
 1

 Introduction to Parallel Computing

damien.francois@uclouvain.be
November 2025

 2

Agenda

1. General concepts, definitions, challenges

2. Hardware for parallel computing

3. Programming models

4. User tools

 3

1.

General concepts

 4

Why parallel? (simplified)

Speed up – Solve a problem faster
→ more processing power

(a.k.a. strong scaling)

Scale up – Solve a larger problem
→ more memory and network capacity

(a.k.a. weak scaling)

Scale out – Solve many problems
→ more storage capacity

Also: energy consumption is a cubic function of clock frequency so using 2
compute units is 8 times cheaper than using one unit with double the frequency

 5

Parallelization involves:

● decomposition of the work

– distributing instructions to processors
– distributing data to memories

● collaboration of the workers

– synchronization of the distributed work
– communication of data

 6

Decomposition of the work

● Operation decomposition : task-level parallelism

– Multiple programs (functional decomposition)
– Multiple instances of the same program (SPMD)

● Data decomposition : data-level parallelism

Parallelization involves:

 7

Decomposition of the work

● Operation decomposition : task-level parallelism

● Data decomposition : data-level parallelism

– Block, cyclic

https://nyu-cds.github.io/python-mpi/04-decomposition/

Parallelization involves:

 8

Decomposition of the work

● Operation decomposition : task-level parallelism

● Data decomposition : data-level parallelism

– Domain decomposition : decomposition of work and
data is done in a higher model, e.g. in the reality

https://fun3d.larc.nasa.gov/example-54.html

Parallelization involves:

 9

Collaboration of the workers

● Synchronization of the workers

– Synchronous (SIMD) at the processor level ; the
same processor instruction for each worker at any
time ; (instruction level)

– Fine-grained parallelism : subtasks communicate
many times per second (typically at the loop level)

– Coarse-grained parallelism : they do not
communicate many times per second (typically
function-call level)

– Embarrassingly parallel : they rarely or never have
to communicate (asynchronous)

Parallelization involves:

high

low

co
m

m
u

ni
ca

tin
g

/ c
om

pu
tin

g

 10

Collaboration of the workers

● Communication between workers

– Point to point
– Broadcast
– Scatter
– Gather
– Reduction

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

Parallelization involves:

 11

Does it work?
 Speedup, Efficiency, Scalability

https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf

Speedup

Time for serial operations

Time for parallel operations

Efficiency

Number of
processors

 12

 Challenge 1: Amdahl's Law

http://tutorials.jenkov.com/java-concurrency/amdahls-law.html

In parallel computing, Amdahl's law is mainly used
to predict the theoretical maximum speedup

for programs using multiple processors.

Not all the work can be decomposed

Why wouldn’t it work?

 13

 Challenge 2: Parallel overhead

https://computing.llnl.gov/tutorials/parallel_comp/images/helloWorldParallelCallgraph.gif

Collaboration means communication and extra work

Why wouldn’t it work?

 14

 Challenge 2: Parallel overhead

https://computing.llnl.gov/tutorials/parallel_comp/images/helloWorldParallelCallgraph.gif

Collaboration means communication and extra work

Why wouldn’t it work?

 15

 Challenge 3: Load imbalance
Parallelization is efficient only if every worker roughly has the same amount of work

https://hpc-wiki.info/hpc/Load_Balancing

Why wouldn’t it work?

 16

2.

Hardware for parallel computing

 17

Von Neumann (serial) architecture

https://en.wikipedia.org/wiki/Von_Neumann_architecture

An abstract view of early computers

 18

Parallelism at the CPU (core) level

● Instruction-level parallelism
(ILP)

– Instruction pipelining
– Out-of-order execution
– Speculative execution
– ...

● Single Instruction Multiple
Data (SIMD)

● Simultaneous multithreading
(SMT)

An abstract view of modern CPUs

 19

Parallelism at the chip (socket) level

● Multicore
parallelism

 20

Parallelism at the computer level

● Multi-socket
parallelism

– SMP
– NUMA

● Accelerators

 21

Parallelism at the data center level

Multi-node parallelism

 22

Parallelism at the data center level
Cluster computing

 23

Parallelism at the data center level
Cloud computing “someone else’s cluster”

 24

Parallelism at the world level
Grid computing – “cluster of clusters”

 25

Parallelism at the world level
Distributed computing – “no unused cycle”

 26

3.

Programming paradigms
(logic of work sharing and organizing)

Programming models
(software libraries and APIs)

 27

Is parallization automagic?

● ILP: yes, by the CPU and/or the compiler

● SIMD: mostly, by the compiler

● Intra-node: can be if the library/software you use is
designed for it

● GPUs: can be if the library/software you use is designed
for it

● Inter-node: never automagic.

 28

Main parallel programming paradigms

● Task-farming:

– Master program distributes work to worker
programs (leader/follower); or

– Worker programs pick up tasks from pool (work stealing).
● SPMD (Single program multiple data)

– A single program that contains both the logic for
distributing work and computing

– Multiple instances are started and “linked” together
– Instances are identified with a distinct index

1 2 3

1 2 3

 29

1 2 3

Other parallel programming paradigms

CPU1: If (very_long_computation())
CPU1: then
CPU1: do A
CPU1: else
CPU1: do B

CPU1: res=very_long_computation()
CPU2: do A
CPU3: do B
CPU1: if (res) discard B else discard A

1 1 2 3

X

● MPMD (Multiple program multiple data)

● Pipelining : workers take care of a subtask in the
processing chain and pass the intermediate result to the
next worker

● Divide and Conquer :

– workers are spawned at need and report
their result to the parent

– Speculative parallelism : workers are spawned and
result possibly discarded

1 2 3

1 2 3

 30

Main programming models

● Single computer:

– CPUs: PThreads, OpenMP, TBB, OpenCL
– Accelerators: CUDA, OpenCL, OpenAcc/OpenMP,

SYCL, Hipp, ROCm
● Multi-computer:

– Clusters:
● Message passing: MPI, PVM
● PGAS: CoArray Fortran, UPC, Global Arrays

– Clouds: MapReduce, Spark RDD
– Distributed computing: BOINC

Linux program starting process

Code (program.c)

Binary (program.exe)

Process (PID 1235)

Compiler

Loader

Executable file

Text file

Running instance

One execution thread

Computer

Code (program.c)

Binary (program.exe)

Process (PID 1235)

Compiler

Loader

Executable file

Text file

Running instance

One execution thread
is assigned by the OS
one CPU core

Computer

Code (program.c)

Binary (program.exe)

Multiple independent
processes

Compiler

Loader,
called multiple times

Executable file

Text file

Running instances

Computer

Multiple independent
processes on multiple
servers

Code (program.c)

Binary (program.exe)

Compiler

Executable file

Text file

Computer

Computer

Loader,
called multiple times
with SSH on multiple
servers

Running instances

Multiple independent
processes on multiple
servers

Code (program.c)

Binary (program.exe)

Compiler

Executable file

Text file

Computer

Computer

Loader,
called multiple times
with SSH on multiple
servers

Running instances

srun
 xargs, split, GNU parallel

 make this easier

Forking Code

Single binary

Multiple Processes
with parent/child
relationship

Compiler

Loader, called once

Executable file

Text file

parent child

Computer

IPC – Inter-process communicationRunning instances

Multithreaded Code

Single binary

Single process with
multiple threads
(multithreaded – shared memory)

Compiler

Loader, called once

Executable file

Text file

Running instance

Computer

Multithreaded Code

Single binary

Single process with
multiple threads
(multithreaded – shared memory)

Compiler

Loader, called once

Executable file

Text file

Running instance

Computer

OpenMP makes
this easier

Code (program.c)

Binary (program.exe)

Compiler

Executable file

Text file

Running instances

Computer

Computer

Loader,
called multiple times
with SSH on multiple
servers

Multiple connected
processes on multiple
servers

Code (program.c)

Binary (program.exe)

Compiler

Executable file

Text file

Running instances

Computer

Computer

Loader,
called multiple times
with SSH on multiple
servers

Multiple connected
processes on multiple
servers

MPI makes
this easier

 42

xargs, split, GNU parallel → start multiple
independent processes

OpenMP → write multithreaded programs

MPI → write multiprocess connected
programs

 43

4.
User tools

that GNU/Linux offers

4.1 Parallelized tools
4.2 Job control and parallel processes
4.3 Basic tools
4.4 GNU Parallel

 44

4.1. Parallelized utilities

gzip
grep
ssh
sort
scp
bc
...

pigz
ripgrep, singrep
clustershell
sort --parallel
bbcp
bcx
...

serial parallel

Some tools have a parallelized counterpart, or parallel options. Examples:

You might have to install them by yourself if they are not present on the clusters

 45

4.2. Job control & Parallel processes in Bash

cp -r /CECI/proj/training/parcomp .

Consider the following example program

It is written in Bash and just transforms some upper case letters to lower case

 46

4.2. Job control & Parallel processes in Bash

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

Run the program twice

 47

4.2. Job control & Parallel processes in Bash

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

Run the program twice and measure the time it takes

 48

4.2. Job control & Parallel processes in Bash

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

Run the program twice and measure the time it takes

 49

4.2. Job control & Parallel processes in Bash

https://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html

Run the program twice “in the background” and measure the time

 50

4.2. Job control & Parallel processes in Bash

for i in {1..10}; do
(

command1
 command2
) &
done; wait

Parallel for loop in Bash:

for i in {1..10}; do
command1

 command2
done

(...) & : creates a sub-shell with all commands in the bloc and start it in the background
wait : barrier to synchronize all sub-shells

 51

4.3.1. One program and many files

Equivalent to
./lower.sh d1.txt ;
./lower.sh d2.txt ;
./lower.sh d3.txt ;
./lower.sh d3.txt ;

Equivalent to
./lower.sh d1.txt &
./lower.sh d2.txt &
./lower.sh d3.txt &
./lower.sh d3.txt &

wait

The xargs command distributes data from stdin to program

4.3. Basic tools

 52

4.3.2. Several programs and one file
./upper.sh waits for ./lower.sh to finish

Note the intermediate file
Using UNIX pipes for pipelining operations

4.3. Basic tools

 53

4.3.2. Several programs and one file

./upper.sh starts reading as soon
as ./lower.sh starts writing

Using UNIX fifos for pipelining operations

4.3. Basic tools

A FIFO file is a “fake” file to which
a process can write at the end and
another can read at the beginning

 54

4.3.2. Several programs and one file
./upper.sh waits for ./lower.sh to finish

Note the intermediate file
Using UNIX pipes for pipelining operations

4.3. Basic tools

 55

4.3.3. One program and one large file

Need recent version of Coreutils/8.22-goolf-1.4.10

Split the file and start 4 processes

The split command distributes data from stdin to program

4.3. Basic tools

 57

4.3.4. Several programs and many files

https://www.gnu.org/software/make/manual/html_node/index.html

A Makefile describes dependencies and is executed with ‘make’

This means: build a .res file
from a similarly-named .tmp file

using the ./upper.sh program

This means: build a .tmp file
from a similarly-named .txt file

using the ./lower program

4.3. Basic tools

 58

4.3.4. Several programs and many files

The ‘make’ command can operate in parallel

4.3. Basic tools

 59

Summary

● You have either

– one very large file to process
● with one program: split
● with several programs: fifo (or pipes)

– many files to process
● with one program xargs
● with many programs make

4.3. Basic tools

 60

4.4. GNU Parallel

More complicated to use but very powerful
Might not be available everywhere but you can install it

 61

4.4. GNU Parallel

● Syntax: parallel command ::: argument list

 62

4.4. GNU Parallel

● Syntax: {} as argument placeholder.

 63

4.4. GNU Parallel

● Multiple parameters and --xapply

 64

4.4. GNU Parallel

● When arguments are in a file : use :::: (4x ‘:’)

 66

4.4. GNU Parallel

https://www.gnu.org/software/parallel/parallel_tutorial.html

 67

4.4. GNU Parallel

https://www.gnu.org/software/parallel/parallel_tutorial.html

 68

4.4. GNU Parallel

https://www.gnu.org/software/parallel/parallel_tutorial.html

 69

4.4. GNU Parallel

https://www.gnu.org/software/parallel/parallel_tutorial.html

 70

4.4. GNU Parallel

● Split a file with --pipe

 74

Summary

1. General concepts, definitions, challenges

2. Hardware for parallel computing

3. Programming models

4. User tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 74

