
Introduction to programming the
GPU

Formations HPC, CÉCI
Pieter Heremans, UCLouvain

3 december 2025

Overview
● Difference between CPU and GPU

– Why and when to use a GPU?
● What is CUDA?

– When/where can I use cuda?
● Structure of a GPU program

– Nomenclature
● First example of CUDA programming
● First step in optimisation of a CUDA program

– Managing memory transfer

CPU and GPU
● ‘Graphics’ Processing Unit

– A bit of history
● 3d acceleration - mid 1990’s (fixed pipeline)
● Shaders (2001) and ‘GPGPU’

– Cast texture memory to scalar types to perform
‘computing shader’

● Frameworks providing low-level access to GPU
hardware : SIMT (cuda/rocm/sycl/etc.) (2007)

CPU and GPU
● High Throughput, but high Latency

– Speed: number of operation per second
– Latency: delay in the first operation

CPU and GPU

Stream computing
● ‘single instruction, multiple threads’ SIMT

– cfr. SIMD
● multiple data : vector instructions on CPU

– Threads, with synchronisation/atomic
operations and local registers, shared memory

CPU and GPU

● A CPU has 8 cores a GPU 2056 cores
– Should my code should be 200 times faster?

● which part of your code can use
parallelism ?

Speedup in practice
● Comparing speed of code between cpu and gpu

are not really fair
– Cost of the GPU/CPU
– A “normal” speedup is around 5-20
– Huge speed-up typically means non-optimized

reference
● GPU clock is slower than CPU clock

– GPU ~ MHz
– CPU ~ GHz

CUDA
● Hardware vendors propose their low-level

framework to program the GPU :
– CUDA

● Released in 2007
● targets NVidia GPUs

– HIP (compatibility layer for AMD/ROCm)
– Oneapi (intel)
– ...

CUDA Programming model
● A GPU is controlled by a CPU:

– All programs start on the CPU
– Data are prepared on the CPU and moved to

the GPU
– GPU is crunching data
– Move data back to CPU
– End the program

CUDA Programming model
● The CPU is called the “host”
● The GPU is called the “device”

– Viewed as a co-processor
● Function executed on GPU are called kernel

– Executed in parallel (on different data)
● Both the host/device have their own memory

– Memory management is handled by the host
– Automatic management is possible
– Physically shared memory also exists (APU)

Multi-processor/block/thread
● Main components

– Streaming-Multiprocessor
– Memory

Block
● Thread are grouped by block

– Collaboration between threads
● synchronization, atomic-memory operations
● shared memory

● Up to 2048 threads per block
● Blocks are fully independent

– Can be executed in any order
– Can be executed on different GPU

Execution model
● block are organised in

‘warp’ of 32 threads
● Those 32 threads are

working in lockstep
– Run the same command

at the ‘same’ time
– ‘If’ statement slows down

the code

SAXPY
● In a demonstration, we’ll

have a look at
developing a ‘saxpy’
kernel

● Kernel
– Calculates a * x[i] + y[i]

1. Initialize GPU

2. Initialize variable on the host (cpu)

3. Allocate memory on the device (gpu)

4. Move data from host to device

5. Execute kernel on device

6. Move back results

7. Clean up (deallocation)

kernel
● No loop anymore !!

– Each thread will take care of one (scalar) data
– Need to compute which element each thread has

to handle.
– Various variable defined for that

● blockIdx.x (.y / .z if 2D and 3D): id of the current block
● blockDim.x: number thread in Block (for that dimension)
● threadIdx.x: id of the current thread inside the block

Kernel call
● How do you call a kernel?
● saxpy<<<numblock, blocksize>>>(d_x, d_y, a, n)
● blocksize: number of thread in a block

– Should be multiple of 32 (due to wrap)
– Maximum of 2048
– depends of the GPU capabilities

● Number of blocks (grid):
– a block is executed on one SM

6● ‘Coalesced’ memory:
– Efficient access pattern where

threads in a warp read from, or
write to, consecutive memory
locations

● Module load CUDA
● nvcc -arch=sm_70 saxpy.cu -o saxpy

– You can have additional flags for C++ par of the code
(library linking, -O3,…)

– Arch allows to have a minimum target gpu
– No dedicated flag for additional GPU optimisation
– GPU does support multiple file source code

● But seriously limit optimisation
● Cuda11 starts supports for that but still limited.

Memory
● You have to manage memory:

– Plenty of types of memory on the GPU

● In each Stream-Multiprocessor :
– Register File

● Fastest memory
● Thread specific
● Very limited amount
● Overflow goes to L1 data cache

– Shared memory
● Limited amount (shared with L1 data cache)
● Block wide memory (could need synchronisation!)
● __shared__

Memory
● Plenty of type of memory on the GPU

– Outside the SM
● Global memory
● High bandwidth (900Gb/s) but High latency
● High number of thread needed to hide this latency
● Default memory for cpu/gpu pointer

● ! Efficiency in memory transfer = maximise the usage of the data transfer,
need to use all data in a block before needing a new block transfer

Global Memory

● Coalesced access not possible?
– Use shared memory as a cache

Global Memory

Shared Memory

Thread

Memory
● Constant memory

– Will be put in cache (same speed as shared memory)
● Texture memory

– specific to graphics
● ‘Unified’ Memory

– Automagically accessible both on host and device
– cudaMallocManaged(&&x, size)
– Rarely advantageous for speed

Occupancy
● Occupancy is limited

– Each SM has
limited ressources

● Maximum number
of wrap (64)

● Maximum number
of block (32)

● Register usage
(256Kb)

● Shared memory
usage (64Kb)

GPU at CÉCI
● Dragon2

– 2 nodes (2xV100)
● Hercules

– 1 node (8xA40)
● Lyra

– 40 nodes (1xRTX6000)
● Lucia (TIER-1 project)

– 50 nodes (4xA100)
●

GPU at CÉCI
● @CÉCI : Slurm

– Check resources available
– sinfo --format="%N %.6D %P %G"

● run interactively
– srun --gpus=1 --pty bash

● Check module on the machine
– module av
– module spider CUDA

● Check that you have access to the GPU
– nvidia-smi

GPU at CÉCI

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 29
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 38
	Slide 40
	Slide 41
	Slide 42

