GPU

Formations HPC, CECI
Pieter Heremans, UCLouvain
3 december 2025

Overview

* Difference between CPU and GPU
— Why and when to use a GPU?

* What is CUDA?
- When/where can | use cuda?

* Structure of a GPU program
- Nomenclature

* First example of CUDA programming

* First step in optimisation of a CUDA program
— Managing memory transfer

CPU and GPU

* ‘Graphics’ Processing Unit

— A bit of history
* 3d acceleration - mid 1990’s (fixed pipeline)
* Shaders (2001) and ‘GPGPU’

— Cast texture memory to scalar types to perform
‘computing shader’

* Frameworks providing low-level access to GPU
hardware : SIMT (cuda/rocm/sycl/etc.) (2007)

CPU and GPU

* High Throughput, but high Latency
- Speed: number of operation per second
- Latency: delay in the first operation

CPU core - Low Latency Processor Computation Thread/Warp

GPU Stream Multiprocessor - High Throughput Processor

CPU and GPU

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache
L2 Cache

L1 Cache

L2 Cache

L3 Cache

L2 Cache

CPU GPU

Stream computing

* ‘single instruction, multiple threads’ SIMT

Y o S
- cfr. SIMD 9 "oa
. w
] {Im 1 1m
E H
W Instructions
[pata
W Results

* multiple data : vector instructions on CPU

- Threads, with synchronisation/atomic
operations and local registers, shared memory

Inputstream |5 1|3 (8|2|3|6|7|7|3|4|5

e et [L]

Outputstream |6 |2|4|9|3|4|7|8[8(4|5|6

CPU and GPU

* ACPU has 8 cores a GPU 2056 cores
- Should my code should be 200 times faster?

* which part of your code can use
parallelism ? : T

/ 9%
n A i 90%
Twoindependentparts A B . | / —=

Original process s

Make B 5x faster ®n RRRRIREER R T

Speedup In practice

* Comparing speed of code between cpu and gpu
are not really fair

~ Cost of the GPU/CPU
— A“normal” speedup is around 5-20

~ Huge speed-up typically means non-optimized
reference

* GPU clock is slower than CPU clock
- GPU ~ MHz
- CPU ~ GHz

CUDA

* Hardware vendors propose their low-level
framework to program the GPU :

- CUDA
* Released in 2007
* targets NVidia GPUs

~ HIP (compatiblility layer for AMD/ROCm)
~ Oneapi (intel)

CUDA Programming model

* AGPU is controlled by a CPU:

— All programs start on the CPU

— Data are prepared on the CPU and moved to
the GPU

— GPU is crunching data
— Move data back to CPU
— End the program

Kernel execution is
asynchronous

Asynchronous memory
transfers also available

CUDA Programming model

* The CPU is called the “host”

* The GPU is called the “device”
— Viewed as a co-processor

* Function executed on GPU are called kernel
— EXxecuted in parallel (on different data)

* Both the host/device have their own memory
— Memory management is handled by the host
— Automatic management is possible
— Physically shared memory also exists (APU)

Multi-processor/block/thread

* Main components
— Streaming-Multiprocessor
- Memory

POl Express 3.0 Host Inarface Lolnsiution Gache Lonsien cachs
e - [rep————— [—

GigaThread Engine. [T— Disaich Uni 32 eadek)

Register Fil (16,384 x 3260). RegisterFlo 16,384 x 3258)

b i s R oo
ez i o R oo
TENSOR CORE TENSOR CORE
s o e R e
R . st FRRFRR e

R o o e

Disatch Uni (32 veadic)

; Rogitar il (15364 x3201) Ragsto i (16304 x3200)
i R o b R e
TENSOR CORE TENSOR GORE
i R o st R o
i R e o [e

High-Speed Hub _
(5K L1 Dl Ciche | Shared rnary

* Thread are grouped by block

— Collaboration between threads
* synchronization, atomic-memory operations
* shared memory

* Up to 2048 threads per block

* Blocks are fully independent
~ Can be executed in any order
~ Can be executed on different GPU

Inputstream |5 |1]3[8]2[3|6]7[7]3]4]5]

e e ||

Outputstream | 6|2]4|9|3]4]7]8]|8]4]5]6]

Execution model

* block are organised in
‘warp’ of 32 threads

°* Those 32 threads are
working in lockstep

- Run the same command
at the ‘same’ time

- ‘If’ statement slows down
the code

(assume logic below is to be executed for each
element in input array A’ producing output into
the amay ‘result)

<unconditional code>
float x = A[i];
if (x > 9) {

i

} else
float tmp = kMyConst1; |

x = 2.f * tmp; |
}

<resume unconditional code>

SAXPY

* |n a demonstration, we'll
developing a ‘saxpy’
kernel

e Kernel =
2 *) malloc(N*siz (fl

*) malloc(N*sizeof(fl
(int 1 =0; 1 <N; 1++) {
x[1] 1.0f;

- Calculates a*x[i] +y[l] Kk

saxpy_cpu(x, y, 2.f, N);

i r = 0.0f;
(int Q; i < N; i++)

maxError = fmax(maxError, std::abs(y[i]-4.0f));
printf("Max error: \n", maxError);

flc

Initialize GPU

Initialize variable on the host (cpu)
Allocate memory on the device (gpu)
Move data from host to device
Execute kernel on device

Move back results

Clean up (deallocation)

NOo e WNhH

kernel

* No loop anymore !!
— Each thread will take care of one (scalar) data

~— Need to compute which element each thread has
to handle.

— Various variable defined for that
* blockldx.x (.y / .z if 2D and 3D): id of the current block
* blockDim.x: number thread in Block (for that dimension)
* threadldx.x: id of the current thread inside the block

Kernel call

* How do you call a kernel?
* saxpy<<<numblock, blocksize>>>(d x, d vy, a, n)

* blocksize: number of thread in a block
~— Should be multiple of 32 (due to wrap)
— Maximum of 2048
~ depends of the GPU capabilities

* Number of blocks (grid):
~— a block is executed on one SM

vecX

vecY

Block 0 Block 1 Block 2 Block 3 Block 4
T O I
IR EEEE RN ERENERREREERERNN |U!.L_UUHHDDD[]DDDD"'

* ‘Coalesced’ memory:

- Efficient access pattern where
threads in a warp read from, or
write to, consecutive memory

locations

threadIdx.x = 5

~
threadldx.x =6

* Module load CUDA

* nvce -arch=sm_70 saxpy.cu -0 saxpy

~ You can have additional flags for C++ par of the code
(library linking, -O3,...)

— Arch allows to have a minimum target gpu
~ No dedicated flag for additional GPU optimisation

~— GPU does support multiple file source code
* But seriously limit optimisation
* Cudall starts supports for that but still limited.

Memory

* You have to manage memory:
- Plenty of types of memory on the GPU

* In each Stream-Multiprocessor :
- Register File

L1 Instruction Cache

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
* Fastest memory
g TENSOR CORE TENSOR CORE
[] h read S peC Ifl C INT32INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32

INT32INT32 FP32FP3Z FPes INT32INTS2 P32 FP32

* Very limited amount
* Overflow goes to L1 data cache

LO Instruction Cache L0 Instruction Cache

- Shared memory
* Limited amount (shared with L1 data cache)
* Block wide memory (could need synchronisation!)
* shared

INT32 INT32

INT32 INT32

INT32 INT32

INTS2 INT32

INTS2 INT32

INT32 INT32

INT32 INT32

INT32 INT32

Wi L
sT ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32FP32 FPes
FP32FP32 FPos
P32 P32 FPos

FP32 P32 Fpes

TENSOR CORE

FP32FP32 Fpes

FP32FP32 FPes

FP32 P32 Fres

FP32FP32 FPes

W W W W W
enll Rerdl Reril Rell el e

SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INTS2

W Lo
Enl it

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/cik)

Register File (16,384 x 32-bit)

FP32FP32 FPes
FP32FP32 FPe4
FP32FP32 FPe4
FP32 P32 FPes
TENSOR CORE
FP32 P32 FPes
FP32FP32 FPes
FP32FP32 FPes

FP32 P32 FPes

L Wi Lo Wi Wi Lo
& | & |5 |5 | & SFU

192KB L1 Data Cache / Shared Memory.

Tex

Tex

* Plenty of type of memory on the GPU

— Qutside the SM
* Global memory
* High bandwidth (900Gb/s) but High latency
* High number of thread needed to hide this latency
* Default memory for cpu/gpu pointer

| Efficiency in memory transfer = maximise the usage of the data transfer,
need to use all data in a block before needing a new block transfer

Global Memory 0000000 FEREEERE CCO00000 00000000

* Coalesced access not possible?
- Use shared memory as a cache

o SR

Shared Memory QOEOOOOOOOOOOON

Thread O00O00000000000000C060

* Constant memory
~— WIill be put in cache (same speed as shared memory)

* Texture memory
~ specific to graphics
* ‘Unified’ Memory
— Automagically accessible both on host and device
~— cudaMallocManaged(&&x, size)
~ Rarely advantageous for speed

Occupancy

* Occupancy is limited
- Each SM has
limited ressources

* Maximum number
of wrap (64)

* Maximum number
of block (32)

* Register usage
(256KDb)

* Shared memory
usage (64Kb)

GPU at CECI

* DragonZ2
~— 2 nodes (2xV100)

* Hercules
~— 1 node (8xA40)
* Lyra
~ 40 nodes (1xRTX6000)
* Lucia (TIER-1 project)
~— 50 nodes (4xA100)

GPU at CECI

* @CECI: Slurm
— Check resources available

— sinfo --format="%N %.6D %P %G"
* run interactively

— srun --gpus=1 --pty bash
* Check module on the machine

— module av
- module spider CUDA

* Check that you have access to the GPU
- nvidia-smi

GPU at CECI

indico.cism.ucl.ac.be

How to submit a GPU job >

Request a GPU with --gres or --gpu

You want You ask

N GPUs --gpus=N
N GPUs per node --gres=gpu:N

#! /bin/bash

#SBATCH --cpus-per-task=3
#SBATCH --mem-per-cpu=1g
#SBATCH --gres=gpu:2

submit.sh

module load CUDA # or cuda on some clusters
nvidia-smi

Display a menu

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 29
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 38
	Slide 40
	Slide 41
	Slide 42

