
Miguel De Le Court

UCLouvain, IMMC

GPU optimization techniques and tools

A collection of ideas to maybe improve your GPU performance

*Presented data acquired over a two years period of hands-on experimentation and accumulated frustration and suffering.

The importance of using GPU resources effectively

• Big gap between a naïve porting of a
CPU-optimized code and a GPU-
optimized code

• Writing efficient GPU code is HARD

• When it works : it’s very fast
Our journey today

Plan for this session
0. What is a GPU
1. double vs float
2. Locality
3. Coalescence
4. double literals
5. Occupancy limiters
6. Kernel fusion
7. Shared memory
8. Array of struct of array
9. Free compiler flags

What is a GPU ?

Some differences VS a CPU include

• SIMD-like execution model
• Coalescent memory access
• Very high memory latency
• Designed for higher arithmetic intensity

• Very limited cache per thread

• …

Simplified GPU Zoom on a compute unit

What is a GPU : the execution model

Defining characteristics:

• Cores of a CU¹ are not independent
• Computations inside of a CU¹

is the same for all threads

• No data exchange and synchronisation²
outside of the CU. Compute units are
completely independent

• Cores in a CU want to access data
from the same “cache line” : coalescence

Many GPU cores

Compute Unit (CU)

Simplified GPU Zoom on a compute unit

Nomenclature

(Cuda) cores = Shading Units = Stream processors

Streaming multiprocessor = Core = Compute Unit

Green = NVIDIA
Blue = INTEL
Red = AMD

Coalescent memory access

• On the CPU : we want to maximize locality

Coalescent memory access

• On the CPU : we want to maximize locality
• On the GPU : data is accessed simultaneously
• Much smaller cache per core : data may not fit! → Excessive loads

compute unit

Coalescent memory access

• On the CPU : we want to maximize locality
• On the GPU : data is accessed simultaneously
• Much smaller cache per core : data may not fit! → Excessive loads
• Optimal pattern : all cores from a CU read

same sector : One sector read per access

compute unit

1 – Double vs float : which one should you choose, and why is it float*?

• RTX3080:
• Float : 29.77 TFLOPS
• Double : 0.47 TFLOPS

• A100:
• Float : 19.49 TFLOPS
• Double : 9.746 TFLOPS

Double Float

If you can, use floats

void dudt(const float* u, float* fu, ...){

for(int i = 0; i < n; i++){
// loading data
float[4][3] local_u;
local_u[...] = u[...];

// some heavy computation

// writing back the result
fu[...] = local_fu;

}
}

Heavy processing

4%

95%

1%

Where is the bottleneck ?

__global__ void dudt_kernel(const float* u, float* fu, ...){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

// loading data
float[4][3] local_u;
local_u[...] = u[...];

// some heavy computation

// writing back the result
fu[...] = local_fu;

}
}

Heavy processing

Where is the bottleneck ?

__global__ void dudt_kernel(const float* u, float* fu, ...){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

// loading data
float[4][3] local_u;
local_u[...] = u[...];

// some heavy computation

// writing back the result
fu[...] = local_fu;

}
}

Heavy processing

55%

30%

15%

Memory is (almost always) the bottleneck

42

68

115

12

GPU MEMORY

Cache

2 – Importance of memory locality

42

68

115

12

Cache

2 – Importance of memory locality

GPU MEMORY

42

68

115

12

Cache

2 – Importance of memory locality

GPU MEMORY

42

68

115

12

Cache

2 – Importance of memory locality

GPU MEMORY

42

68

115

12

Cache

2 – Importance of memory locality

GPU MEMORY

42

68

115

12

Cache

2 – Importance of memory locality

GPU MEMORY

43

58

48

40

Cache

2 – Importance of memory locality

GPU MEMORY

43

58

48

40

Cache

2 – Importance of memory locality

GPU MEMORY

2 – Clues to detect that problem:
• Very high bandwidth utilization
• Too many reads compared to what is expected

3 – So… let’s optimize for locality, right ?

__global__ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

for(int field = 0; field < nf; field++){
// maximal locality
c[tid * nf + field] = a[tid * nf + field] + b[tid * nf + field];

}
}

}

__global__ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

for(int field = 0; field < nf; field++){
// very large stride
c[field * n + tid] = a[field * n + tid] + b[field * n + tid];

}
}

}

3 – No, we need to consider coalescence

__global__ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

for(int field = 0; field < nf; field++){
// maximal locality
c[tid * nf + field] = a[tid * nf + field] + b[tid * nf + field];

}
}

}

__global__ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

for(int field = 0; field < nf; field++){
// very large stride
c[field * n + tid] = a[field * n + tid] + b[field * n + tid];

}
}

}

634 µs

403 µs

3 – No, we need to consider coalescence

__global__ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

for(int field = 0; field < nf; field++){
// maximal locality

c[tid * nf + field] = a[tid * nf + field] + b[tid * nf + field];
}

}
}

__global__ void mysum(const float* a, const float* b, float* c, int nf, int n){
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < n){

for(int field = 0; field < nf; field++){
// very large stride

c[field * n + tid] = a[field * n + tid] + b[field * n + tid];
}

}
}

3 – How to evaluate if coalescence is good ?

• ncu will yell at you if it’s not

__device__ float inv2x2(const float mat[2][2], float
inv[2][2])
{
float det = det2x2(mat);
float ud = 1.0 / det;
inv[0][0] = mat[1][1] * ud;
inv[1][0] = -mat[1][0] * ud;
inv[0][1] = -mat[0][1] * ud;
inv[1][1] = mat[0][0] * ud;
return det;

}

4 – Beware of doubles

__device__ float inv2x2(const float mat[2][2], float
inv[2][2])
{
float det = det2x2(mat);
float ud = 1.0f / det;
inv[0][0] = mat[1][1] * ud;
inv[1][0] = -mat[1][0] * ud;
inv[0][1] = -mat[0][1] * ud;
inv[1][1] = mat[0][0] * ud;
return det;

}

4 – Beware of doubles

4 – Beware of doubles : how to check?

4 – Beware of doubles : how to check?

• Look for DMUL, DFMA

• Code must be compiled with
-–generate-line-info

__device__ float inv2x2(const float mat[2][2], float
inv[2][2])
{
float det = det2x2(mat);
if(det){
float ud = 1.0 / det;
inv[0][0] = mat[1][1] * ud;
inv[1][0] = -mat[1][0] * ud;
inv[0][1] = -mat[0][1] * ud;
inv[1][1] = mat[0][0] * ud;

}
else{
printf("Singular matrix 2x2");
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
inv[i][j] = 0.0;

}
return det;

}

5 – Why did a simple printf make my code 1.2x slower ?

__device__ float inv2x2(const float mat[2][2], float
inv[2][2])
{
float det = det2x2(mat);
float ud = 1.0 / det;
inv[0][0] = mat[1][1] * ud;
inv[1][0] = -mat[1][0] * ud;
inv[0][1] = -mat[0][1] * ud;
inv[1][1] = mat[0][0] * ud;
return det;

}

5 – Why did a simple printf make my code 1.2x slower ?

__device__ float inv2x2(const float mat[2][2], float
inv[2][2])
{
float det = det2x2(mat);
if(det){
float ud = 1.0 / det;
inv[0][0] = mat[1][1] * ud;
inv[1][0] = -mat[1][0] * ud;
inv[0][1] = -mat[0][1] * ud;
inv[1][1] = mat[0][0] * ud;

}
else{
printf("Singular matrix 2x2");
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
inv[i][j] = 0.0;

}
return det;

}

5 – Watch the occupancy!

__device__ float inv2x2(const float mat[2][2], float
inv[2][2])
{
float det = det2x2(mat);
float ud = 1.0 / det;
inv[0][0] = mat[1][1] * ud;
inv[1][0] = -mat[1][0] * ud;
inv[0][1] = -mat[0][1] * ud;
inv[1][1] = mat[0][0] * ud;
return det;

}

5 – Watch the occupancy!

5 – Is the occupancy a limiting factor?

• ncu will tell you

• Often the case that
occupancy is limited
by registers, but
critical when
« on a step »

• Can sometimes be
mitigated by template
kernel specialization

Exercice time!
1. Use floats
2. Use a reordered mesh
3. Transpose the memory access for more coalescence (at the price of

locality though!)
4. Catch the remaining double literals
5. Remove the never-accessed debug print code

File : main.h

6 – Kernel fusion

• Kernels comparable in duration
• Kernels share variables

 Makes sense to merge the kernels to avoid a read and write from global memory

Timeline

7 – Using shared memory

• To share data among threads

• To manually cache some frequently used data

• To reduce register pressure/ local memory usage

• To allow communication/ data exchange within a group

• Shared memory organzed in « Banks »

• Simultaneous accesses to the same bank are serialized

• Consecutive threads should access consecutive banks

8 – Array of struct of arrays

• Array of struct : perfect locality, bad coalescence

• Struct of array : good coalescence, bad locality

• What if we could combine both?

Array-of-struct-of-array layout : good coalescence, fairly good locality

9 – Free performance*?

• --use_fast_math : compiler flag that enables unsafe and less accurate but sometimes faster math (Can reduce
register usage significantly)

• --extra-device-vectorization

• __launch_bounds__() : Tell the compiler the maximum block size at compile time. Allow optimization that can
significantly improve the performance, or sometimes significantly worsen the performance.

Usage :

*Sometimes

__launch_bounds__(BLOCK_SIZE)

__global__ void my_kernel(float a, float* data, int n){...

All of these are just ideas:
Some things may work and improve the performance,
Others may slow down the code.
Some can degrade the quality of the solution,
Some may not be possible due to resource constrains,
etc...

Conclusion :
profile, benchmark and run your code before and you try to optimize it.

You never know.

