GPU optimization techniques and tools

A collection of ideas to maybe improve your GPU performance

*Presented data acquired over a two years period of hands-on experimentation and accumulated frustration and suffering.
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The importance of using GPU resources effectively

* Big gap between a naive porting of a
CPU-optimized code and a GPU-
optimized code

*  Writing efficient GPU code is HARD

* When it works : it’s very fast
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What is a GPU ?

Some differences VS a CPU include
* SIMD-like execution model

* Coalescent memory access

* Very high memory latency

* Designed for higher arithmetic intensity

* Very limited cache per thread
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What is a GPU : the execution model

Defining characteristics:

Cores of a CU" are not independent

Computations inside of a CU’
is the same for all threads

No data exchange and synchronisation?
outside of the CU. Compute units are
completely independent

Cores in a CU want to access data
from the same “cache line” : coalescence

Compute Unit (CU)

Many GPU cores

Simplified GPU

REGISTERS REGISTERS

MATRIX ENGINE
MATRIX ENGINE

L1 Cache / Shared memory

Zoom on a compute unit



Nomenclature

Green = NVIDIA
Blue = INTEL
Red = AMD

(Cuda) cores = Shading Units = Stream processors

REGISTERS REGISTERS

MATRIX ENGINE
MATRIX ENGINE

Streaming multiprocessor = Core = Compute Unit L1 Cache / Shared memory

Simplified GPU Zoom on a compute unit




Coalescent memory access

* Onthe CPU : we want to maximize locality
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Coalescent memory access

* Onthe CPU : we want to maximize locality
* Onthe GPU : data is accessed simultaneously
*  Much smaller cache per core : data may not fit! — Excessive loads

Sector 0 Sector 1 Sector 2 Sector 3
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Coalescent memory access

* Onthe CPU : we want to maximize locality

* Onthe GPU : data is accessed simultaneously

*  Much smaller cache per core : data may not fit! — Excessive loads
* Optimal pattern : all cores from a CU read

same sector : One sector read per access Sector 0 Sector 1 Sector 2 Sector 3
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1 — Double vs float : which one should you choose, and why is it float*?

e RTX3080: * A100:
e Float: 29.77 TFLOPS e Float :19.49 TFLOPS
 Double : 0.47 TFLOPS  Double : 9.746 TFLOPS

If you can, use floats

Double Float



Where is the bottleneck ?

void dudt(const float* u, float* fu

for(int i

float
local

ful...

4

c

%)

i< n; i++

3] local u
= uf...

Heavy processing

local fu
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Where is the bottleneck ?

__global__ void dudt_kernel(const float* u, float* fu
int tid = threadIdx.x + blockIdx.x * blockDim.x
if (tid < n

float[4][3] local u
local u[...] = ul...

Heavy processing

ful...] = local fu




Memory is (almost always) the bottleneck

__global__ void dudt_kernel(const float* u, float* fu
int tid = threadIdx.x + blockIdx.x * blockDim.x
if (tid < n

float[4][3] local u
local u[...] = u[... 55%

Heavy processing 30%

ful...] = local fu 15%




2 — Importance of memory locality

GPU MEMORY
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2 — Importance of memory locality
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2 — Clues to detect that problem:

* Very high bandwidth utilization
* Too many reads compared to what is expected

A L2 Load Access Pattern

A DRAM Excessive Read Sectors

Shared Memory Conflicts

The memory access pattern for loads from L1TEX to L2 is not optimal. The granularity of an L1TEX request to L2 is a 128 byte cache line. That is 4 consecutive 32-byte sectors per L2 request. However, this kernel only accesses an average of 1.2 sectors out of the possible 4 sectors per ®
cache line. Check the section for uncoalesced loads and try to minimize how many cache lines need to be accessed per memory request.

Detection of shared memory bank conflicts.
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The memory access pattern for loads from device memory causes 21,733,744 sectors to be read from DRAM, which is 1.8x of the 12,160,697 sectors causing a miss in the L2 cache. The DRAM fetch granularity for read misses in L2 is 64 bytes, i.e. the lower or upper half of an L2 ®
cache line. Try changing your access pattern to make use of both sectors returned by a DRAM read request for optimal usage of the DRAM throughput. For strided memory reads, avoid strides of 64 bytes or larger to avoid moving unused sectors from DRAM 1o L2.
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3 — So... let’s optimize for locality, right ?

__global__ void mysum(const float* a, const float* b
int tid = threadIdx.x + blockIdx.x * blockDim.Xx

if (tid < n

for(int field = 0; field < nf; field++

c/[tid * nf + field

= altid * nf + field

__global__ void mysum(const float* a, const float* b
int tid = threadIdx.x + blockIdx.x * blockDim.Xx

if (tid < n

for(int field = 0; field < nf; field++

c|field * n + tid

= a|field * n + tid

float* c, int nf

int n

+ b[tid * nf + field

float* c, int nf

+ b[field * n + tid

int n



3 — No, we need to consider coalescence

__global __ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.Xx;
if (tid < n){
for(int field = 9; field < nf; field++){

634 us
c[tid * nf + field] = a[tid * nf + field] + b[tid * nf + field];
}
}
}
__global _ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.Xx;
if (tid < n){
for(int field = 0; field < nf; field++){
403 us

c[field * n + tid] = a[field * n + tid] + b[field * n + tid];




3 — No, we need to consider coalescence

Sector 0 Sector 1 Sector 2 Sector 3 Sector 0 Sector 1 Sector 2 Sector 3
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__global__ void mysum(const float* a, const float* b, float* c, int nf, int n __global__ void mysum(const float* a, const float* b, float* c, int nf, int n
int tid = threadIdx.x + blockIdx.x blockDim.x int tid = threadIdx.x + blockIdx.x * blockDim.x
if (tid < n if (tid < n
for(int field = 0; field < nf; field++ for(int field = 0; field < nf; field++

c[tid * nf + field] = a[tid * nf + field] + b[tid * nf + field c[field * n + tid] = a[field * n + tid] + b[field * n + tid



3 — How to evaluate if coalescence is good ?

* ncu will yell at you if it’s not

» Memory Workload Analysis All vl

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kernel performance when fully utilizing the involved hardware units (Mem Busy), exhausting the available communication bandwidth between those units (Max Bandwidth), or by reaching the maximum throughput of issuing
memory instructions (Mem Pipes Busy). Detailed chart of the memory units. Detailed tables with data for each memory unit.

Memory Throughput [Gbyte/second] 468.93 Mem Busy [%] 38.95
L1/TEX Hit Rate [%] 92.23 Max Bandwidth [%] 30.47
L2 Hit Rate [%] 61.03 Mem Pipes Busy [%] 8.53
L2 Compression Success Rate [%] 0 L2 Compression Ratio 0
The memory access pattern for global stores in L1TEX might not be optimal. On average, this kernel accesses 4.0 bytes per thread per memory request; but the address pattern, possibly caused by the stride between threads, results in 32.0 sectors per request, or 32.0*32 = ¢
A L1TEX Global Store Access Pattern  1024.0 bytes of cache data transfers per request. The optimal thread address pattern for 4.0 byte accesses would result in 4.0%32 = 128.0 bytes of cache data transfers per request, to maximize L1TEX cache performance. Check the section for uncoalesced

global stores.

The memory access pattern for global loads in L1TEX might not be optimal. On average, this kernel accesses 4.0 bytes per thread per memory request; but the address pattern, possibly caused by the stride between threads, results in 27.0 sectors per request, or 27.0*32 = ¢
A L1TEX Global Load Access Patiern  865.4 bytes of cache data transfers per request. The optimal thread address pattern for 4.0 byte accesses would result in 4.0x32 = 128.0 bytes of cache data transfers per request, to maximize L1TEX cache performance. Check the section for uncoalesced
global loads.
The memory access pattern for loads from L1TEX to L2 is not optimal. The granularity of an L1TEX request to L2 is a 128 byte cache line. That is 4 consecutive 32-byte sectors per L2 request. However, this kernel only accesses an average of 1.3 sectors out of the possible 4 sectors per ¢
A 12Load Access Pattern = 5 ol =
cache line. Check the section for uncoalesced loads and try to minimize how many cache lines need to be accessed per memory request.
Shared Memory Conflicts  Detection of shared memory bank conflicts. Apply
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4 — Beware of doubles

__device _ float inv2x2(const float mat|2

ihv[2][2

float det = det2x2(mat
float ud = 1.0 / det
inv[O][0
inv[1l][@
inv[O][1
inv[1][1
return det

mat|1
-mat| 1
-mat| o
mat|©

1
%)
1
%)
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4 — Beware of doubles : how to check?

Floating Point Operations Roofline
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D profile.ncu-rep X

Look for DMUL, DFMA

Code must be compiled with
-—generate-line-info

umaxl =

flux_n +=

4 — Beware of doubles : how to check?

=il Resul:

520 - dudt (6751, 1, 1)x(128, 1, ...

View: SourceandSASS ~ [B

Bl %

Navigation: Instructions Executed

Hun = (Hunl+Hunr)/

= fmax(c_l,c_r);

flux_H =
flux_n = c*(Hunl-Hunr)/
flux_t =

umaxr = sqri(gxHr);
unl = Hunl/HL, unr

// advection
scalar un = (unl+unr)/
flux_t +=

// gravity
flux_H += Hun + c*(etal-etar)/
flux_n -= g*(bath_l + (etal+etar)/

scalar flux_u = flux_n*nx+flux_t+*tx;

scalar flux_v = flux_nxny+flux_t=*ty;

= flux_H;
= flux_u;

= flux_v;

~ [//////1]]/ END OF THE EXERCISE, NO CHANGES NEEDED BELOV

Source Markers

Select a source line in an active inline function to show additional information.

Occupancy Calculator

479.33 usecond 522,249 98 0- NVIDIA A100-SXM4-40GB  1.09 cycle/nsecond 8.0 [1298635] main

Navigation: Instructions Executed

Live arp Stall Sampl =

@

(=)

un*(un >

*(Hunl*unl + Hunrxunr);

]

@

|DFMA ~

v v~ ¢ 1282

MOV R,
CALL .REL .NOINC
MOV R17, R43

BSYNC BO®

FMUL RE, RS, RIL

F2F .F64.F32 R12
FADD R11, R18,
FEMA RS, R7,

FADD
FADD R1
F2F.F6U.F32
FMUL R, R9, R

FMUL R18, R10,

F2F .F64.F32 R20

FSETP.GT.AND PO,

s
DFMA R4, RH,

YT O

FFMA R19, R10,
F2F.F6U.F32 R12
F2F.F32.F64 RY,
DFMA R14, R14,
DMUL Ri4, R9d4,
F2F.F6u.F32
DMUL R12, R14,
F2F.F64.F32 R32
F2F.F64.F32 RS,
DFHA 2
DFHA RG
F2F.F32.F64 R12

© 0 @ 0 0 0 00 0 0 0 @0 00000000000 000 0 0 O

Copy as Image ~
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07%
07%
24%
08%
30%
03%
01%
5%
85%
17%
05%
03%
6%
16%
01%
12%
03%
09%
07%
16%
15%
03%
14%
07%
13%
17%
18%
16%
21%
14%




5 — Why did a simple printf make my code 1.2x slower ?

__device _ float inv2x2(const float mat[2][2], float

inv[2][2])

{
float det = det2x2(mat);
if(det)
float ud = 1.0 / det;
inv[@][0] = mat[1][1] * ud;
inv[1][0] = -mat[1][0] * ud;
inv[@][1] = -mat[0][1] * ud;
inv[1][1] = mat[@][@] * ud;
}
else{
printf("Singular matrix 2x2");
for(int i = 0; 1 < 2; i++)
for(int j = 0; j < 2; j++)
inv[i][j] = ©0.0;
}
return det;
}



5 — Why did a simple printf make my code 1.2x slower ?

__device_ _ float inv2x2(const float mat|2

inv[2][2

float det = det2x2(mat
float ud = 1.0 /
inv[O][©
inv[1l][®©
inv[O][1
inv[1][1
return det

mat
-mat
-mat
mat

det
1

1
(%]
(%]
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float



5 — Watch the occupancy!

device _ float inv2x2(const float mat[2][2], float

inv[2][2])

{

float det = det2x2(mat);
if(det){
float ud = 1.0 / det;

inv[@0][0] = mat[1][1] * ud;
inv[1][@] = -mat[1][0] * ud;
inv[@][1] = -mat[0][1] * ud;
inv[1][1] = mat[e][0] * ud;
}
else{

printf("Singular matrix 2x2");
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
inv[i][j] = ©.0;
}

return det;




5 — Watch the occupancy!

__device _ float inv2x2(const float mat[2][2

inv[2][2

float det = det2x2(mat
float ud =
inv[o][o
inv[1l][©
inv[o][1
inv[1][1
return det

1.0 / det

mat|1
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5 — Is the occupancy a limiting factor?

ncu will tell you

Often the case that
occupancy is limited
by registers, but
critical when

«on astep»

Can sometimes be
mitigated by template
kernel specialization

» Occupancy

8 O

Occupancy is the ratio of the number of active warps per multiprocessor to the maximum number of possible active warps. Another way to view occupancy is the percentage of the hardware's ability to process warps that is actively in use. Higher occupancy does not always result
in higher performance, however, low occupancy always reduces the ability to hide latencies, resulting in overall performance degradation. Large discrepancies between the theoretical and the achieved occupancy during execution typically indicates highly imbalanced workloads.

Theoretical Occupancy [%]

31.25 Block Limit Registers [block] 5

Theoretical Active Warps per SM [warp] 20 Block Limit Shared Mem [block] 16

Achieved Occupancy [%] 29.69 Block Limit Warps [block] 16

Achieved Active Warps Per SM [warp] 19.00 Block Limit SM [block] 32
A\ Occupancy Limiters  This kernel's theoretical occupancy (81.2%) is limited by the number of required registers See the for more details on optimizing occupancy.

Achieved Occupancy  Analysis of the Achieved Occupancy Apply
Theoretical Occupancy  Analysis of Theoretical Occupancy and its Limiters Apply
Impact of Varying Register Count Per Thread
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Exercice time!

1. Use floats
Use a reordered mesh

3. Transpose the memory access for more coalescence (at the price of
locality though!)

4. Catch the remaining double literals
5. Remove the never-accessed debug print code

File : main.h



6 — Kernel fusion

* Kernels comparable in duration

 Kernels share variables

» Makes sense to merge the kernels to avoid a read and write from global memory

Timeline



7 — Using shared memory

* To share data among threads
* To manually cache some frequently used data
* To reduce register pressure/ local memory usage

* To allow communication/ data exchange within a group

* Shared memory organzed in « Banks »

* Simultaneous accesses to the same bank are serialized

* Consecutive threads should access consecutive banks



8 — Array of struct of arrays

* Array of struct : perfect locality, bad coalescence

* Struct of array : good coalescence, bad locality

*  What if we could combine both?

Array-of-struct-of-array layout : good coalescence, fairly good locality



9 - Free performance*?

« --use_fast math : compiler flag that enables unsafe and less accurate but sometimes faster math (Can reduce
register usage significantly)

« --extra-device-vectorization

* _ launch_bounds__ () :Tell the compiler the maximum block size at compile time. Allow optimization that can

significantly improve the performance, or sometimes significantly worsen the performance.

Usage :

__launch_bounds__ (BLOCK SIZE)

__global _ void my_kernel(float a, float* data, int n){...

*Sometimes



All of these are just ideas:

Some things may work and improve the performance,
Others may slow down the code.

Some can degrade the quality of the solution,

Some may not be possible due to resource constrains,
etc..‘

Conclusion :
profile, benchmark and run your code before and you try to optimize it.
You never know.



