortran Syntax

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM

INTEGER ~ STATUS(MPI_STATUS_SIZE), IERROR

Fortran 2008 Syntax

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(C..) :: buf

INTEGER, INTENTCIN) :: count, source, tag

TYPE(MPI_Datatype), INTENTCIN) :: datatype

TYPECMPI_Comm), INTENTCIN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Receiving a message: MPI_Status 36/110

A call to MPI_Recv includes a status argument, which allows the system to return
information about the received message

» In C, MPI_Status is a structure containing three fields: MPI_SOURCE, MPI_TAG, and
MPI_ERROR

« In many cases, the status information is not needed; in such situations, a special
constant can be passed instead: MPI_STATUS_IGNORE

» Inspecting the values in the status field is useful in situations where flexible receive
operations are used. For example, when MPI_ANY_SOURCE is specified to accept a
message from any process, or when MPI_ANY_TAG is used to accept a message with
any tag value. In these cases, the status structure allows the receiving process to
determine which process sent the message and which tag was used

Receiving a message: MPI_Status (Fortran) 37/10

Fortran

Status is an array of integers of size MPI_STATUS_SIZE. The constants MPI_SOURCE,
MPI_TAG and MPI_ERROR are the indices of the entries that store the source, tag and error
fields. Thus, status(MPI_SOURCE), status(MPI_TAG) and status(MPI_ERROR) contain,
respectively, the source, tag and error code of the received message

Fortran 2008

The derived type TYPE(MPI_Status) contains three public INTEGER fields named
MPI_SOURCE, MPI_TAG, and MPI_ERROR. Thus, status%MPI_SOURCE, status%MPI_TAG and
status%MPI_ERROR contain the source, tag, and error code of a received message
respectively

MPI datatype to native type mapping

38/110

MPI datatype C/C++ type MPI datatype C/C++ type
MPI_CHAR char MPI_UNSIGNED_CHAR unsigned char
MPI_INT int MPI_UNSIGNED unsigned int
MPI_LONG long int MPI_UNSIGNED_LONG unsigned long int
MPI_FLOAT float MPI_BYTE unsigned char
MPI_DOUBLE double

MPI datatype Fortran type MPI datatype Fortran type
MPI_INTEGER integer MPI_REALY realy
MPI_REAL real MPI_REALS real*8
MPI_DOUBLE_PRECISION double precision MPI_INTEGER4 integerxy
MPI_COMPLEX complex MPI_INTEGERS integer=8
MPI_LOGICAL logical MPI_DOUBLE_COMPLEX double complex

MPI_CHARACTER

character(1)

About the count argument of MPI_Recv 39/110

if (rank == 0) {
// Sender: send U integers
int dataf[d] = {10, 20, 30, 40};
MPI_Send(data, 4, MPI_INT, 1, tag, MPI_COMM_WORLD);

} The count argument of MPI_Recv is
else if (rank == 1) { .

MPI_Status status: the maximum number of

// Receiver: prepare a buffer for 10 integers elements to receive. The actual

int buffer[10];

MPT_Recv(buffer, 10, MPI_INT, 0, tag, value of count on the sending size

MPI_COMM_WORLD, &status); can be lower
int count;
MPI_Get_count(&status, MPI_INT, &count); The exact number of elements
actually received can be obtained

printf("Process %d received %d elements:\n",))
rank, count); using the MPI_Get_count function

for (int i = 0; i < count; i++)
printf(" buffer[%d] = %d\n", i, buffer[i]);

Get the number of elements received 40/110

MPI_Get_count stores in count the number of elements actually received by the
MPI_Recv call that returned the given status. The datatype argument must match the
datatype specified in the corresponding MPI_Recv call.

C/C++ Syntax
int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype, int *count)
Fortran Syntax

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

Fortran 2008 Syntax

MPI_Get_count(status, datatype, count, ierror)
TYPE(MPI_Status), INTENTCIN) :: status
TYPECMPI_Datatype), INTENTCIN) :: datatype
INTEGER, INTENT(COUT) :: count

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

Message matching rules 4mo

« Communicator: both the send and receive operations must be on the same
communicator

» Tag: both the sender and receiver must use the same user-defined tag value. A
receiver can use a wildcard tag (MPI_ANY_TAG) to match any tag

» Source Rank: the receiver receive operation must specify the rank of the sender, or
use a wildcard to match any source rank (MPI_ANY_SOURCE)

« Destination Rank: the sender send operation must specify the rank of the
destination process

» Ordering: MPI guarantees that if two messages are sent from the same sender to
the same receiver and they both match the same receive, the messages will be
received in the order they were sent. Similarly, if a receiver posts two receives in
succession for the same message, the first posted receive will be matched first

Computing 7: computing the final result 42/10

Now that we have discussed how to
send and receive messages with 1f Crank == 0 {
Mpl, we can compute the final result double pi = step * sum;

for our = calculation code: foz (int srank = 1;.sra.nk < num_ranks; srank++) {
ouble remote_sum;

MPI_Recv(&remote_sum, 1, MPI_DOUBLE, srank, TAG,
e Each process with a rank greater MPI_COMM_WORLD, MPI_STATUS_IGNORE);

than O sends its result to rank O pi += step * remote_sum:

}
» The process with rank O

H printf(" Computed value of pi with %" PRIu6uU
receives the results fr9m all " steps is %.121F\n", NUM_STEPS, pi);
other ranks and combines them printf(" Computation took %Lf seconds\n", elapsed);
to compute the final value of 7 °
else {
MPI_Send(&sum, 1, MPI_DOUBLE, ©, TAG, MPI_COMM_WORLD);:
}

A We will see later that this is not
the most efficient way of doing this

IN-DEPTH LOOK AT POINT-TO-
POINT COMMUNICATION

Communication performance: effective bandwidth 44/110

The total communicationtime T

«omm TOr transferring a message of size N, ;. over a network
can be modeled as:

N bytes
B

peak

J—Lomm — Tiatency +

where:
* Taency 1S the fixed communication latency, representing the time to initiate a transfer

* B, is the peak bandwidth of the network

The effective bandwidth B,
total communication time:

is then defined as the ratio of the message size to the

ffective

B

effective — 4 Nigtes
latency B

peak

Communication performance: latency 45/110

NICS - latency

When we measure the bidirectional

700 bandwidth, Ddta flows in both
600 | directions simultaneously. The
500 | processes sends and receives data
’g at the same time
‘3’ 400
S 300 | « For small messages, the
L‘u' latency is nearly constant and
200 | very low. This region is
100 | latency-limited

» For larger messages, the
latency grows sharply. This
region is bandwidth-limited

0

8B 256B 8KB 256 KB 8 MB
Message size

Communication performance: unidirectional bandwidth 46/110

NICS5 - unidirectional bandwidth

When we measure the
unidirectional bandwidth, data
flows in one direction only: from
sender to receiver

R
N

—_
o

» With message size <1KB, the
communication is dominated
by the latency

Throughput (GBytes/s)
EaS (0)) oo

» A transfer rate plateau close to
the theoretical performance of
| | | | | the network is observed for
32B 1KB 32KB 1MB 32MB 1GB message size >1MB
Message size

N

o

Communication performance: bidirectional bandwidth

47/10

NICS5 - bidirectional bandwidth

25 ¢t
w
220
9
)
915-
2
2 10}
@)

-
o
c S
|_
0]

32B 1KB 32KB 1MB 32MB 1GB
Message size

When we measure the bidirectional
bandwidth, data flows in both
directions simultaneously. The
processes sends and receives data
at the same time.

» With message size <1KB, the
communication is dominated
by the latency

« Transfer rate close to the
theoretical performance of the
network is observed for
message size >1MB

Communication protocol: Eager 48/110

MPI defines multiple protocols for sending messages between processes: the Eager and
Rendezvous protocols

The Eager Protocol is used for small

messages to minimize latency: Sender Receiver
« The sender immediately sends the A | /;,,efopy{
. . o
message to the receiver without S OU/Z@%,G
. . g &r
waiting for the receiver to post a ([wpr
matching receive. ; Send
. . . = 2c%
» The message is placed directly into a o Ac,o/ o
. . o
pre-allocated buffer on the receiver’s v final = | MPI || 28
. copy Recv O
side. g9
» The receiver can later retrieve the l

data when the corresponding
MPI_Recv is posted.

Communication protocol: Rendezvous 49/10

MPI defines multiple protocols for sending messages between processes: the Eager and
Rendezvous protocols

The Rendezvous Protocol is used for large

messages that cannot be buffered: Sender Receiver
|
S

« The sender does not send the 31 %} c
. . = Qo
message immediately. Instead, the 8; 1 s
. o0)
sender first sends a Request to Send 22 Clear 1 send £9
. J) =

(RTS) control message to the receiver. B Se

nqg
. S || Send Messg
» When the receiver has posted a 5§ N ,{\gz{, 29
matching MPI_Recyv, it replies with a =2 I'§§
Qo
Clear to Send (CTS) acknowledgment. g S Reception ack @ £
v

« After receiving CTS, the sender —3
transfers the actual message data
directly to the receiver.

Communication protocol: MPI send return 50/110

When MPI_Send is called, it initiates sending a message from one process to another.
However, the point at which MPI_Send returns (i.e., when control is given back to the

program) does not necessarily mean the message has been received by the destination
process

What it does mean depends on the send mode and underlying protocol used:

» Eager protocol: MPI_Send can return as soon as the message has been copied into
the system buffer

» Rendezvous protocol: MPI_Send does not return until the receiver has posted a
matching receive and the data transfer has completed

MPI_Send is a blocking send, meaning the function won't return until the send buffer can
be safely reuse

Communication protocol: MPI receive return 51/110

A MPI_Recv is a blocking operation:

« The call does not return until the receive buffer has been completely filled with the
incoming message, after which control is returned to the program

» This guarantees that it is safe to access or process the data in the receive buffer

» Unlike MPI_Send, whose behavior may vary depending on the communication protocol
used, the receive operation always follows the same blocking semantics

Communication protocol: common pitfall 52/110

The use of different communication protocols by MPIl implementations can lead to cases
where an application runs successfully on small test problems but encounters
deadlocks when scaled to larger systems.

for (size_t buffer_size = 8; buffer_size < 32768; buffer_size *»= 2) {
// ... allocate buffers ...
if (rank == 0) {
MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG, MPI_COMM_WORLD);
MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Rank © - buffer size = %zu: OK\n", buffer_size);

} else if (rank == 1) {
MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, ©, FROM_ONE_TAG, MPI_COMM_WORLD);
MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, ©, FROM_ZERO_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

printf("Rank 1 - buffer size = %zu: OK\n", buffer_size);

Communication protocol: common pitfall 53/110

Let's consider a first scenario where the Eager protocol is used. In that case the
application will be able to proceed and terminate successfully.

if (rank == 0) {

// Copy to temporary buffer and returns

MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG, MPI_COMM_WORLD);

// Able to receive message from rank 1

MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (rank == 1) {

// Copy to temporary buffer and returns

MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, ©, FROM_ONE_TAG, MPI_COMM_WORLD);

// Able to receive message from rank 0

MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ZERO_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Communication protocol: common pitfall 54/110

Let's consider a second scenario where the Rendezvous protocol is used. In that case
the application will deadlock and will not terminate successfully.

if (rank == 0) {
// Block until a maching Recv is posted
MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG, MPI_COMM_WORLD);
// Will never be posted because previous Send call is waiting for Recv from rank 1
MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (rank == 1) {
// Block until a maching Recv is posted
MPI_Send(send_buffer, buffer_size, MPI_DOUBLE, ©, FROM_ONE_TAG, MPI_COMM_WORLD);
// Will never be posted because previous Send call is waiting for Recv from rank 0
MPI_Recv(recv_buffer, buffer_size, MPI_DOUBLE, 0, FROM_ZERO_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Use of tags: common pitfall 55/110

It is important to ensure that the message tags and their ordering match between the
send and receive sides. A mismatch can lead to a deadlock when the rendezvous
protocol is used.

for (size_t buffer_size = 8; buffer_size < 32768; buffer_size *= 2) {
if (rank == 0) {
// Block until a maching Recv with tag = FROM_ZERO_TAGl is posted
MPI_Send(send_bufferl, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG1l, MPI_COMM_WORLD);
MPI_Send(send_buffer2, buffer_size, MPI_DOUBLE, 1, FROM_ZERO_TAG2, MPI_COMM_WORLD);

MPI_Recv(recv_bufferl, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG1, MPI_COMM_WORLD, MPI_STATUS_IGNORE):

MPI_Recv(recv_buffer2, buffer_size, MPI_DOUBLE, 1, FROM_ONE_TAG2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else if (rank == 1) {

// Block until a maching Send with tag = FROM_ZERO_TAG2 is posted

MPI_Recv(recv_bufferl, buffer_size, MPI_DOUBLE, ©, FROM_ZERO_TAG2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Recv(recv_buffer2, buffer_size, MPI_DOUBLE, ©, FROM_ZERO_TAG1l, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(send_bufferl, buffer_size, MPI_DOUBLE, ©, FROM_ONE_TAG2, MPI_COMM_WORLD);
MPI_Send(send_buffer2, buffer_size, MPI_DOUBLE, ©, FROM_ONE_TAG1, MPI_COMM_WORLD);

Force synchronous (Rendezvous) send 56/110

It is possible to force synchronous (rendezvous) communication by using the blocking send
routine MPI_Ssend which ensures that the send operation does not complete until the matching
receive has been initiated. The syntax is identical to that of MPI_Send.

C/C++ Syntax

int MPI_Ssend(const void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)

Fortran Syntax

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER ~ COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Fortran 2008 Syntax

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(C..), INTENTCIN) :: buf

INTEGER, INTENTCIN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(CIN) :: datatype
TYPE(MPI_Comm), INTENTCIN) :: comm

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

POINT-TO-POINT
COMMUNICATION:
MORE PATTERNS AND PITFALLS

Embarrassingly parallel vs tightly coupled 58/110

The previous example was embarrassingly parallel, meaning that in the “update” loop

for (uintéed_t istep = start; istep < end; istep++)
{

const double x = ((double)istep + 0.5) * step
sum += 4.0 / (1.0 + x * x);
}

each process can compute its portion of the sum independently, without requiring any
data or synchronization from the other processes

However, many scientific applications are tightly coupled, meaning that computations
depend on frequent communication or synchronization between processes to exchange
intermediate results or boundary data.

The 1D diffusion equation 59/110

The diffusion equation, also known as the heat equation, reads
— =a—, z€(0,L),te (0,T]

where u(x,t) is the unknown function to be solved for, x is a coordinate in space, t is
time and « is the diffusion coefficient

After discretization and using a forward difference in time and a central difference in
space, we get

ntl _ u™

n n n
7 i aui+1 o 2’11,@ +uz’—1

At Ax?

u

so that, at time step n + 1, we can update the value of v using

alt
uftt =l + A—wz(u?ﬂ —2u? +up)

The 1D diffusion equation: domain decomposition 60/110

In order to parallelize the 1D diffusion equation:

» The computational domain is divided into subdomains, each assigned to a process

« Updating »"** requires the neighboring values v ; and u?, ;, which belong to the left
and right neighboring processes

» To access these boundary values, ghost cells are introduced at the edges of each
subdomain

» The ghost cell values are exchanged between neighboring processes at each time
step via message passing.

0o, : .T|v.

Rank O Rank 1 Rank 2

~— Communication =~ — Inter-processe [Inner domain Ghost cells
boundaries

The 1D diffusion equation: first implementation 61/110

const size_t subdom_start
const size_t subdom_end
const size_t subdom_size

GRID_SIZE * rank / num_ranks;
GRID_SIZE * (rank + 1) / num_ranks;
subdom_end - subdom_start;

const int left_rank
const int right_rank

rank > 0 ? rank — 1 : MPI_PROC_NULL;
rank < num_ranks ? rank + 1 : MPI_PROC_NULL;

for (int tstep = 0; tstep < num_tsteps; tstep++) {
MPI_Send(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, ©, MPI_COMM_WORLD);
MPI_Recv(&uold[0], 1, MPI_DOUBLE, left_rank, ©, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&uold[1], 1, MPI_DOUBLE, left_rank, 1, MPI_COMM_WORLD);
MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

for (int i = 1; i <= subdom_size; i++) {
unew[i] = uold[i] + alpha_dt_dx2 * (uold[i+1] - 2.0 * uold[i] + uold[i-1]);
¥
}

The 1D diffusion equation: first implementation (Fortran) 62/110

GRID_SIZE * rank / num_ranks
GRID_SIZE * (rank + 1) / num_ranks
subdom_end - subdom_start

subdom_start
subdom_end
subdom_size

left_rank
right_rank

merge(rank — 1, MPI_PROC_NULL, rank > 0)
merge(rank + 1, MPI_PROC_NULL, rank < num_ranks-1)

do tstep = 1, num_tsteps
call MPI_Send(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD)
call MPI_Recv(uold(0), 1, MPI_DOUBLE_PRECISION, left_rank, ©, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

call MPI_Send(Cuold(1), 1, MPI_DOUBLE_PRECISION, left_rank, 1, MPI_COMM_WORLD)
call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

do i = 1, subdom_size
unew(i) = uold(i) + alpha_dt_dx2 * (uold(i+1l) - 2.0 * uold(i) + uold(i-1))
end do
end do

Null processes 63/110

In some situations, it is convenient to specify a “dummy” source or destination for
communication. This simplifies boundary handling in non-periodic domains. For
example, when performing a rank shift

const int left_rank = rank > 0 ? rank - 1 : MPI_PROC_NULL;
const int right_rank = rank < num_ranks ? rank + 1 : MPI_PROC_NULL;

the special constant MPI_PROC_NULL can be used in place of a process rank wherever a
source or destination argument is required. A communication involving MPI_PROC_NULL
has no effect:

« A send to MPI_PROC_NULL returns immediately and performs no operation

» A receive from MPI_PROC_NULL also returns immediately, leaving the receive buffer
unchanged

When a receive is issued with source = MPI_PROC_NULL, the status object is filled with
source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0

The 1D diffusion equation: performance 64/110

When implementing the exchange using blocking MPI_Send and MPI_Recv, communication
performance can degrade significantly if the the synchronous (rendezvous) protocol is
used:

« The send call waits for the matching receive to be posted before proceeding

« As a result, the exchange between neighboring processes becomes serialized. Each
process must wait for its neighbor to reach the matching communication call

« This can lead to noticeable slowdowns, especially on large process counts. To
mitigate this issue alternative communication patterns are typically preferred

Rank O =={ |
!]
Rank 1 ={ -1 = o -
! 3
Rank 2 = =l -

i time |

v

[] Send [Receive

The 1D diffusion equation: periodic boundary conditions 65/110

Using blocking send and receive operations in a communication pattern with cyclic
dependencies (periodic boundary conditions) can easily lead to deadlocks:

» each process call MPI_Send first and then wait for its matching MPI_Recv

« if all processes are simultaneously waiting for each other to post their receives, none
can proceed, and the program stalls indefinitely

To avoid this situation, the communication pattern must be designed so that not all
processes block at the same time:

« Solution 1 odd-even pattern
o Solution 2 use the combined send-receive routine MPI_Sendrecv

The 1D diffusion equation: odd-even implementation 66/110

One approach is to use an odd—even communication pattern: even-ranked processes
call MPI_Send first and MPI_Recv second, while odd-ranked processes perform the
operations in the opposite order

if(rank % 2 == 0) {
MPI_Send(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, ©, MPI_COMM_WORLD);

MPI_Recv(&uold[0], 1, MPI_DOUBLE, left_rank, ©, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Send(&uold[1], 1, MPI_DOUBLE, left_rank, 1, MPI_COMM_WORLD):

MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else {

MPI_Recv(&uold[0], 1, MPI_DOUBLE, left_rank, ©, MPI_COMM_WORLD, MPI_STATUS_IGNORE);:

MPI_Send(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, ©, MPI_COMM_WORLD);

MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(&uold[1], 1, MPI_DOUBLE, left_rank, 1, MPI_COMM_WORLD);

The 1D diffusion equation: odd-even implementation (Fortan) s7mo

One approach is to use an odd—even communication pattern: even-ranked processes
call MPI_Send first and MPI_Recv second, while odd-ranked processes perform the
operations in the opposite order

if (modulo(rank, 2) .eq. 0) then
call MPI_Send(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, ©, MPI_COMM_WORLD)

call MPI_Recv(uold(0), 1, MPI_DOUBLE_PRECISION, left_rank, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

call MPI_Send(uold(1), 1, MPI_DOUBLE_PRECISION, left_rank, 1, MPI_COMM_WORLD)

call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
else

call MPI_Recv(uold(0), 1, MPI_DOUBLE_PRECISION, left_rank, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

call MPI_Send(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, ©, MPI_COMM_WORLD)

call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)
call MPI_Send(uold(1), 1, MPI_DOUBLE_PRECISION, left_rank, 1, MPI_COMM_WORLD)
end if

Combined sendrecv: syntax 68/110

The send-receive operations combine in one call the sending of a message to one
destination and the receiving of another message, from another process.
« The two (source and destination) are possibly the same

 When a send-receive operation is used, the communication subsystem takes care of
the issue of preventing cyclic dependencies that may lead to deadlock

C/C++ Syntax

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype, int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype, int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

Combined sendrecv: syntax (Fortran) 69/110

Fortran Syntax

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG,
RECVBUF, RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG
INTEGER RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

Fortran 2008 Syntax

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag, comm, status, ierror)
TYPE(C*), DIMENSIONC..), INTENTCIN) :: sendbuf
TYPE(*), DIMENSION(C..) :: recvbuf
INTEGER, INTENTCIN) :: sendcount, dest, sendtag, recvcount, source, recvtag
TYPE(MPI_Datatype), INTENTCIN) :: sendtype, recvtype
TYPECMPI_Comm), INTENT(CIN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENTCOUT) :: ierror

The 1D diffusion equation: combined sendrecv 70/110

With MPI_Sendrecv the exchange of the ghost cells is done in two MPI calls:

 In the first call, each process sends its leftmost interior value to its left neighbor and
receives the right neighbor boundary value into its right ghost cell

» In the second call, the direction is reversed: each process sends its rightmost
interior value to its right neighbor and receives the left neighbor boundary value
into its left ghost cell.

// Send to the left and receive from the right
MPI_Sendrecv(&uold[1], 1, MPI_DOUBLE, left_rank, 0,
&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

// Send to the right and receive from the left
MPI_Sendrecv(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, 1,
Suold[0], 1, MPI_DOUBLE, left_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

The 1D diffusion equation: combined sendrecv (Fortran) 71110

With MPI_Sendrecv the exchange of the ghost cells is done in two MPI calls:

 In the first call, each process sends its leftmost interior value to its left neighbor and
receives the right neighbor boundary value into its right ghost cell

» In the second call, the direction is reversed: each process sends its rightmost
interior value to its right neighbor and receives the left neighbor boundary value
into its left ghost cell.

! Send to the left and receive from the right
call MPI_Sendrecv(uold(1), 1, MPI_DOUBLE_PRECISION, left_rank, 0, &
uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, ©, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

! Send to the right and receive from the left
call MPI_Sendrecv(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 1, &
uold(©), 1, MPI_DOUBLE_PRECISION, left_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

NON-BLOCKING COMMUNICATION

The advantage of non-blocking communication 73/10

In many parallel applications, communication and computation do not have to happen
one after the other. Non-blocking communication allows processes to initiate data
transfers without waiting for them to complete, enabling useful work to be performed
while messages are still in transit.

This approach can help reduce idle time and improve overall performance, especially in
large-scale systems where communication can become a bottleneck.

MPI non-blocking communication 74/110

MPI provides the non-blocking routine MPI_Isend, which initiates a send operation but
returns immediately, allowing the process to continue execution without waiting for the
data transfer to complete

« The call to MPI_Isend starts the Sender Receiver
communication but doesn’t guarantee M'P,
that the data has been sent yet Isend _|
» Since MPI_Isend is non-blocking, the %
process can perform other S
computations or initiate additional § Clear to send A
communications while the message is < 2 | send message wer | |2 S
being transferred in the background e J Recv | | 5 &
T =3 I \I,\vn::t Reception ack TE
e MPI_Wait is used to check for ‘§§ T < ” v
completion. 2

Sending a non-blocking message: syntax 75/110

C/C++ Syntax

int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

Fortran Syntax

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Fortran 2008 Syntax

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(C..), INTENTCIN), ASYNCHRONOUS :: buf

INTEGER, INTENTCIN) :: count, dest, tag

TYPECMPI_Datatype), INTENTCIN) :: datatype

TYPE(MPI_Comm), INTENTCIN) :: comm

TYPE(MPI_Request), INTENTCOUT) :: request

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

MPI request A2y

The arguments of MPI_Isend are identical to those of MPI_Send, except for one additional
parameter: an MPI_Request handle

» An MPI_Request handle represents a non-blocking communication operation initiated
by routines such as MPI_Isend or other non-blocking calls

» The MPI_Request object keeps track of the state of the operation: whether it is still in
progress or has completed

» This handle is then used by completion routines to manage and synchronize non-
blocking operations:

« The wait functions (MPI_waitx*) block the program until one or more of the
associated operations have finished.

» The test functions (MPI_Test*) allow the program to poll the request’s status
without blocking

MPI wait 77/mo

MPI_wait is used to wait for an MPI send or receive to complete

« A call to MPI_wait returns when the C/C++ Syntax
operation identified by the request is int MPI_Wait(MPI_Request *request,
Completed MPI_Status *status)

« If the request was created by a non-
blocking send or receive call, then it
is deallocated by the call to MPI_wait

and the request handle is set to
MPI_REQUEST_NULL

Fortran Syntax

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

Fortran 2008 Syntax
* The call returns, In status, MPI_Wait(request, status, ierror)

information on the completed TYPE(MPI_Request), INTENTCINOUT) :: request
TYPE(MPI_Status) :: status

Operathn INTEGER, OPTIONAL, INTENTCOUT) :: ierror

MPI wait all 78/10

MPI_Waitall blocks until multiple (count) requests to completed and return the statuses
information for the completed requests

C/C++ Syntax

int MPI_Waitall(int count, MPI_Request array_of_requests[], MPI_Status *array_of_statuses)

Fortran Syntax

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(%*)
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Fortran 2008 Syntax

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
INTEGER, INTENTCIN) :: count

TYPE(MPI_Request), INTENTCINOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(x)

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

MPI wait all 79/10

MPI_Waitall blocks until multiple (count) requests to completed and return the statuses
information for the completed requests

C/C++ Syntax

int MPI_Waitall(int count, MPI_Request array_of_requests[], MPI_Status *array_of_statuses)

Fortran Syntax

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(%*)
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Fortran 2008 Syntax

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
INTEGER, INTENTCIN) :: count

TYPE(MPI_Request), INTENTCINOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(x)

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

The 1D diffusion equation: using non-blocking send 80/110

We can modify the 1D diffusion code to use non-blocking communication by replacing
the blocking MPI_Send calls with non-blocking MPI_Isend. This change allows each
process to initiate data transfers and immediately proceed to the receive

In this version, we still use blocking MPI_Recv calls for simplicity. Mixing blocking and
non-blocking communication is perfectly valid in MPI

MPI_Request requests[2];

MPI_Isend(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, ©, MPI_COMM_WORLD, &requests[0]);
MPI_Recv(&uold[0], 1, MPI_DOUBLE, left_rank, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Isend(&uold[1], 1, MPI_DOUBLE, left_rank, 1, MPI_COMM_WORLD, &requests[1]);
MPI_Recv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Waitall(2, requests, MPI_STATUSES_IGNORE);

The 1D diffusion equation: using non-blocking send (Fortran) &

We can modify the 1D diffusion code to use non-blocking communication by replacing
the blocking MPI_Send calls with non-blocking MPI_Isend. This change allows each
process to initiate data transfers and immediately proceed to the receive

In this version, we still use blocking MPI_Recv calls for simplicity. Mixing blocking and
non-blocking communication is perfectly valid in MPI

type(MPI_Request) :: requests(2)

call MPI_Isend(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD, requests(1))
call MPI_Irecv(uold(0), 1, MPI_DOUBLE_PRECISION, left_rank, ©, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

call MPI_Isend(uold(1), 1, MPI_DOUBLE_PRECISION, left_rank, 1, MPI_COMM_WORLD, requests(2))
call MPI_Recv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE)

call MPI_Waitall(2, requests, MPI_STATUSES_IGNORE)

Receiving a non-blocking message: syntax 82/110

C/C++ Syntax

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Request *request)

Fortran Syntax

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Fortran 2008 Syntax

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(C..), ASYNCHRONOUS :: buf

INTEGER, INTENTCIN) :: count, source, tag

TYPECMPI_Datatype), INTENTCIN) :: datatype

TYPE(MPI_Comm), INTENTCIN) :: comm

TYPE(MPI_Request), INTENTCOUT) :: request

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

1D diffusion equation: hiding communication 83/110

To improve performance, we can hide communication behind computation by using non-
blocking communication routines such as MPI_Isend and MPI_Irecv. The idea is to initiate
data transfers as early as possible, then perform computations that do not depend on the
incoming ghost cells while the communication progresses in the background

For example, in our 1D domain decomposition:
» each process can first post non-blocking sends and receives for its boundary values

« proceed to compute the interior points of its subdomain: those that do not require
the ghost cells

» once the interior computations are complete, the process can call MPI_wait to ensure
that the communication has finished and then update the boundary points using the
newly received data

The 1D diffusion equation: hiding communication FUre

MPI_Request recv_requests[2];
MPI_Request send_requests[2];

MPI_Irecv(&uold[0], 1, MPI_DOUBLE, left_rank, 0, MPI_COMM_WORLD, &recv_requests[0]);
MPI_Irecv(&uold[subdom_size+1], 1, MPI_DOUBLE, right_rank, 1, MPI_COMM_WORLD, &recv_requests[1]);

MPI_Isend(&uold[subdom_size], 1, MPI_DOUBLE, right_rank, 0, MPI_COMM_WORLD, &send_requests[0]);
MPI_Isend(&uold[1], 1, MPI_DOUBLE, left_rank, 1, MPI_COMM_WORLD, &send_requests[1]);

for (int i = 2; i <= subdom_size-1; i++) {

unew[i] = wuold[i] + alphadt_dx2 * (uold[i+1] - 2.0 * uold[i] + uold[i-1]);
¥
MPI_Waitall(2, recv_requests, MPI_STATUSES_IGNORE);

unew[1] = wuold[1] + alphadt_dx2 * (uold[2] - 2.0 * uold[1] + uold[@]);
unew[subdom_size] = wuold[subdom_size] + alphadt_dx2
* (uold[subdom_size+1] - 2.0 * uold[subdom_size] + uold[subdom_size-1]);

MPI_Waitall(2, send_requests, MPI_STATUSES_IGNORE);

The 1D diffusion equation: hiding communication (Fortran) T

type(MPI_Request) :: recv_requests(2), send_requests(2)

call MPI_Isend(uold(subdom_size), 1, MPI_DOUBLE_PRECISION, right_rank, 0, MPI_COMM_WORLD, send_requests(1))
call MPI_Isend(uold(1), 1, MPI_DOUBLE_PRECISION, left_rank, 1, MPI_COMM_WORLD, send_requests(2))

call MPI_Irecv(uold(@), 1, MPI_DOUBLE_PRECISION, left_rank, 0, MPI_COMM_WORLD, recv_requests(l))
call MPI_Irecv(uold(subdom_size+1), 1, MPI_DOUBLE_PRECISION, right_rank, 1, MPI_COMM_WORLD, recv_requests(2))

do i = 2, subdom_size-1

unew(i) = uold(i) + alphadt_dx2 * (uold(i+l) - 2.0 * uold(i) + uold(i-1))
end do

call MPI_Waitall(2, recv_requests, MPI_STATUSES_IGNORE)
unew(1l) = wuold(1l) + alphadt_dx2 * (uold(2) - 2.0 * uold(l) + uold(0))
unew(subdom_size) = wuold(subdom_size) + alphadt_dx2 &

* (uold(subdom_size+1) - 2.0 * uold(subdom_size) + uold(subdom_size-1))

call MPI_Waitall(2, send_requests, MPI_STATUSES_IGNORE)

86/110

Example of the effect of communication on performance (1/2)

To illustrate the impact of communication on performance, we will examine a GPU-based
Discontinuous Galerkin Maxwell solver, comparing results obtained with blocking and non-
blocking send and receive operations

Throughput (GDoFs/s)

80

64 |

48 |

32 ¢

16 1

Blocking send and receive

—e— throughput
—e— efficiency

8 16 32
Number of GPUs

64

100

180

160

140

120

Parallel efficiency (%)

Throughput (GDoFs/s)

200

160 r

120 |

80 r

40 |

Non-blocking send and receive

—e— throughput

—eo— efficiency

4 8 16 32 64
Number of GPUs

100

180

160

140

20

Parallel efficiency (%)

Example of the effect of communication on performance (2/2) s7mo

By using non-blocking send and receive operations and overlapping communication with
computation, we achieve roughly a 30% gain in performance

Non-blocking send and receive Non-blocking + overlap

200 100 250 100
’gmo- 180 ’gzoo- 180
S 5 9 5
Qo c ()] c
o 120} 160 & o 1507 160 &
-+ .9 -+ .9
= £ 3 £
S 80} 140 © £ 100} {40 2
o o O [
5 T 3 [E
S 40| 120 & £ 50} 120 &

—e— throughput —e— throughput
0 —eo— efficiency 0 0 —e— efficiency 0
4 8 16 32 64 4 8 16 32 64

Number of GPUs Number of GPUs

MPI AND ACCELERATORS (GPU)

GPU aware MPI 89/110

Most MPI implementations nowadays are GPU-aware. GPU-aware MPI refers
to MPI libraries that can directly send and receive data stored in GPU memory
without requiring the application to copy data back to the CPU first. With GPU-
aware MPI, applications can call MPI functions using device pointers directly

In traditional (hon—-GPU-aware) MPI:

« Data must be copied from GPU memory to the host (CPU) memory
» MPI sends the CPU buffer over the network

» The receiver copies CPU memory to GPU memory

These extra copies cost time, bandwidth, and CPU involvement

GPU aware MPI: same node communication 90/110

If two ranks are on the same node, MPI may use GPU peer-to-peer (P2P)
transfers (via NVLink, PCle, or xGMI), use shared memory segments exposed to
GPUs or use CUDA IPC to map one process GPU memory into another’s address
space

MEM MEM MEM MEM
17—> GPUO |« | GPUT1 |+——— | NIC | — [7—> GPU O GPU1 [+——— NIC | —
O
o o
]——> GPU2 [«—| GPU3 |«—— | NIC | — I——’ GPU 2 GPU3 |+—T— | NIC | —

— NVLink
— PCle
—— Infiniband

MEM MEM MEM MEM

GPU aware MPI: node to nhode communication 91/110

For communication between nodes, GPU-aware MPI can use GPUDirect RDMA,
which allows network interface (NIC) to read/write GPU memory directly, without
CPU involvement and without staging through host memory

MEM MEM MEM MEM @
) — !
17—» GPUO |« | GPUT |+——— | NIC — — | GPUO |+—| GPU1 |+——— NIC | —
NG [
<§< CPU |><| <§< CPU |><|
o o
]——» GPU2 [+~ | GPU3 [+—F—— NIC @ — I——» GPU2 |+~ | GPU3 | +—F—— NIC —

— NVLink
— PCle
—— Infiniband

MEM MEM MEM MEM

COLLECTIVE COMMUNICATION

Collective communication 93/110

So far, we have focused on point-to-point (communication, where data is explicitly
exchanged between two specific processes using operations such as MPI_Send and
MPI_Recv. While these routines give fine-grained control over data movement, they can
become cumbersome and inefficient when multiple processes need to communicate in
a coordinated way

In contrast, collective communication involves all processes in a communicator
participating in a single, coordinated operation. Instead of managing many individual
sends and receives between pairs of processes

Examples include operations such as:
» Broadcasts: where one process sends data to all others
» Gather and scatter: operations which collect or distribute data among processes

» Reductions: combine values from all processes (e.g., sums, minima, maxima)

Broadcast: overview 94/110

An MPI_Bcast operation broadcasts a message stored in buffer of the process with rank
root and store it in the buffer of all other processes of the communicator comm

To avoid deadlock, all processes within the communicator comm must invoke MPI_Bcast.
The same requirement applies to all collective communication routines in MPI

Root

sendbuf

recvbuf

rank O rank 1 rank 2 rank 3

Broadcast: syntax 95/110

C/C++ Syntax

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

Fortran Syntax

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

Fortran 2008 Syntax

MPI_Bcast(buffer, count, datatype, root, comm, ierror)
TYPE(*), DIMENSION(C..) :: buffer

INTEGER, INTENT(CIN) :: count, root

TYPE(MPI_Datatype), INTENT(CIN) :: datatype
TYPECMPI_Comm), INTENTCIN) :: comm

INTEGER, OPTIONAL, INTENTCOUT) :: ierror

Why Use Collective Communication in MPI 96/110

Collective communication routines in MPI, such as MPI_Bcast, can, in principle, be
implemented using only point-to-point operations. However, a naive broadcast
implemented with point-to-point calls often uses a simple linear pattern resulting in O(p)
steps, where p is the number of processes

Many MPI collectives use communication patterns based on a hypercube or binomial
tree, which have logarithmic depth. With such patterns, the number of processes that
“have” the data doubles at each step, the broadcast completes in log,(p) steps

Step 1 Step 2 Step 3

Gather: overview 97/110

An MPI_Gather operation collects data from all processes in a communicator into a single
receive buffer on the root process. Conceptually it is as if each process provides its local
contribution in sendbuf, which contains sendcount elements of type sendtype

The root process gathers all these messages into its recvbuf, where the i*" block of
recvcount elements of type recvtype corresponds to the data sent from process i

rank O rank 1 rank 2 rank 3

sendbuf

recvbuf

Root

Gather: syntax 98/110

C/C++ Syntax

int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void #*recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran Syntax

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT

INTEGER COMM, IERROR

Fortran 2008 Syntax

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, ierror)
TYPE(C*), DIMENSIONC..), INTENT(CIN) :: sendbuf

TYPE(*), DIMENSION(C..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPECMPI_Datatype), INTENTCIN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENTCIN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Scatter: overview 99/110

An MPI_Scatter performs the inverse operation of MPI_Gather. Conceptually, it is as if
the root process takes a contiguous buffer sendbuf, splits it into num_ranks equal
segments of size sendcount, and sends the i*" segment to the i*" process

Meanwhile, each process performs a corresponding receive to obtain its portion of the
data in recvbuf

Root

sendbuf

recvbuf

rank O rank 1 rank 2 rank 3

Scatter: syntax 100/110

C/C++ Syntax

int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void #*recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

Fortran Syntax

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT

INTEGER COMM, IERROR

Fortran 2008 Syntax

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, ierror)
TYPE(C*), DIMENSIONC..), INTENT(CIN) :: sendbuf

TYPE(*), DIMENSION(C..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPECMPI_Datatype), INTENTCIN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENTCIN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Gather and Scatter: regarding the arguments 101/110

All arguments to MPI_Gather and MPI_Scatter are significant on process root

On other processes:

« Gather: only arguments sendbuf, sendcount, sendtype, root and comm are
significant

» Scatter: only arguments recvbuf, recvcount, recvtype, root and comm are
significant

The arguments root and comm must have identical values on all processes

All processes in the communicator comm must call MPI_Gather/MPI_Scatter
otherwise, the program will hang

Computing 7: computing the final result with a gather 102/110

We can rewrite the way we computed the final sum for the computation of = using an
MPI_Gather:

if (rank == 0) {
double* remote_sums = malloc(num_ranks * sizeof(double));
MPI_Gather(&sum, 1, MPI_DOUBLE, remote_sums, 1, MPI_DOUBLE, MPI_COMM_WORLD);

double pi = 0.0;
for (int srank = 1; srank < num_ranks; srank++) {
pi += step * remote_sums[i];

}

free(remote_sums) ;

printf(" Computed value of pi with %" PRIuéld " steps is %.121f\n", NUM_STEPS, pi);
printf(" Computation took %Llf seconds\n", elapsed);

} else {
MPI_Gather(&sum, 1, MPI_DOUBLE, NULL, 1, MPI_DOUBLE, MPI_COMM_WORLD);

Reduction: overview 103/110

The MPI_Reduce operation allows processes to combine data from all ranks in a
communicator into a single result using a specified reduction operation (sum, maximum,

minimum, ...)

» Each process provides a local value, and the result of applying the operation across
all processes is stored on a designated root process.

» This is particularly useful when aggregating results from distributed computations:
summing partial results computed by each process to obtain a global total, finding
the maximum value across all ranks, or combining arrays element-wise

MPI Op Operation MPI Op Operation MPI Op Operation
MPI_MIN min MPI_SUM + MPI_BAND &

MPI_MAX max MPI_PROD * MPI_BOR |
MPI_LAND && MPI_LOR | |

Reduction: syntax 104/110

C/C++ Syntax

int MPI_Reduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Fortran Syntax

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

Fortran 2008 Syntax

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
TYPE(C*), DIMENSION(C..), INTENT(CIN) :: sendbuf

TYPE(*), DIMENSION(C..) :: recvbuf

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENTCIN) :: datatype

TYPECMPI_Op), INTENTCIN) :: op

TYPE(MPI_Comm), INTENTCIN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Computing m: computing the final result with a reduction 105/110

We can rewrite the way we computed the final sum for the computation of = using an
MPI_Reduce:

double final_sum = 0.0;
MPI_Reduce(&sum, &final_sum, 1, MPI_DOUBLE, MPI_SUM, ©, MPI_COMM_WORLD);

if (rank == 0) {
const double pi = final_sum * step;

printf(" Computed value of pi with %" PRIu6d " steps is %.121f\n", NUM_STEPS, pi);
printf(" Computation took %Llf seconds\n", elapsed);

}

DEBUGGING TIPS

Using GDB with MPI 107/110

Parallel debuggers such as Perforce TotalView and Linaro DDT provide powerful tools
for inspecting MPI applications, but they are often expensive and not available on the
CECI clusters

However, you can still perform basic debugging using a standard serial debugger like
GDB in batch mode (--batch). In this mode, you can provide the commands to execute
using the —ex option, for example:

-—ex 'r' —ex 'GDB_COMMAND' -ex 'OTHER_GDB_COMMAND'

To run your MPI program and collect a backtrace when it crashes, you can use a
command such as:

mpirun —np NPROCESS gdb --batch -ex 'r' -ex 'bt' -—-args EXECUTABLE OPTIONS

Memory debugging 108/110

The Address Sanitizer (ASan) is a powerful debugging tool that can be enabled at
compile time to detect common memory-related errors such as use-after-free, memory
leaks, and heap overflows. You can activate it by compiling your program with the flags:

—g —fsanitize=address

Compared to tools like Valgrind, the Address Sanitizer is significantly faster and
therefore practical for use with HPC applications. However, it still introduces a
noticeable performance overhead, so it should be used only during debugging and not
for production runs

Memory debugging 109/110

The Address Sanitizer is particularly useful for diagnosing memory access issues in MPI
programs, where traditional debuggers like GDB can sometimes produce misleading
backtraces. For example, a segmentation fault may appear to originate from within
MPI_Finalize:

Thread 1 "mpi_app" received signal SIGSEGV, Segmentation fault.

#7 0Ox00007ffff7de7fcd in ompi_mpi_finalize () from /lib/x86_6uU-1linux—gnu/libmpi.so.40
#8 0Ox00005555555557fe in main (argc=<optimized out>, argv=<optimized out>) at ./mpi_app.c:159

In such cases, the error often stems not from MPI_Finalize itself, but from an invalid
memory address passed to a previous MPI call. The Address Sanitizer can precisely
identify where the invalid access occurred, helping you trace the true origin of the
memory error rather than its downstream consequence.

QUESTIONS?

	 A FIRST MPI APPLICATION: COMPILING AND RUNNING
	Intel compilers:
	GNU compilers:

	 WORK DISTRIBUTION AND POINT TO POINT COMMUNICATION
	Fortran
	Fortran 2008

	 IN-DEPTH LOOK AT POINT-TO-POINT COMMUNICATION
	 POINT-TO-POINT COMMUNICATION: MORE PATTERNS AND PITFALLS
	 NON-BLOCKING COMMUNICATION
	 MPI AND ACCELERATORS (GPU)
	 COLLECTIVE COMMUNICATION
	 DEBUGGING TIPS

