Directive Based
GPU Programming

Orian Louant

CECI-CISM Training - Fall 2025

The zoo of programming model for accelerators

Central Processing Unit (CPU) Graphics Processing Unit (GPU)

« latency-optimized « throughput-optimized

« general-purpose * specialized

« wide range of distinct tasks sequentially « highly parallel computing

Low-Level Languages High-Level Frameworks Directive Based Models
« Cuda (NVIDIA) « Kokkos « OpenMP

« HIP (AMD) Raja « OpenACC

« OpenCL (neutral) « Alpaka

SyCL (DPC++)

Programming with directives

OpenMP OpenACC

* general-purpose parallel programming model « oriented towards accelerators

« the programmer explicitly spread the « the programmer tells to the compiler which
execution of loops, code regions, and tasks loops can be parallelized and let the compiler
across team(s) of threads do the mapping to the target architecture

#fpragma omp construct [clauses] f#fpragma acc construct [clauses]
structured-block structured-block

!$omp construct [clauses] !$acc construct [clauses]
code-block code-block

!$omp end construct !$acc end construct

OpenMP support for accelerator

* introduced with OpenMP 4.0,
significantly extended in versions 4.5
and 5.0

« GPUs are the most common type of
accelerator

* OpenMP is not limited to GPUs, you can
use it to target any kind of accelerators

(NEC SX-Aurora TSUBASA, FPGAs, \ /
ASICs, ...)

» makes it easier to target multiple
heterogeneous architectures using the

same code base

OpenMP execution model

Host

Where the execution starts. In
almost all cases, this is the CPU

\ / Device
\ i

Multiple accelerator/coprocessor

\/ of the same type for offloading

Host Multithreading

As a starting point to our journey to the world of
GPU programming with directives, we will use a
very simple kernel: saxpy

 parallel:create a team of threads that will
start executing in parallel

- Tfor/do:distribute the iteration of the loop
within the team of threads

{#fpragma omp parallel for

for (int i = 0; 1 < n; ++1) %
y[i] = a » x[1] + y[i];

£

'$omp parallel do
do 1 = 1,n
y(i) = a * x(i) + y(di)
end do
'$omp end parallel do

Offloading execution

The target directive instructs the compiler to generate

a target task that will execute the enclosed block of code on a LPACEIE] GIlY adadore PRl). adon:

for (int i = 0; i < n; ++i) §

device y[i] = a * x[i] + y[i];
§
ffpragma omp target § !$omp target parallel do
structured-block ffpragma omp target do is= 1,n . |
y(i) = a * x(i) + y(i)
IS end do
5 '$omp end target parallel do
©
'$omp target
code-block @
e

'$omp end target

Gather devices information

The omp_get _num_devices routine
returns the number of target devices

Devices are assigned an ID from 0O to
ndevice-1. You can select the device to
use for a target region by using the
device clause

The omp_is_initial _device routine
returns true if the current task is executing
on the host device (CPU). It returns false
if this is not the case

int on_host;
int ndev = omp_get_num_devices();

printf("Number of devices: %d\n", ndev);

for (int i = 0; i < ndev; i++) §
#fpragma omp target device(i) map(from:on_host)
1
on_host = omp_1is_initial_device();

§

printf("Is initial device when on device %d: %d\n",
1, on_host);

§

printf("Is initial device when on host: %d\n",
omp_is_initial_device());

Data in the device memory

Variable and arrays are present in the host (CPU) memory but not in the device memory
* in order to use a variable/array on the device, we need to have the data present in the device memory

« if we want to use data computed on the device, we need to update the data present in the host
memory

Type Description
ffpragma omp target map(type:list) alloc allocate memory on the device
structured-block .
to allocate memory on the device and copy
the original values from the host to the
device
! t t type:list :
$228e-3i§§k map(type:list) from allocate memory on the device and copy
$omp end target the values from the device to the host

tofrom combination of to and from type

Data in the device memory

double a
double *b

1234;
(doublex)malloc(sizeof(double)*n);

* in C/C++, when moving array to and from

the GPU, you need to 'specn‘y the number #pragma omp target map(tofrom:a) \
of elements to be copied map (to:b[0:n])

]
» thisis not required in Fortran // Code using a and b on the GPU

§

You can also copy part of an array: real (kind=real64)

T a
real (kind=realé64), allocatable :: b(:)

ffpragma omp target map(to:b[10:4]) allocate(b(n))

'$omp target map(to:b[10:13]) '$omp target map(tofrom:a) map(to:b)

! Code using a and b on the GPU

. . !$omp end target
Note: in C/C++ the syntax is [start:length]

and [start:end] in Fortran

Moving data to and from the device

- map(to:x): because we only read the array Scalar variables that do not appear in a map
on the device clause default to firstprivate. As a
consequence we don’t need to map the variable
« map(tofrom:y): because we read and a to the device

modify the array on the device

f#fpragma omp target parallel for map(to:x[0:n]) map(tofrom:y[0:n])
for (int 1 = 0; 1 < n; ++1) 3

y[i]l = a * x[1i] + y[i];
§

'$omp target parallel do map(to:x) map(tofrom:y)
do 1 = 1,n
y(i) = a * x(i) + y(1)
end do
'$omp end target parallel do

Compiling (on Lyra)

Clang

module load releases/2023a
module load Clang/17.0.0_20230515-GCCcore-12.3.0-CUDA-12.1.1

clang -03 -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda
-Xopenmp-target=nvptx64-nvidia-cuda -march=sm_89 <source>

NVIDIA HPC SDK (NVIDIA only)

module load releases/2023a
module load NVHPC/23.7-CUDA-12.1.1

nvc/nviortran -mp=gpu -Minfo=mp -gpu=cc89 <source>

Compiling (on Lucia, EasyBuild software stack)

Clang

Add the following line to your .bashzc
source /gpfs/softs/acad/mgmt/init/acad_profile.sh

module load EasyBuild/2023a
module load Clang/18.1.8-GCCcore-12.3.0-CUDA-12.2.0

clang -03 -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda
-Xopenmp-target=nvptx64-nvidia-cuda -march=sm_80 <source>

NVIDIA HPC SDK (NVIDIA only)

module load EasyBuild/2023a
module load NVHPC/23.7-CUDA-12.2.0

nvc/nviortran -mp=gpu -Minfo=mp -gpu=cc80 <source>

Using the Cray compiler (Lucia, LUMI)

Cray utilize target modules to define the target architecture for compilation. Once a craype-accel-x*
module is loaded, offloading is automatic if OpenMP is enabled (- fopenmp)

Cray cc (NVIDIA)

module load PrgEnv-cray

module load nvhpc

module load craype-accel-nvidia80
cc —fopenmp <source>

Cray cc (AMD)

module load PrgEnv-cray

module load rocm

module load craype-accel-amd-gfx90a
cc —fopenmp <source>

A look to the hardware

A GPU is composed of multiple units each
with their own registers, local memory and
scheduler

« streaming multiprocessors (NVIDIA)
« compute units (AMD)

On a GPU, the work is scheduled in blocks
that are executed on these units

« thread blocks (NVIDIA)
« workgroups (AMD)

-

4
v
Thread

scheduler

}

~

"

}

Local
Memory

Registers

Block scheduler

¢ ¢

Thread Thread
scheduler scheduler

¢ ¢

J

¢ ¢

Local Local
Memory Memory
Registers Registers

\/

Device memory

A look to the hardware

The threads in a block are further divided in
bundles that execute in lockstep: they run
the same instructions, and follow the same
control-flow path (SIMD fashion)

« 32 threads: warps (NVIDIA)
« 64 workitems: wavefront (AMD)

These bundles of threads execute on the
vector units of the GPU

}

Thread
scheduler

-~

4
\/

~

Block scheduler

}

Thread
scheduler

¢

"

)

A
v

Local
Memory

Registers

¢

Local
Memory

Registers

\4

Device memory

¢

Thread
scheduler

¢

¢

Local
Memory

Registers

A look to the hardware

#fpragma omp target parallel for

for (int 1 = 0; 1 < n; ++1) 13
y[i] = a % x[i] + y[i];

§

We create only one team of threads that will
use only one of the available units of our
GPU

We need a way to create multiple teams so
that we use the full potential of the
hardware

-

4
R
Thread
scheduler

}

"

}

Local
Memory

Block scheduler

}

Thread
scheduler

¢

Registers

J

¢

Local
Memory

Registers

\4

Device memory

¢

Thread
scheduler

¢

¢

Local
Memory

Registers

The team construct: motivation

Let’'s consider some limitations of the hardware:

* no synchronization or memory fences possible between the streaming multiprocessors/compute units

« unlike CPUs where there is cache coherency between the cores, there is no such coherence between
the streaming multiprocessors/compute units of a GPU

These limitations of the hardware have consequence if you consider “normal” OpenMP:

« creation of a parallel region, work-sharing tasks, ...

» barriers, critical regions, locks and atomics can be applied to a team of threads

In order to keep these characteristics on the devices an additional level was added, the team construct:

« multiple teams are spawned and each of these teams has a master threads

« the master thread can spawn a team of threads with a parallel construct
« threads in different teams cannot synchronize with each other but threads within a team can

Creating teams and distribute work

When a teams construct

is reached, a league of
teams is created and
the initial thread in each
team executes

the teams region

When a distribute
construct is reached,
the iterations of one or
more loops will be
distributed to the teams

fpragma omp target
#fpragma omp teams

team O team 1 team 2 team 3

#fpragma omp target

#fpragma omp teams distribute
for (int 1 = 0; 1 < 1000; i++)

iy Ll i

0 to 249 25010499 500to749 750 to 999

#fpragma omp teams
structured-block

!$omp teams
structured-block
'$omp end teams

#fpragma omp distribute
for-loops

!$omp distribute
do-loops
!$omp end distribute

Get teams information

The number of teams can be controlled by the num_teams clause and the number of threads with the
thread limit clauses

#pragma omp teams num_teams(nteams) \ '$omp teams num_teams(nteams) &
thread_limit(nthreads) ' $omp& thread_limits(nthreads)

In addition, OpenMP provide runtime functions:

« omp_get _num_teams () returns the number of teams
« omp_get_team_num() returns the team number of the calling threads (0 to nteams-1)
« omp_get _thread_limit() returns the maximum number of threads

Saxpy with teams distribute

- target: create a target « team distribute: create « parallel for/do:
task that will be executed multiple teams of threads distribute the iterations to
on the GPU and distribute the loop the threads of the teams

iterations to these teams

ffpragma omp target teams distribute parallel for \
map(to:x[0:n]) map(tofrom:y[0:n])

for (int 1 =0; 1 < n; ++1) 3

} y[i] = a * x[i] + y[i];

'$omp target teams distribute parallel do map(to:x) map(tofrom:y)
do 1 = 1,n
y(i) = a * x(i) + y(1)
end do
'$omp end target teams distribute parallel do

Jacobi 2D - host version

point we want
1 to compute

N+1 N N N N
U; ; = — (U: .-|-u._ -+ us -|-u.._ .)
L,J 4 (t+1,] =1 Lj+1 L] 1) additional points
needed
while (err > tol && iter < iter _max) 3%
err = 0.0;
f#fpragma omp parallel for reduction(max:err)
for (int j = 1; j < n-1; j++) %
for (int 1 = 1; i < m-1; i++) 3§
unew[j*m + i] = 0.25 * (uold[j*m + (i+1)] + uold[j*m + (1-1)]
+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);
err = fmax(err, fabs(unew[j*m + i] - uold[j*m + 1i]));
§
§

// Swap values, uold <- unew

Jacobi 2D - device version

point we want

1 to compute
N+1 N N N N
U; ; = — (U: .-|-u._ -+ us -|-u.._ .)
LJ 4 (t+1,] =1 Li+1 LJ 1) additional points
needed
while (err > tol && iter < iter _max) 3%
err = 0.0;
ffpragma omp teams distribute parallel for reduction(max:err) \
map (tofrom:uold[@:n*m]) map(from:unew[O:n*m])
for (int § = 1; j < n-1; j++) %
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+41)] + uold[j*m + (1-1)]
+ uold[(j-1)*m + i] + uold[(j+1)+*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
§
§

// Swap values, uold <- unew

Jacobi 2D

if we run the multithreaded version of the
Jacobi code on a CPU, we get a good speedup
up to 8 threads and close to 21x speedup
when we use the entire socket (AMD EPYC
7542, 32 cores)

if we run on the GPU we see a small speedup
on AMD compared to the serial execution but
10x slower compared to the 32 threads run

on NVIDIA, the performance is even worse,
with a 0.89x speedup compared to the serial
run

Number of Time Speedup
threads (s)

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64
16 2.117 13.43
32 1.376 20.66

AMD MI250x (M 11.842 2.41
NVIDIA A100 (2 31.694 0.89

(1) Cray compiler, CPE 22.08, ROCm 5.1

(2) Clang 16.0.6, CUDA 11.7

Jacobi 2D

In order to understand to poor performance of
the GPU version, we will do a quick profiling

We can use nsys (NVIDIA) or the
LIBOMPTARGET _KERNEL_TRACE environment
variable (AMD).

__tgt rtl data_alloc: 64us
__tgt rtl data_alloc: 53us
__tgt_rtl data_submit_async: 33674us
__tgt rtl data_alloc: 3us
__tgt_rtl _data_submit_async: 135us
__tgt_rtl run_target_team_region: 4879us
__tgt _rtl data_retrieve_async: 93us
__tgt _rtl data_retrieve_async: 32358us
__tgt _rtl data_retrieve_async: 32632us
__tgt_rtl_synchronize: Qus
__tgt _rtl _data_delete: 4us
__tgt rtl _data_delete: 26us

__tgt rtl _data_delete: 17us

Number of Time Speedup
threads (s)

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64
16 2.117 13.43
32 1.376 20.66

AMD MI250x () 11.842 2.41
NVIDIA A100 (2 31.694 0.89

(1) Cray compiler, CPE 22.08, ROCm 5.1

(2) Clang 16.0.6, CUDA 11.7

Efficient movement of data

From the result of a quick profiling of the Jacobi
code on the GPU, we see that

« moving data to and from the device at every
iteration is inefficient

» Dbetter solution is to copy the data to the
device and keep it on the device between
iterations

For that we can use a structured data region that
Map variables to a device data environment for
the extent of the region

f#fpragma omp target data map(type:list)
structured-block

'$omp target data map(type:list)
structured-block
'$omp end target data

Jacobi 2D with a structured data region

In order to improve the movement of data, we create a data region that covers the entire while loop so
that we don’t copy data to and from the GPU between iterations

#fpragma omp target data map(tofrom:uold[O:nx*m]) map(alloc:unew[O:n*m])
while (err > tol && iter < iter_max) {
err = 0.0;

f#fpragma omp target teams distribute parallel for reduction(max:err)
for (int j = 1; j < n-1; j++) {
for (int 1 =1; 1 < m-1; i++) 3

unew[j*m + 1i] 0.25 * (uold[j*m + (i41)] + uold[j*m + (1-1)]
+ uold[(F-1)*m + i] + uold[(j+1)*m + i]);
err = fmax(err, fabs(unew[j*m + i] - uold[j*m + 1i]));
$
$

// swap values, uold <- unew
t+ // end of the data region

Unstructured data

f#fpragma omp target enter data map(type:list)
« for data regions that span multiple
lexical scopes (functions or files) you ffpragma omp target update to|from(list)
can use an unstructured data region
f#fpragma omp target exit data map(type:list)
« data movement or allocation to the
device is done with the enter data
directive

« data movement or deallocation from
the device is done with the exit $omp target enter data map(type:list)
data directive
$omp target update to|from(list)
« update of data in the middle of an
unstructured data region, you can use '$omp end target exit data map(type:list)
the target update directive (from the
host)

The update directive

e you can update data in the middle of a
data region, you can use the target
update directive with clauses

- from: data on the host is updated with
data from the device

- to:data on the device is updated with
the data from the host

« this directive can be used in the
middle of a structured or unstructured
data region

f#fpragma omp target data map(tofrom:a[@:n])

1

// do something with a on the device

ffpragma omp target update from(a[0:n])

// do something with a on the host
ffpragma omp target update to(al[O@:n])
// do something with a on the device

!$omp target data map(tofrom:a)

! do something with a on the device
'$omp target update from(a)

! do something with a on the host
'$omp target update to(a)

! do something with a on the device

!$omp end target data

Jacobi 2D with unstructured data directives

f#fpragma omp target enter data map(to:uold[O:n*m]) map(alloc:unew[O:n*m])

while (err > tol && iter < iter_max) $
err = 0.0;

f#fpragma omp target teams distribute parallel for reduction(max:err)
for (int 7 = 1; j < n-1; j++) 1%
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+41)] + uold[j*m + (1-1)]
+ uold[(3-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + 1i]));
£
§

// swap values, uold <- unew

§

f#fpragma omp target exit data map(from:uold[O@:nx*m]) map(delete:unew[O:n*m])

Jacobi 2D with a data region

Now that we have removed unnecessary data
movement we see

* a huge improvement compared to the first
version without data movement optimization

« still, we only achieved a ~9x speedup on the
MI250x GPU compared to the serial CPU
version

 Significant speed up for the A100 (28x)

Number of Time Speedup
threads (s)

1 28.433 1.00

4 /.140 3.98

8 3.718 /.64

16 2.117 13.43

32 1.376 20.66

AMD MI250x (1) 11.842 2 .41

(2) 3.265 8.71

NVIDIA A100 (1) 31.694 0.89

(2) 1.010 28.15

(1) with no data movement optimization
(2) with data movement optimization

Enabling more parallelism

By only parallelizing the outer loop, distribute the iterations of the outer loop to the teams
we do not fully exploit the parallelism « distribute the iterations of the inner loop to the threads

of the hardware

#fpragma omp target data map(tofrom:uold[O:n*m]) map(alloc:unew[O:n*m])
while (err > tol && iter < iter_max) $

err = 0.0;

f#fpragma omp target teams distribute reduction(max:err)
for (int §j = 1; j < n-1; j++) 3
#fpragma omp parallel for reduction(max:err)
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+41)] + uold[j#*m + (i-1)]
+ uold[(j-1)+*m + i] + uold[(j+1)*m + il);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + 1i]));
%
%

// swap values, uold <- unew
// end of the data region

Enabling more parallelism

By distributing both loops, the first across teams
and the second across threads we increase
parallelism.

« for CPUs it's not recommended to use more
threads than the available cores/hardware
threads on the system

« for GPUs, in order to hide memory latency, you
need to use more threads than what the
hardware is capable of executing at the same
time

* Increasing the parallelism leads to 2x
improvement on the A100 and more than 6x
for the MI250x compared to the version where
we only parallelize the outer loop

Number of Time Speedup
threads (s)

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64
16 2.117 13.43
32 1.376 20.66

AMD MI250x (1) 3.265 8.71
(2) 0.526 54.05
NVIDIA A100 (1) 1.010 28.15
(2) 0.581 48.94

(1) parallelization of the outer loop

(2) outer loop across teams and inner

loop across threads

Enabling more parallelism with loop collapsing

Another way to increase the parallelism is to collapse the loop nest. For a for or distribute construct, if
a collapse clause is present and more the one loop is associated with the construct, then the iteration of
all associated loops are collapsed into one larger iteration space

#fpragma omp target data map(tofrom:uold[O:nx*m]) map(alloc:unew[O:n*m])
while (err > tol && iter < iter _max) 3
err = 0.0;

ffpragma omp target teams distribute parallel for collapse(2) reduction(max:err)
for (int § = 1; j < n-1; j++) %
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + 1] = 0.25 * (uold[j*m + (i41)] + uold[j*m + (i-1)]
+ uold[(j-1)+*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
$
%

// swap values, uold <- unew
t // end of the data region

Loop collapsing

Collapsing the loops is an other way to increase

parallelism on the GPU

No change is the observed speedup for the
MI250x as well as for the A100

Number of

Time

threads (s) Rl

1 28.433 1.00

4 7.140 3.98

8 3.718 7.64

16 2.117 13.43
32 1.376 20.66
AMD MI250x (1) 0.526 54.05
(2) 0.522 54.46
NVIDIA A100 (1) 0.566 48.94
(2) 0.581 48.93

(1) outer loop across teams and inner

loop across threads

(2) collapsing the two loops

Structure mapping

Scalar member of a structure will be copied at
the same time as the base structure

However, OpenMP target offload do not have
support for deep copy:

« we have to be careful when using structure
with non-scalar members (arrays)

* non-scalar members need to be mapped
explicitly by the developer

Structure pointers are arrays of size 1 and need
to be mapped explicitly by the developer

typedef struct saxpy_data {
int size;
float *x, *y;
float a;

} saxpy_data_t;

void saxpy(saxpy_data_t *data) 1%
{#fpragma omp target teams distribute parallel for
map (to:data[0:1])
map (to:data->x[0:data->size])
map (tofrom:data->y[0:data->size])
for(int i = 0; 1 < data->size; i++) 3
data->y[i] = data->a * data->x[i] + data->y[i];

ky

\
\
\

User-defined mapper

When a structure is heavily used in the application, it can be tiresome to explicitly map it every time we
want to use it to the device

OpenMP offer user-defined mapper to tackle this problem: the developer can define how a structure
should be mapped to the device

The declare mapper directive declares a user-defined mapper for a given type and may define
amapper-identifier that can be used in a map clause.

#fpragma omp declare mapper([mapper-identifier:]type var) \
[clause[[,] clause] ...]

where clauseismap([map-type:] list)which is the same syntax as for the mapping clause of a data
region.

User-defined mapper

Using the declare mappexr directive, we can

how a structure should be copied to the device: typegez,sgfuct saxpy_data {
1in 1ze;
float *x, *y;
« we specify that the mapper applies to the float a;
. . e } saxpy_data_t;
saxpy_data_t type and defines an identifier
for the structure (data) #tpragma omp declare mapper(saxpy_data_t data) \
map(to:data) \
map(to:data.x[@:data.s@ze]) \
« we map the base structure with a to modifier map(data.y[0:data.sizel])
which means that the size and a members void saxpy(saxpy_data_t *data) {
will be copied to the device when entering the #pragma omp target tea'?j diiﬁéfi?gte parallel for \
. . ma atal0:1
data region but not copied back the host when for(int i = @; i < dai’a_>size; i) { |
we exit the region. We also allocate and attach } data->y[i] = data->a * data->x[i] + data->y[il];
the x and y arrays }

« as we use a pointer to the saxpy_data_t
structure, the mapping of the structure to the
device is done with map(datal[0:1])

Prescriptive vs. Descriptive model

OpenMP is descriptive

The OpenMP directives instruct the compiler to generate parallel code in a specific way, leaving little
to the discretion of the compiler

OpenACC is prescriptive

OpenACC directives tell the compiler that a loop can be parallelized. The compiler is free to run them
in parallel any way it chooses and choose very different mappings depending on the underlying
hardware

The kernels construct

The kernels construct defines a region that is to
be compiled into a sequence of kernels for
execution on the device

« the compiler will analyse the code and splits it
in a sequence of device kernels
» typically each loop nest will become a kernel

{#fpragma acc kernels
structured-block

'$acc kernels
code-block
!$acc end kernels

{#fpragma acc kernels

1

// A first kernel generated here
for (int i =0; 1< n; i++) 3

@@

// A second kernel generated here
for (int 1 = 0; 1 < n; i++) 3
y[i] = ixx[i] + y[i];
sum += y[i];
$
$

!$acc kernels
! A first kernel generated here
do 1 = O, n

x(i) = 1.0
y(i) = 2.0
end do

! A second kernel generated here
do 1 =0, n
y(i) = ixx(i) + y(i)
sum = sum + y[i]
end do
!$acc end kernels

The parallel construct #ipragna acc parallel

]
#fpragma acc loop
for (int 1 =0; i < n; i++) 3
The parallel construct starts parallel execution ;EH B
on the device 1
#fpragma acc parallel #pragma acc loop. .
structured-block for (int i = 0; 1 < n; i++) 3
y[i] = i*xx[i] + y[i];
sum += y[i];
!$acc parallel $
code-block §

!$acc end parallel " e
!$acc paralle

!$acc loop
do 1 =0, n
. e .. x(1) = 1.0
The loop construct identifies a loop eligible for y(i) = 2.0
parallelization end do
#fpragma acc loop !$acc loop
for-loop do1=0,n

y(i) = ixx(i) + y(i)
sum = sum + y[i]

'$acc loop ' end do
do-loop '$acc end parallel

Data movement clauses

OpenACC data movement directives are very similar to the OpenMP directives: like with the target
construct you can use data clauses with the kernels or parallel construct

ffpragma acc kernels clause(list) !$acc kernels clause(list)

ffpragma acc parallel clause(list) !'$acc parallel clause(list)

Clause Description

create allocate memory on the device

delete deallocate memory on the device

copyin allocate memory on the device and copy the original values from the host to the device
copyout allocate memory on the device and copy the values from the device to the host

Copy

combination of copyin and copyout

Data region

Structured data region data region are created using the data directive

' .
#pragma acc data clause(list) '$a§gdg?ﬁioiiause(llst)

structured-block '$acc end data

For unstructured data regions:

« data movement or allocation to the device is done with the enter data directive
« data movement or deallocation from the device are done with the exit data directive

#fpragma acc enter data clause(list) '$acc enter data clause(list)

#fpragma acc exit data clause(list) '$acc exit data clause(list)

The update directive

e you can update data in the middle of
an data region, you can use the update
directive clauses:

« host: data on the host is updated with
data from the device (you can also use
self)

- device: data on the device is updated
with the data from the host

« this directive can be used in the
middle of a structured or unstructured

data region

ffpragma acc data map(tofrom:a[0:n])

1

// do something with a on the device
ffpragma acc update host(al[0:n])

// do something with a on the host
f#fpragma acc update device(al[0:n])

// do something with a on the device

!$acc data map(tofrom:a)
! do something with a on the device

'$acc update host(a)
! do something with a on the host

!$acc update device(a)
! do something with a on the device

!$acc end data

OpenACC saxpy

#fpragma acc kernels copyin(x[0:n]) copy(y[0:n])
for (int 1 =0; 1 < n; ++1) 3

y[i]l = a * x[i] + y[i];
$

!$acc kernels copyin(x) copy(y)
do 1 =1,n

y(i) = a * x(i) + y(i)
end do

We have two options to implement our saxpy $acc end kernels

example with OpenACC

* using a kernel directive and let the compiler
analyze our code and generate a kernel that

will execute on the GPU #fpragma acc parallel loop copyin(x[0:n])

copy(y[0:n]) _ _
« using a combined parallel loop directive to for (int 1 = 0; 1 < n; ++1) {

explicitly indicate to the compiler where the . ylal =aodil + vl
source of parallelism is
!$acc parallel loop copyin(x) copy(y)
do 1i=1,n
y(i) = a * x(i) + y(i)
end do
!$acc end parallel loop

Compilers

OpenACC is not as widely supported by compilers as OpenMP:

« the best implementation is the NVIDIA compiler
« itis possible to use GCC to target both NVIDIA and AMD GPUs
« some commercial compilers, like the HPE Cray one include support for OpenACC

NVIDIA HPC SDK (NVIDIA only)

nvc/nviortran -acc -Minfo=acc -gpu=<ccXY> <source>

GCC (NVIDIA, ok performance with recent version)

gcc/gfortran —-fopenacc -foffload=nvptx-none <source>

OpenACC Jacobi

 the parallel loop construct create aregion to be executed on the device and indicate that the outer
loop is parallelizable

« the loop directive on the inner loop indicates to the compiler that it is parallelizable as well

f#fpragma acc data copy(uold[@:nx*m]) create(unew[O:n*m])
while (err > tol && iter < iter_max) 1
err = 0.0;

f#fpragma acc parallel loop reduction(max:err)
for (int § = 1; j < n-1; j++) 3
#fpragma acc loop reduction(max:err)
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+41)] + uold[j*m + (i-1)]
+ uold[(j-1)*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + i]));
%
%

// swap values, uold <- unew
+ // end of the data region

OpenACC Jacobi

Similarly to to what we did with the OpenMP version, we can also collapse the nested loop nest with the
collapse clause.

f#fpragma acc data copy(uold[@:nx*m]) create(unew[O:n*m])
while (err > tol && iter < iter_max) 1
err = 0.0;

f#fpragma acc parallel loop collapse(2) reduction(max:err)
for (int 7 = 1; j < n-1; j++) 1%
for (int 1 =1; 1 < m-1; i++) 3
unew[j*m + i] = 0.25 * (uold[j*m + (i+41)] + uold[j*m + (i-1)]
+ uold[(j-1)+*m + i] + uold[(j+1)*m + i]);

err = fmax(err, fabs(unew[j*m + i] - uold[j*m + 1i]));
%
%

// swap values, uold <- unew
t+ // end of the data region

Coalescent memory access

Coalescent memory access

thread O
thread 1
thread 2
thread 3

| memory block |

Uncoalescent memory access

thread O
thread 1
thread 2
thread 3

Coalesced memory access refers
to combining multiple memory accesses
into a single transaction

when a thread access the GPU global
memory it always access a the
memory in chunks

if other threads access the same
chunk at the same time then the
chunk can be reused

the most efficient access is when
threads read or write contiguous
memory locations

strided memory access is not optimal
as more memory transactions are
reqired to read/write the same
amount of data

AoS and SoA

Array of Structures: cache friendly

struct point 3}
float x;
float y;
float z;

i

struct point points[n];

[T T T7T 771

Structure of arrays: coalescent access

struct points_list 3
float x[n];
float y[n];
float z[n];

}I

Wrapping-up

OpenMP and OpenACC allows you to target GPUs with a few directives added to your code. While adding
these directives is relatively easy:

Transferring data between the host and the device is an expensive process

- data transfer may be the main bottleneck when running on a accelerator is not handled carefully

« only transfer data required on the device

« try to keep the data on the device as long as possible

« use structured data region (target data) or unstructured data region (target enter/exit data)

You need sufficient parallelism in order to achieve good performance

* need to expose more parallelism that for CPUs
« can be achieved by distributing loops across teams and across threads
« for tightly nested loop collapsing is also an option

Questions?

*
*
*

SAEE
e
.

EuroHPC

This training was partially developed in the framework of the EuroCC project that has
received funding from the European High-Performance Computing Joint Undertaking
(JU) under grant agreement No 951732. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Germany, Bulgaria,
Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary,
Ireland, Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden,
United Kingdom, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway,
Switzerland, Turkey, Republic of North Macedonia, Iceland, Montenegro.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53

