netCDF and HDF5 file
formats on CECI clusters

Quentin GLAUDE: E
10th December 2025, CYCLO09b - Louvain-La-Neuve I

mailto:quentin.glaude@uliege.be

About myself:

Background in Geomatics, Glaciology and Climate Sciences
Thesis in CSL & ULB and experience in other research teams
in Belgium and abroad

Now helping researchers with data, logistics, and technical
support (such as this seminar!)

Skills:

Remote sensing (especially SAR & INSAR)
Turning 2D signals and data into something meaningful

“.'SL

COLUMBIA

MAR G

S ‘

sentinel-2

sentinel-1 sentinel-3

Objectives:

- Understanding basics of netCDF and HDF5 data formats
— their importance in Geosciences (and more)

- How to use these formats in your code and on CECI clusters
— Hands-on session (Fortran90, C / C++, Python)

Difficulty:
- Entry level

2025 novelties !

- C/C++ code a available

- Updated slides with new modules versions and xarray novelties
- More HDF5 python examples

- Youtube video capsule incoming !

NETCDF 2025

Mastering Struc

NetCDF & HDF5 tured Data:

) —

-~
HPC & Scientifi

¢¢Data Manageme‘t

PART |

Introduction to netCDF and HDF5

Importance of Data Formats in Sciences

1. Need for structured, efficient data storage

- Increase in the amount of data: need scalable and efficient data for I/O processes
- Cross disciplinary research needs data usable on-the-go, from distincts fields that are not familiar

to specific data format

2. Data formats impact:

- Research quality: organized, efficient, and accessible.
- Reproducibility: Allows experiments to be replicated and validated.

- Cross-disciplinary collaboration*: Facilitates data exchange across domains (e.g., climate

science, bioinformatics).

Practical example:

Earth System Model

4

Regional Climate Model

L CESM2 - Utrecht (NL)

* Also a reason why shifting to new data format (ex: Zarr) takes some time.

4

Ice Sheet Model

MAR - ULiége (Be)

Kori - ULB (Be)

Sea-
Level
Rise

Data Formats in Scientific Research

1. Structured vs Unstructured Formats:
- Unstructured: Minimal schema, plain-text representation (e.g., JSON, YAML, CSV).
- Structured: Organized, predictable schema (e.g., netCDF, HDF5, Zarr, GeoPackage).

2. Importance of Structured Formats:
- Data over Data: Organizes multi-dimensional datasets and interlinked variables (e.g., temporal,
spatial, and variable dimensions).
- Data Cubes: Support for higher-dimensional arrays for rich scientific analysis.
- Efficiency: Optimized for storage and faster read/write operations.
- Self-Described: Metadata embedded for portability and clarity.

Structured Unstructured
Data Size Efficient Bloated
Metadata support Yes Minimal
Multi-Dimensional Yes No

Read/Write Speed Fast Slow

Real world example:

1. netCDF vs .csv file size
- netCDF : ~11MB
- CSV: 151 files of 101 x 181 values (avg 12B per
FP32 float) + metadata stored separately (5%)
— ~35MB

2. Other differences
- Slower read and write processes
- Dedicated data readers

- Slower files synchronisation (metadata overhead +

latency)

gglaude@nic5-loginl ~/formation_netcdf_hdf5 § ncdump
-h MAR_ME_15km.nc
netcdf MAR_ME_15km {
dimensions:
TIME = UNLIMITED ; // (151 currently)
bnds = 2 ;

variables:
float TIME(TIME) ;
TIME :standard_ name = tlme” ;
TIME:long_name = "time"
TIME :bounds = "TIME_bnds®
TIME:units = "days since 1947-09-01
00:00:00" ;
TIME:calendar = "standard" ;
TIME:a = "T" ;
double TIME bnds(TIME bnds) ;
float X10_110(X10_ 110) ;
X18_110:1ong_name = "x"
X10_110:units = "km"
X10_110:axis = "X" ;
float Y20_2600(Y20_2600) ;
Y20_200:1long_name = "y"
Y20_200:units = "km"
Y20_200:axis = "Y" ;
float SECTOR1 1(SECTOR1 1)

’

SECTOR1_1:standard_name = "depth" ;
SECTOR1 1 long_name = "sector" ;
SECTOR1_1:units = "level" ;

SECTOR1

1 p031t1ve = "down" ;
SECTOR1_1:axis = "Z" ;
SECTOR1_1: point_ spa01ng = "even" ;
float ME(TIME, SECTOR1_1, Y20_200, X160 110)
ME :long_name = "Meltwater production”

:units = "mmWE/day" ;

:_FillValue = -1.e+34f ;

:missing_value = -1.e+34f ;

:cell_methods = "TIME: mean" ;

:history = "From
ICE.q01.1950.01.01-05" ;

Historical Context and Development

1. Origins
- netCDF : Developed by UCAR (University Corporation for Atmospheric Research). Initially
designed for geosciences and climate modelling (1988)
- HDFS5 : Created by NCSA (National Center for Supercomputing Applications). Serve as a
general-purpose format for storing complex scientific data (1987).

2. Evolution of Formats
- netCDF : Transition from netCDF-3 in 1997 (Widely adopted, foundational version for many years)
to netCDF-4 in 2008 (HDF5-based, supporting compression and parallel I/O).
- HDFS5 : Continuously adapted for performance in HPC and integration into new tools

3. Emerging Formats
- Zarr : Modern cloud-optimized, chunked, compressed format, designed for distributed and
cloud-based workflows.

netCDF

netCDF

Introduction to netCDF

1. Introduction to netCDF
- Aself-describing data format for managing
multi-dimensional scientific data
- Designed for geospatial and atmospheric datasets
but widely used across domains

2. Why is it important?
- Facilitates portability and scalability in
high-performance computing environments
- Provides tools for efficient I/O operations in
large-scale simulations and real-world data
analysis

3. Common Use Cases:
- Climate modeling / Oceanography
- Earth system science and remote sensing
- Materials science, Physics, and Chemistry

A- ... Q Communities My dashboard

L Protect-SLR H2020 project

Published August 8, 2024 | Version v1 [Dataset ll & Open |

A Factor Two Difference in 21st-Century Greenland Ice Sheet
Surface Mass Balance Projections from Three Regional Climate
Models for a Strong Warming Scenario (SSP5-8.5)

Glaude, Quentin (Data manager) Show affiliations

1km regridded Greenland Ice Sheet SMB / Runoff / Melt projection until 2100. Projections from MAR, RACMO, HIRHAM forced by
CESM2 (SSP5-8.5)

Files
Files (262 GB: >

Name Size I8 Download all

HIRHAM_ME_1km.nc

s 26GB & Download
S
HIRHAM_RU_1km.nc

e 26GB 4. Download

md5:bcbc020d0c58753ea50308f5 44 @
HIRHAM_SMB_1km.nc

e 26GB & Download
md5:203626148caad0e87d002348 af @
MAR_ME_1km.nc

s 29GB 3. Download
=0
MAR_RU_1km.nc
ot i e 29GB &, Downloa d

Versions of netCDF

2008 : launch of netCDF4 :

- Built on top of HDF5

- Fully backward-compatible with netCDF-3

- Compression and Chunking: Improved storage efficiency and performance

- Parallel I/0: Optimized for HPC environments

- Unlimited Dimensions: Easier handling of dynamically growing datasets

- Improved Data Types: Support for complex numbers, unsigned integers, and strings
- Use (see next slides) to get the type

9 9, 9 0,
. 1m0 o A 28,
Dox %, 7, sy, 0 EIA NS
Cop Plop Yo 4 0. Sy Sk
C Y, C C (&
8 e L0 b, G5 <O
G5, R, %, R Un Rs. R
7. Uy 2 NN oy RZARN
%y %y, 0%, Gy, %, Ky, 70,
/. 0. S 7,, Z o7
C Yoy Yoy % by “cg,
Se % oj%’ % o
S

netCDF Structure:

How is data stored in netCDF?

- Dimensions:
- Define the data space

- Variables:
Contain the actual data, linked to dimensions

- Attributes:
Metadata providing context (e.g., units).

MAR_ME_15km {

dimensions:
gNLIMITED ; // (151 currently)

101 ;
18] |

.
13

=11

variables:

loat TI IME) ;
:standard _name = "time" ;
:long_name =_"time"
:bounds = "TIME_bnds" ;
) ‘units = "days since 1947-09-01
00:00:00" ;
:calendar_= "standard" ;
double T
float X1

= mm mmmm—

Dl |

float Y2

float SE ;
:standard_ name

units

:positive_=
:axis = 'z

01nt_spa01ng

ORT_T, Y20_200, X18 119)

= /gltwater production

: F111Va1ue = -1. g+34f ;
:missing_value = -1.e+34f ;
:cell_methods = "TIME: mea
:history = "From ICE.qo1. 1950 01 01-05";

VOOV OO —~—===—~3 ;l:

=== |

float ME

M
M
M
M
M
E
1
9
9
9
2
9
9
9
0
C
C
C
C
C
C
I

ME
TI
TI
TI
TI
TI
TI
IM
9_
X1
X1
X1
0_
Y2
Y2
Y2
CT
SE
SE
SE
SE
SE
SE
&T

E
ME
ME
ME
ME
ME

global attributes:
DI = "Climate Data Interface version
2.0.5 (https: //mp1met mpg. de/cdlg
Conventions = 1.6
: ‘institute = Un1ver31ty of Liege
(Belgium)" ;

Advanced features (1) : Compression and Chunking

1. Compression

2. Chunking
Data stored in small, fixed-size blocks (chunks) instead of a single continuous stream.

Reduces file size using efficient algorithms (zlib in netCDF-4).

The idea behind DEFLATE algorithm is

LZ77 compression replaces repeated patterns in the data with shorter references

Huffman coding assigns shorter binary codes to more common patterns, making the data

even smaller.

Trade-off: Smaller files but slightly slower read/write operations. Different compression levels are
possible using the tool

Efficient Indexing Mechanism:
Chunking uses a hash table for indexing, enabling fast lookup of chunks

Chunking allows you to load only the specific parts of the data you need

Hash function maps the multi-dimensional indices (e.g., time, latitude, longitude) to the

correct chunk

Reduces memory usage
Faster 1/O operations and reduced disk usage
Faster data access, thanks to efficient data indexing

index
order

chunked

Advanced features (2) : Efficient Data Access Methods

1. Accessing Subsets of Data
- Use indexing to load specific dimensions or slices, minimizing memory usage.

import xarray as Xxr

with xr.open_dataset("example.nc") as ds:

melt = ds.["ME"].isel(time=0)
print(melt)

2. Uses chunk-based hash table indexing for efficient retrieval
- Data at specific coordinates is mapped to the correct chunk using a hash function

hash(TIME, LON, LAT

Advanced features (3) : Parallel File Handling

1. Whatis Parallel 1/0?
- Simultaneous access by multiple processes to different parts of the same file.
- Enabled in netCDF-4 through HDF5’s MPI-IO support.
- Divide the dataset into chunks.
- Assign each process to read/write specific chunks concurrently.
- The complexity of MPI-IO is mostly abstracted
- Supported in Fortran, C, C++, Python

2. Requirements

- netCDF-4 compiled with parallel HDF5 support.
- MPl library installed.

https://docs.unidata.ucar.edu/netcdf-c/current/parallel_io.html

https://docs.unidata.ucar.edu/nug/current/getting_and_building _netcdf.html#build _parallel

https://docs.unidata.ucar.edu/netcdf-c/current/parallel_io.html
https://docs.unidata.ucar.edu/nug/current/getting_and_building_netcdf.html#build_parallel

Advanced features (3) : Parallel File Handling - Python Example

1. MPI_example.py

mpidpy import MPI
netCDF4 import Dataset

MPI.COMM_WORLD
comm.Get_rank()
comm.Get_size()

comm
rank
size

print(f"Process {rank} of {size} is writing to the file.")

ncfile = Dataset("MPI_write_example.nc", "w", parallel=True, comm=comm, info=MPI.Info())

ncfile.close()
comm.Barrier()

2. Running (4 processes)

mpirun --mca opal_common_ucx_opal_mem_hooks 1 -np 4 python MPI_example.py

3. Output

Process is writing to the file.
Process is writing to the file.
Process is writing to the file.
Process is writing to the file.

netCDF Reading and Writing in Python

1.

2.

3.

Simplest form of netCDF reading:

from netCDF4 import Dataset

file = Dataset("example.nc", "r")

temperature = file.variables["temperature"][:]

print(temperature)

file.close()

Simplest form of netCDF writing:

from netCDF4 import Dataset
import numpy as np

file = Dataset("new_file.nc", "w", format="NETCDF4")
file.createDimension("time", None)

file.createDimension("lat", 10)
file.createDimension("lon", 10)

temp = file.createVariable("temperature"”, "f4", ("time",

temp[0, :, :] = np.random.random((10, 10))

file.close()

"lat"

"lon"))

module load netcdf4-python

Since 2025 has drastically increased 1/0-bound operations. Example

import xarray
ds = xr.open_dataset('file.nc', engine='h5netcdf")

Tools and Libraries for netCDF Data

1. Tools already installed on CECI clusters
- netCDF: Data format and library for managing multi-dimensional scientific data.
- NCO: Tools for manipulating and analyzing netCDF files.
- CDO: Tools for climate and atmospheric data operations.
- ncview: Visualization tool for netCDF data (need X11)

2. Loading modules in NIC5 (release 2021b in Easybuild)

module load netCDF
module load NCO

module load CDO
module load ncview

(some redundancy among modules’ functionalities)

Tools and Libraries for netCDF Data [ERESSEIRGRS

dimensions:
TIME = UNLIMITED ; // (151 currently)
bnds 2

netCDF examples

variables:
float TIME(TIME) ;
. TIME:standard_name = "time"
ncdump -h file.nc TIME:long_name = "time" :
Show only the header (metadata). TIME :bounds = "TIME_bnds®
TIME:units = "days since 1947-09-01

’

ncdump -v varname file.nc 00:00:00" ;

Dumps specific variable content. %mggcalengarﬁ "standard" ;

nccopy -k 4 file.nc file_nc4.nc ?i’gg%ex%MET ng?éiwgs t;mds)

Convert to NetCDF-4 format. %0:10ng_name = "
10:units = "km" ;
1 ' ;

’

-
Xl6-
nccopy -d9 file.nc compressed_file.nc X10_110:axis = "X"
Compress a file (level 1-9). High compression float Y208_200(Y20._200) ; .
means high decompression time (I/0). Y26_200:1ong_name =
Y¥20_200:units = "km

nccopy -c time/10,1lat/360,1lon/720 file.nc float SEE%C@)F{%G?(S)IE(%?OF_H ”\1()]

b
0
1
1
1
0

chunked_file.nc SECTOR1_1:standard_name = "depth" ;
Create a chunked dataset. SECTOR1 1 long_name = "sector" ;
SECTOR1_1:units = "level" ;
SECTOR1 1 p031t1ve = "down"
SECTOR1_1:axis = "Z" ;
SECTOR1_1: point_ spa01ng = "even" ;
float ME(TIME, SECTOR1_1, Y20_200, X160 110)

ME :long_name = "Meltwater production”

’

:units = "mmWE/day" ;

:_FillValue = -1.e+34f ;

:missing_value = -1.e+34f ;

:cell_methods = "TIME: mean" ;

:history = "From
ICE.q01.1950.01.01-05" ;

Tools and Libraries for netCDF Data
CDO examples

sinfo file.nc
Displays detailed file information.

info file.nc
Outputs metadata and variable stats.

selvar,varname file.nc output.nc :
Select specific variable(s). cdo timmean MAR_ME_15km.nc average_melt.nc

sellonlatbox,lon1,lon2, lat1,lat2 file.nc output.nc Sg?iablzlgegﬁn{S?rgg§:§$gp§7?gég;Svg%ﬁg?.from 1

Subset data to a region.

timmean file.nc output.nc
Calculate the temporal mean.

dimensions:
mergetime filel.nc file2.nc output.nc

Merge time-sliced files.

remapbil, gridfile file.nc output.nc
Bilinear interpolation.

diff filel.nc file2.nc
Compares 2 files.

No man page —
https://code.mpimet.mpqg.de/projects/cdo/embedded/index.html

https://code.mpimet.mpg.de/projects/cdo/embedded/index.html

Tools and Libraries for netCDF Data

NCO examples - hitps://nco.sourceforge.net/nco.html (lots of examples !)

ncap2 -s 'new_var=var*10' input.nc output.nc
Adds a new variable new_var which is 10 * var.

ncks -v varname file.nc output.nc
Extract specific variable(s).

ncatted -a units, temperature,o,c, "K" input.nc
Changes the units attribute of the temperature variable to K.

ncks -d lat,30.,60. -d lon,-10.,40. input.nc output.nc
Extracts data within latitude 36-60 and longitude -10-40.

ncbo --add -v vari,var2 filel.nc file2.nc output.nc
Add variables in file2.nc from filel.nc and stores the result.

ncra inputl.nc input2.nc output.nc
Averages variables across files.

ncrename -v old_varname,new_varname input.nc
Renames a variable from old_name to new_name.

https://nco.sourceforge.net/nco.html

Tools and Libraries for netCDF Data

1d not open file /home/ulg/topoclim/qglaude/.ncviewrc for reading

NCVIEW (Vlsuallzatlon for netCDF Data) Neview 2,1,7 David I, Pierce 29 March 2016 to type Fo

frame 217151 1-Jul-1970 12:00:00 (2 bnds:31-Dec-1969 00:00:00 -> 31-Dec-1970 00:00:00)

- Easy navigation through time-series data. oA BE s T
- Displays spatial data as color-filled plots. Lt

we | ot 4 CE> » Ene 2 el] Opts

Jaisnd Inv P Inv C M2 Linear Axes Range Bi-lin Print

W'
version 3; ty

Requirements - X11 Forwarding*

-x" to type Fol

- Use MobaXTerm (recommended) ol PRl e B e e B |
or 4 TIHE 1034,5 31-Dec-1970 003 55821,5 days since 1947 CLLE \
. . L L. : ¥20_200 -3357,93 s -657,928 kn ‘\& ‘
- Use WSL with X11 server (ex: XMing) e s n v
- Conflgure your She" for X11 222 ;‘;;:wggzutgé:;;eguum:i“:rlll;GzergEZi:{SPEﬁic‘E;Z:i:e_cf;i‘sion 3; type ‘ncview -c' for redi
export DISPLAY=127.0.0.1:0
- Connect to the server using @i argument FEAniE Eriet tring et e v g Fostsmer

ing min and maxes for ME...

*https://support.ceci-hpc.be/doc/ contents/QuickStart/ConnectingToTheClusters/WSL.html

https://support.ceci-hpc.be/doc/_contents/QuickStart/ConnectingToTheClusters/WSL.html

Use Case - Climate Science with ERAS Reanalysis

1. What is ERA5?
- ERADS5 is the fifth-generation atmospheric reanalysis produced by ECMWF (European Centre for
Medium-Range Weather Forecasts).
- Provides hourly estimates of atmospheric, land-surface, and oceanic parameters.
- Widely used in climate modeling, weather forecasting, and research as data forcing
- Python API to download data (pip install cdsapi)

2022 surface air temperature anomaly

2. Why netCDF

- ERADS5 data is distributed in netCDF
format, making it portable, scalable,
and easy to integrate into HPC
workflows.

- Supports efficient chunking,
compression, and variable
metadata for multi-dimensional
data.

~~. Copernicus Climate Change Service PROGRAMME OF C ¥ M‘ .
S Climate Indicators | 2022 THE EUROPEAN UNION OpermIicys - ECMWF

Recap Slide : Key Advantages of netCDF

1. Self-Describing Format: Built-in metadata, encoded dimensions/variables/attributes in a structured format.
2. Efficient Handling of Large Multi-Dimensional Data: Optimized for fast and efficient input/output (I/O).

3. Interoperability: Supported by a wide range of programming languages, Software, and research teams.

4. Scalability: Handles datasets that grow dynamically.

5. Compression and Chunking: Reduces storage costs with efficient data access.

6. Reproducibility and Collaboration: Facilitates cross-disciplinary collaboration due to wide adoption

7. Backward and Forward Compatibility: And include new advanced features like HDF5 integration

HDFS

Introduction to HDF5

1. HDF5 is the backbone of modern netCDF (version 4),
with features such as
- Compression
- Chunking
- Parallel I/0

2. Introduction to HDF5
- Hierarchical Data Format
- Versatile, portable file format designed to store and
organize large, complex data efficiently
- General-purpose

3. Common Use Cases:
- Bioinformatics: sequencing results, 3D structures
- Medical Imaging: CT scans, MRI
- Particle Physics
- Remote Sensing (NASA products: Modis)

Comparison with netCDF

1. Similarities:
- Both are self-describing formats with embedded metadata for variables and dimensions.
- Widely supported across operating systems and programming languages.
2. Key difference - Data model flexibility
- HDF5 supports diverse data types, nested structures, and non-uniform data, making it ideal for
general-purpose applications

— HDF5 structure is Hierarchical (groups, datasets, attributes).

- netCDF is specialized for structured, grid-based scientific data (e.g., climate, geoscience).
— netCDF structure is Flat (dimensions, variables, attributes).

HDF5 Structure:

HDF5 organizes data into a tree-like structure

- Groups: |}
- Containers that can hold datasets and other
groups (like a folder)

- Datasets: .
Containers that hold the actual data (e.g.,

arrays, tables, images)

- Attributes:
Metadata attached to groups or datasets.

Every HDFS5 file starts with a single root group (/), serving
as the top-level directory.

Groups can contain nested groups, datasets, and attributes,
symbolic links, allowing for complex relationships between
data elements

/AN HDFS5 root group

Child of nested group

attribute Child of a nested group

Child of a nested group

attribute Child of a group

dataset Child of a group

i'

attribute Child of a dataset

HDF5 Reading and Writing in Python

Simplest form of netCDF reading:

import h5py

file = h5py.File("example.h5", "r")
dataset = file["/group/dataset_name"]
print(dataset [:10])

file.close()

2. Simplest form of netCDF writing:

import h5py
import numpy as np

file = h5py.File("example.h5", "w")

group = file.create_group("group_name")
group.create_dataset("dataset_name", data=np.random.random((10, 10)))
group["dataset_name"].attrs["description”] = "Random data example"

file.close()

h5dump batch_1m4-w819.h5

Tools and Libraries for HDF5 Data

GROUP "1m4-w@19" {
ATTRIBUTE "CPUs per Task" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (1) / (1) }
DATA {

Tools already installed on CECI clusters (or upon request) @
- HDF5 : collection of command-line utilities for working A
with HDFS files. DATASET “a" {

DATATYPE HS5T_COMPOUND {
H5T_STD_U64LE "ElapsedTime";

H5T_STD_U64LE "EpochTime";

2. Loading modules in NIC5 (release 2021b in Easybuild) ST TEEE.FodLE "CPUTIne -
HS5T_IEEE_F64LE "CPUUtilization";
H5T_STD_U64LE "GPUMemMB" ;

H5T_IEEE_F64LE "GPUUtilization”;
module load HDF5 H5T_STD_U6ALE "RSS";
H5T_STD_U64LE "VMSize":

H5T_STD_U64LE "Pages";
H5T_IEEE_F64LE "ReadMB";

3 Example H5T_IEEE_F64LE "WriteMB";

h5dump file.h5 2880,

Dumps the entire file. 1730393568,
21,
h5dump -g /group_name file.h5 %325
Dumps only a specific group. g
6é86288,
h5dump -d /dataset_name file.h5 7236076,
Dumps the content of a dataset. 283,
16.4153,
2.92087

Tools and Libraries for HDF5 Data

Other HDF5 examples - Don’t hesitate to explore the man pages

man h5dump
Display the General Commands Manual of “h5dump”

h51s -r file.h5
Recursively lists all objects.

h5stat file.h5
Summarizes statistics about an HDF5 file.

h5copy -i source.h5 -o dest.h5 -s /groupl/dataset -d /group2/dataset
Copies a dataset from one file to another.

h5repack -f GZIP=6 source.h5 dest.h5
Compresses the file using GZIP with level 6 compression.

h5repack -c chunk[106x10] source.h5 dest.h5
Rechunks datasets to use 10x10 chunks.

h5repart -f family source%05d.h5 single_file.h5
Combines a family of files into one.

h5diff filel.h5 file2.h5
Compares all objects in the files.

Use Case - SDSS Galaxy Datasets (Astronomy)

1. Whatis a “Sky Survey”?
- Astronomy projects like SDSS (Sloan Digital Sky Survey) and LSST (Vera C. Rubin Observatory)
generate massive datasets to map the universe.
- Data includes:
- High-resolution images.
- Spectroscopic observations (> 4M obs).
- Time-series data for transient events
(e.g., supernovae, asteroid tracking).

2. Why HDF5?

- Handles multi-modal data: Images (2D/3D arrays),
Spectra (1D arrays), Object catalogs (tables with . o o o o
hundreds of columns). . Redshift 2

- Hierarchical organization (datasets are grouped by .
Observations, each having spectra, images, etc) in a
Tree format

- Parallel 1/O, efficient Storage, etc

Interoperability Between netCDF and HDF5

1. Conversion Limits
- netCDF to HDF5 : Always possible as netCDF-4 files are natively HDF5-based
- HDF5 to netCDF : Fails if
- Hierarchical structures (e.g., nested groups) that cannot be flattened
- Non-standard data types unsupported by netCDF (mixed data types)
- Linked datasets or objects netCDF can’t represent (a dataset can exist in multiple groups)

2. Conversion Tools
- Mostly rely on Python libraries like netCDF4 and h5py.

from netCDF4 import Dataset
import h5py

nc = Dataset("file.nc", "r"
h5 = h5py.File("file.h5", "w"

for var_name in nc.variables:
h5.create_dataset(var_name, data=nc.variables[var_name][:])

h5.close()
nc.close()

Other Formats Beyond netCDF and HDF5

1. Zarr
- Structured format for storing multi-dimensional arrays.
- Native support for cloud-based object storage (e.g., AWS S3).
- Increasingly popular and well suited for distributed and cloud-native workflows

AN\ AN
/ AAAARRRR
‘AARRRRRw
AARRRRRw
D\ \ L\
\ ne
\
\
AV

!% = ;
L

2. GeoTIFF
- Self-described, embedded metadata about projections and spatial references.
- Stores 2D raster datasets
- Extremely used in remote sensing

- GIS oriented
3. GeoPackage
- Self-described
- Can store raster (e.g., GeoTIFF) and vector data in a single compact file.
- SQLite for database-like storage

- GIS oriented

PART Il

Hands-on

Extensive documentation with examples:
https.//docs.unidata.ucar.edu/netcdf-fortran/current/f90 _datasets.html

Search bar
Exist for other languages
mm=
1=~ NetCDF-Fortran s
Main Page J Related Pages | Q- Search
¥ NetCDF-Foriran
Unidata NetCDF Fortran Library 2 Datasets
Release Notes
The NetCDF Fortran 77 Interface Guide 2 1 Datasets Introduction
The NetCDF Fortran 90 Interface Guide 5 abio.at grtants
» 1 Use of the NetCDF Library This chapter presents the interfaces of the netCDF functions that deal with a netCDF dataset or the whole netCDF library. 4 2.1 Datasets Introduction
3 Groups A netCDF dataset that has not yet been opened can only be referred to by its dataset name. Once a netCDF dataset is opened, it is referred to by a netCDF Devrjptions
2.3 NFSO_S’
A Diersis ID, which is a small nonnegative integer returned when you create or open the dataset. A netCDF ID is much like a file descriptor in C or a logical unit number % "™ STRERE%
sage
5 User Defined Data Types in FORTRAN. In any single program, the netCDF IDs of distinct open netCDF datasets are distinct. A single netCDF dataset may be opened multiple times o i
6 Variables and will then have multiple distinct netCDF IDs; however at most one of the open instances of a single netCDF dataset should permit writing. When an open S ampia EXpla nations
7 Attributes netCDF dataset is closed, the ID is no longer associated with a netCDF dataset.

e " and examples

Functions that deal with the netCDF library include: V Usage

& Errors
« Get version of library. U Example /
W 2.5 NF9O_CREATE

« Get error message corresponding to a returned error code.

\ Usage
The operations supported on a netCDF dataset as a single object are: \ Errors
J Example
« Create, given dataset name and whether to overwrite or not. 4 2.6 NFSO_OPEN
« Open for access, given dataset name and read or write intent. Vv Usage
« Put into define mode, to add dimensions, variables, or attributes. W Emrors .
« Take out of define mode, checking consistency of additions. j:::::
« Close, writing to disk if required. o s
« Inquire about the number of dimensions, number of variables, number of global attributes, and ID of the unlimited dimension, if any. U Usage
« Synchronize to disk to make sure it is current. & Errors
« Set and unset nofill mode for optimized sequential writes. ¥ Example

2.8 NFSO_ENDDEF

After a summary of conventions used in describing the netCDF interfaces, the rest of this chapter presents a detailed description of the interfaces for
- ’ 4 Usage

0. Loading dependencies (release 2023b) :

Fortran :

module

module
C++

module
Python

module

netCDF-Fortran/4.6.1-gompi-2023b

netCDF/4.9.2-gompi-2023b

netCDF-C++4/4.3.1-gompi-2023b

xarray netcdf4-python

0. Compiling :

Fortran : gfortran your_program.f90 -o your_program
-IS{EBROOTNETCDFMINFORTRAN}/include -LS{EBROOTNETCDFMINFORTRAN}/1lib
-lnetcdff

C . gCC your_program.c -0 your_program
-IS{EBROOTNETCDF}/include -LS{EBROOTNETCDF}/1lib -1lnetcdf

C++ . g++ your_program.cpp -0 your_program
-IS{EBROOTNETCDFMINCPLUSPLUS4}/include
-LS{EBROOTNETCDFMINCPLUSPLUS4}/1ib -1lnetcdf_c++4 -1lnetcdf

0. Running:

Fortran / C / C++

Python

Goal : basics of netcdf / hdf5 format

Fortran/ C / C++:

- Examples are given

NetCl

B
\
\
\
\
\
\
\
\

}_

o
ol

1_open netcdf.c
2_inquire_struct.c
3_read data.c
4_read _data multidim.c
5_error_handling.c
6_modify variable.c
7_create_variable.c
8_create netcdf.c
9_add_attribute.c

[TTTTTTTIT®

Q

]

L}
[

_open_netcdf.cpp
_inquire_struct.cpp
_read data.cpp
_read data multidim.cpp

~w N

g

Q
o
Q
]

1_open_hdf5.py
2_inquire_ struct.py
3_read data.py
4_read data_multidim.py
5_error_handling.py
6_modify dataset.py
7_create_dataset.py
8_create hdf5.py
9_add_attribute.py
create_mock hdf5.py

L— new_daily data.h5

input

|— Copy_of MAR ME_15km.h5
L— MAR ME 15km.h5

TTTTTTTTTT

_error_handling.cpp
_modify variable.cpp 8 directories, 60 files
_create_variable.cpp

create_netcdf.cpp

add_attribute.cpp

- Up to you to adapt to your use case !

[TTTTTTTT

]
0
o
K ©
o
=

Python (netcdf): —

[

_open_netcdf.£90
_inquire struct.£90
_read data.f90
_read data multidim.£90
_error_handling.f90
_modify variable.f90
_create_variable.f90
create netcdf.f90
add_attribute.f£90

~w N

o

- The following exercices contains missing elements,
and look-alike erroneous content

- Try to correct them using the documentation or your I~
knowledge

<

[TTTTTTTT

o
T
=3
0 ©v
81
z

_open_netcdf.py
_inquire_struct.py
_read data.py
_read data multidim.py
_error_handling.py

6_modify variable.py
_create_variable.py
_create_netcdf.py
_add_attribute.py

honX

_open_netcdf.py
_inquire_struct.py
_read data.py
_read data multidim.py
_error_handling.py
_modify variable.py
_create_variable.py
_create_netcdf.py

[TTTTTTTT

Python (hdf5):

}_

<

- Examples are given

TTTTTTTT

©
a
%
»
o
o
H
5
g
&l
&
o
g
<

L— input
}— MAR ME 15km.nc
L— copy_of MAR ME 15km.nc

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

nquire about NetCDF File Structure

Reading Data from a NetCDF File

Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

©COoO~NOORAEWN =

Goal : cover basics of netcdf files manipulation

©COoONOORAEWNh =~

>> Open and close a NetCDF file

nquire about NetCDF File Structure

Reading Data from a NetCDF File

Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

1. Open and close a NetCDF file. (Fortran)

program open_netcdf

use netcdf
implicit none

integer :: ncid, retval

retval = nf9@_open('../input/MAR_ME_15km.nc', nf9@_nowrite, ncid)

if (retval /= nf9@_noerr) then
print *, 'Error: Unable to open the NetCDF file!'
stop

end if

print *, 'NetCDF file opened successfully.'

retval = nf98_close(ncid)

if (retval /= nf9@_noerr) then
print *, 'Error: Unable to close the NetCDF file!'
stop

end if

print *, 'NetCDF file closed successfully.'

end program open_netcdf

1. Open and close a NetCDF file. (C)

#include <netcdf.h>
#include <stdio.h>

int main() {
int ncid, retval;

retval = nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid);
if (retval !'= NC_NOERR) {

printf("Error: Unable to open the NetCDF file!\n");

return -1;

}

printf("NetCDF file opened successfully.\n");

retval = nc_close(ncid);

if (retval !'= NC_NOERR) {
printf("Error: Unable to close the NetCDF file!\n");
return -1;

}

printf(“NetCDF file closed successfully.\n");
return 0;

1. Open and close a NetCDF file. (C++)

#include <netcdf>
#include <iostream>

using namespace netCDF;
using namespace std;

int main() {
try {

NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);
cout << "NetCDF file opened successfully." << endl;

} catch (const exceptions::NcException& e) {
cerr << "Error: " << e.what() << endl;
return -1;
}
cout << "NetCDF file closed successfully." << endl;
return 0;

1. Open and close a NetCDF file. (Python)

def open_netcdf(file_path): def open_netcdf(file_path):

try: try:
dataset = Dataset(file_path, mode="r") dataset = xr.open_dataset(file_path)
print("NetCDF file opened successfully.") print("NetCDF file opened successfully.")
dataset.close() dataset.close()
print("NetCDF file closed successfully.") print("NetCDF file closed successfully.")

except Exception as e: except Exception as e:
print(f"Error: {e}") print(f"Error: {e}")

if __name__ == "__main__": if __name__ == "__main__":
open_netcdf("../input/MAR_ME_15km.nc") open_netcdf("../input/MAR_ME_15km.nc")

1. Open and close a NetCDF file. (Python)

from netCDF4 import Dataset import xarray as Xr

def open_netcdf(file_path): def open_netcdf(file_path):

try: try:
dataset = Dataset(file_path, mode="r") dataset = xr.open_dataset(file_path)
print("NetCDF file opened successfully.") print("NetCDF file opened successfully.")
dataset.close() dataset.close()
print("NetCDF file closed successfully.") print("NetCDF file closed successfully.")

except Exception as e: except Exception as e:
print(f"Error: {e}") print(f"Error: {e}")

if __name__ == "__main__": if __name__ == "__main__":
open_netcdf("../input/MAR_ME_15km.nc") open_netcdf("../input/MAR_ME_15km.nc")

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

>> Inquire about NetCDF File Structure
Reading Data from a NetCDF File

Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

©CO~NOORAEWDN~

2. Inquire about NetCDF File Structure (Fortran)

program inquire_netcdf
use netcdf
implicit none

integer :: ncid, ndims, nvars, natts, unlimdimid, retval
retval = nf9@_open('../input/MAR_ME_15km.nc', nf9@_nowrite, ncid)

retval = nf98_inquire(ncid, ndims, nvars, natts, unlimdimid)

if (retval /= nf9@_noerr) then
print *, 'Error: Unable to inquire about the NetCDF file!'
stop

end if

print *, ‘Number of dimensions:', ndims
print *, ‘Number of variables:', nvars
print *, ‘Number of attributes:', natts
print *, ‘Unlimited dimension ID:', unlimdimid

retval = nf98_close(ncid)

end program inquire_netcdf

NB: from now on, | won'’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (C)

#include <netcdf.h>
#include <stdio.h>

int main() {
int ncid, ndims, nvars, natts, unlimdimid, retval;

retval = nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid);

retval = nc_inq(ncid, &ndims, &nvars, &natts, &unlimdimid);

if (retval !'= NC_NOERR) {
printf("Error: Unable to inquire about the NetCDF file!\n");
nc_close(ncid);
return -1;

printf("Number of dimensions: %d\n", ndims);
printf("Number of variables: %d\n", nvars);
printf("Number of attributes: %d\n", natts);
printf("Unlimited dimension ID: %d\n", unlimdimid);

retval = nc_close(ncid);

return 0;

NB: from now on, | won'’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (C++)

#include <netcdf>
#include <iostream>
#include <map>

using namespace netCDF;
using namespace std;

int main() {
try {

NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);

"

cout << "Number of dimensions: << dataFile.getDimCount() << endl;
cout << "Number of variables: " << dataFile.getVarCount() << endl;
cout << "Number of attributes: " << dataFile.getAttCount() << endl;

int unlimCount = 9;
multimap<string, NcDim> dims = dataFile.getDims();
for (auto& dim : dims) {
if (dim.second.isUnlimited()) {
unlimCount++;
cout << "Unlimited dimension:

"

<< dim.first << endl;
}
}

cout << "Number of unlimited dimensions: " << unlimCount << endl;

} catch (const exceptions::NcException& e) {
cerr << "Error: " << e.what() << endl;
return -1;

}

return 0;

NB: from now on, | won'’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (Python - netCDF4)

import netCDF4 as nc

def nc_struct():
try:

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r')

ndims = len(dataset.dimensions)
nvars = len(dataset.variables)
natts = len(dataset.ncattrs())
unlimdim = dataset.dimensions.get(None, None)

print("Number of dimensions:", ndims)
print("Number of variables:", nvars)
print("Number of attributes:", natts)
print("Unlimited dimension ID:", unlimdim if unlimdim else "None")

dataset.close()
except Exception as e:
print(f"Error: {e}")

if __name__
nc_struct()

NB: from now on, | won'’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (Python - xarray)

import xarray as Xr

def nc_struct():
try:

dataset = xr.open_dataset('../input/MAR_ME_15km.nc")

ndims = len(dataset.dims)
nvars = len(dataset.data_vars)
natts = len(dataset.attrs)

print("Number of dimensions:", ndims)
print("Number of variables:", nvars)
print("Number of global attributes:", natts)
print("Dimensions:", dict(dataset.sizes))

dataset.close()
except Exception as e:
print(f"Error: {e}")

if __name__
nc_struct()

NB: from now on, | won'’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. netCDF4 and xarray propositions are giving 2 different
outputs : an idea why ?

- netCDF4 :

Number of dimensions: 5
Number of variables: 6

Number of attributes: 8
Unlimited dimension: None

- Xarray :

Number of dimensions: 5
Number of variables: 2

Number of attributes: 8
Unlimited dimension: None

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

Inquire about NetCDF File Structure

>> Reading Data from a NetCDF File
Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

©COoO~NOORAELDN =

3. Reading Data from a NetCDF File (Fortran90)

program read_time_variable

use netcdf
implicit none

dimid = dimids(1) ! 'TIME' is associated with the first
integer :: ncid, varid, dimid, retval dimension

integer, dimension(:), allocatable :: dimids retval = nf908_inquire_dimension(ncid, dimid, len =
integer :: ndims, time_len time_len)
real, dimension(:), allocatable :: time_data

allocate(time_data(time_len))
retval = nf9@_open('../input/MAR_ME_15km.nc",
nf90_nowrite, ncid)

retval = nf9@_get_var(ncid, varid, time_data)

retval nf90_inq_varid(ncid, 'TIME', varid)
print *, 'TIME data:'
print *, time_data
retval = nf908_inquire_variable(ncid, varid, ndims = ndims)

allocate(dimids(ndims)) retval = nf9@8_close(ncid)

retval = nf90_inquire_variable(ncid, varid, dimids = end program read_time_variable
dimids)

[...]

3. Reading Data from a NetCDF File (C)

#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>
int main() {
int ncid, varid, retval;

size_t time_len;
float *time_data;

nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid);

nc_inqg_varid(ncid, "TIME", &varid);
nc_ing_dimlen(ncid, @, &time_len);

time_data = (float *)malloc(time_len * sizeof(float));

nc_get_var_float(ncid, varid, time_data);

printf("TIME data:\n");

for (size_t i = 0; i < time_len; i++) {
printf("%f ", time_data[i]);

printf("\n");

free(time_data);

nc_close(ncid);

return ©;

3. Reading Data from a NetCDF File (C++)

#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std; cout << "TIME data:" << endl;
for (float time : timeData) {
int main() { cout << time << " ";
try { }
cout << endl;
NcFile dataFile("../input/MAR_ME_15km.nc", NcFile
} catch (const exceptions::NcException &e) {

cerr << "Error: " << e.what() << endl;
NcVar timeVar = dataFile.getVar("TIME"); return -1;

}

return 0;
size_t timelLen = timeVar.getDim(@).getSize();

vector<float> timeData(timeLen);
timeVar.getVar(timeData.data());

3. Reading Data from a NetCDF File (Python)

import netCDF4 as nc import xarray as Xxr
def read_data(): def read_data():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r') dataset = xr.open_dataset('MAR_ME_15km.nc")
time_data = dataset.variables['TIME_DATA'][:] time_data = dataset['TIME_DATA'].values
print("TIME data:") print("TIME data:")

print(time_data) print(time_data)

if __name__ == "__main__": if __name__

== "__main__":
read_data() read_data()

3. Reading Data from a NetCDF File (Python)

import netCDF4 as nc import xarray as Xxr
def read_data(): def read_data():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r') dataset = xr.open_dataset('MAR_ME_15km.nc")
time_data = dataset.variables['TIME'][:] time_data = dataset['TIME'].values
print("TIME data:") print("TIME data:")

print(time_data) print(time_data)

if __name__ == "__main__": if __name__

== "__main__":
read_data() read_data()

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

Inquire about NetCDF File Structure

Reading Data from a NetCDF File

>> Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

©CONSOOAWN=

4. Handling Multidimensional Data (Fortran90)

program display_ME_variable

use netcdf
implicit none

retval = nf98_get_var(ncid, varid_me, me_data)
integer :: ncid, varid_me, retval
integer, dimension(4) :: dimids
integer :: time_len, sector_len, y_len, x_len print *, "ME data (time step 1, sector 1):"
real, dimension(:,:,:,:), allocatable :: me_data print *, me_data(1, 1, :, @)

retval = nf9@_open('../input/MAR_ME_15km.nc', nf90_nowrite, ncid) retval = nf90_close(ncid)

print *, "ME variable displayed successfully."
retval = nf90_inqg_varid(ncid, 'ME', varid_me)
end program display_ME_variable

retval = nf90_inquire_variable(ncid, varid_me, dimids = dimids)

retval
retval
retval
retval

nf908_inquire_dimension(ncid, dimids(1), len = time_len)
nf90_inquire_dimension(ncid, dimids(2), len = sector_len)
nf90_inquire_dimension(ncid, dimids(3), len = y_len)
nf90_inquire_dimension(ncid, dimids(4), len = x_len)

allocate(me_data(time_len, sector_len, y_len, x_len))

4. Handling Multidimensional Data (C)

#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>
printf("ME data (time step 1, sector 1):\n");
for (size_t y = 0; y < y_len & y < 5; y++) {
#define IDX4D(t, s, y, X, ns, ny, nx) ((t) * (ns) * (ny) * (nx) + (s) for (size_t x = 0; x < x_len & x < 5; x++) {
* (ny) * (nx) + (y) * (nx) + (x)) printf("%f ", me_data[IDX4D(®, @, y, x, sector_len, y_len,
x_len)]);
int main() { }
int ncid, varid, retval; printf("...\n");
size_t time_len, sector_len, y_len, x_len;
float *me_data; printf("...\n");

nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid); free(me_data);
nc_close(ncid);

nc_ing_varid(ncid, "ME", &varid); return 0;

nc_ing_dimlen(ncid, &time_len);

nc_ing_dimlen(ncid, §or_len);

nc_ing_dimlen(ncid, &y_len);
nc_ing_dimlen(ncid, &x_len);

me_data = (float *)malloc(time_len * sector_len * y_len * x_len *
sizeof(float));

nc_get_var_float(ncid, varid, me_data);

4. Handling Multidimensional Data (C++)

#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std; cout << "ME data (time step 1, sector 1):" << endl;
for (size_ty =0; y < ylen & y < 5; y++) {
int main() { for (size_t x = 0; x < xLen & x < 5; x++) {
try {
size_t idx = @ * sectorLen * yLen * xLen + @ * ylLen * xLen +
NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read); y * xLen + Xx;

W,
i

cout << meData[idx] <<
}
NcVar meVar = dataFile.getVar("ME"); cout << "..." << endl;

}

cout <<

"..." << endl;
vector<NcDim> dims = meVar.getDims();
size_t timelLen = dims[@].getSize(); } catch (const exceptions::NcException &e) {
size_t sectorLen = dims[1].getSize(); cerr << "Error: " << e.what() << endl;
size_t yLen = dims[2].getSize(); return -1;
size_t xLen = dims[3].getSize(); }

return 0;

vector<float> meData(timeLen * sectorLen * ylLen * xLen);
meVar .getVar(meData.data());

4. Handling Multidimensional Data (Python)

import netCDF4 as nc import xarray as xr

def read_me_data(): def read_me_data():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r") dataset = xr.open_dataset('../input/MAR_ME_15km.nc")

me_data = dataset.variables['ME'][:] me_data dataset['ME']

print("ME data (time step 1, sector 2):")

print("ME data (time step 1, sector 2):")
print(me_datal@, 1,

o) print(me_data.isel(time=0, sector=1).values)

if __name__ == "__main__":

if __name__ == "__main__":
read_me_data()

read_me_data()

4. Handling Multidimensional Data (Python)

import netCDF4 as nc import xarray as xr

def read_me_data(): def read_me_data():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r") dataset = xr.open_dataset('../input/MAR_ME_15km.nc")

me_data = dataset.variables['ME'][:] me_data dataset['ME']

print("ME data (time step 1, sector 1):")

print("ME data (time step 1, sector 1):")
print(me_data[@, O,

o) print(me_data.isel(time=0, sector=0).values)

if __name__ == "__main__":

if __name__ == "__main__":
read_me_data()

read_me_data()

Goal : cover basics of netcdf files manipulation

. Open and close a NetCDF file

nquire about NetCDF File Structure

Reading Data from a NetCDF File

Handling Multidimensional Data

>> Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

CooNOGabRwh =

5. Error Handling in NetCDF (Fortran90)

program error_handling
use netcdf
implicit none

integer :: ncid, varid, retval

retval = nf9@_open('../input/MAR_ME_15km.nc', nf90_nowrite, ncid)
call check_error(retval, 'Error during opening file')

retval = nf90_inqg_varid(ncid, 'ME', varid)
call check_error(retval, 'Error accessing the ME variable')

retval = nf98_close(ncid)
call check_error(retval, 'Error closing the file')

contains
subroutine check_error(retval, error_message)
integer, intent(in) :: retval
character(len=*), intent(in) :: error_message

if (retval /= nf9@_noerr) then
print *, error_message
stop
end if
end subroutine check_error

end program error_handling

5. Error Handling in NetCDF (C)

#include <netcdf.h>

#include <stdio.h>

#include <stdlib.h>

void check_error(int retval, const char *error_message) {
if (retval !'= NC_NOERR)

fprintf(stderr, "%s: %s\n", error_message, nc_strerror(retval));
exit(EXIT_FAILURE);

}

int main() {
int ncid, varid, retval;

retval = nc_open("../inut/MAR_ME_15km.nc", NC_NOWRITE, &ncid);
check_error(retval, "Error during opening file");

retval = nc_inq_varid(ncid, "ME", &varid);

check_error(retval, "Error accessing the ME variable");
printf("File opened and ME variable accessed successfully.\n");
retval = nc_close%ncid);

check_error(retval, "Error closing the file");

printf("File closed successfully.\n");

return 0;

5. Error Handling in NetCDF (C++)

#include <netcdf>
#include <iostream>
#include <stdexcept>

using namespace netCDF;
using namespace std;

void check_error(const string &step5 const exceptions::NcException &e) {

cerr << step << ": " << e.what() << endl;

exit(EXIT_FAILURE);

int maing) {
try

NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);
cout << "File opened successfully." << endl;

NcVar meVar = dataFile.getVar("ME");
if (meVar.isNull()) {
throw runtime_error("Error accessing the ME variable.");

cout << "ME variable accessed successfully." << endl;

check_error("NetCDF error", e

} catch (const runtime_error &e)
cerr << e.what() << endl;
exit (EXIT_FAILURE);

} catch (const exceptions::NcExcegtion &e) {

cout << "File processed successfully." << endl;
return 0;

5. Error Handling in NetCDF (Python - netCDF4)

from netCDF4 import Dataset
import sys

def check_error(success, message):
if not success:
print(message)
sys.exit(1)

def error_handling():
try:

file_path = "../input/MAR_ME_15km.nc"
try:
dataset = Datasetéfile_path, ”r”)
Erint(“File opened successfully.")
catch Exception as e:
check_error(False, f"Error during opening file: {e}")

variable_name = "ME"
try:
var = dataset.variables[variable_name]
Erint(f“Variable '{variable_name}' accessed successfully.")
catch KeyError:
check_error(False, f"Error accessing the variable '{variable_name}'")

try:
dataset.close&)
Erint(“File closed successfully.")
catch Exception as e:
check_error(False, f"Error during file closing: {e}")

catch Exception as e:
print(f"An unexpected error occurred: {e}")
sys.exit(1)

if __name__ == "__main__":
error_handling()

5. Error Handling in NetCDF (Python - netCDF4)

from netCDF4 import Dataset
import sys

def check_error(success, message):
if not success:
print(message)
sys.exit(1)

def error_handling():
try:

file_path = "../input/MAR_ME_15km.nc"
try:

dataset = Datasetéfile_path, ”r”)

print("File opened successfully.")
except Exception as e:

check_error(False, f"Error during opening file: {e}")

variable_name = "ME"
try:
var = dataset.variables[variable_name]
print(f"Variable '{variable_name}' accessed successfully.")
except KeyError:
check_error(False, f"Error accessing the variable '{variable_name}'")

try:
dataset.close&)
print("File closed successfully.")
except Exception as e:
check_error(False, f"Error during file closing: {e}")

except Exception as e:
print(f"An unexpected error occurred: {e}")
sys.exit(1)

if __name__ == "__main__":
error_handling()

5. Error Handling in NetCDF (Python - xarray)

import xarray as xr
import sys

def check_error(success, message):
if not success:
print(message)
sys.exit(1)

def error_handling():
try:

file_path = "../input/MAR_ME_15km.nc"
try:
dataset = xr.open_dataset(file_path)
rint("File opened successfully.")
catch Exception as e:
check_error(False, f"Error during opening file: {e}")

variable_name = "ME"
try:
if variable_name in dataset:
var = dataset[variable_name]
0 print(f"Variable '{variable_name}' accessed successfully.")
else:
raise KeyError(f"Variable '{variable_name}' not found.")
catch KeyError as e:
check_error(False, f"Error accessing the variable '{variable_name}'

try:
dataset.closeﬁ)
ﬁrint(“File closed successfully.")
catch Exception as e:
check_error(False, f"Error during file closing: {e}")

catch Exception as e:
print(f"An unexpected error occurred: {e}")
sys.exit(1

if __name__ == "__main__":
error_handling()

5. Error Handling in NetCDF (Python - xarray)

import xarray as xr
import sys

def check_error(success, message):
if not success:
print(message)
sys.exit(1)

def error_handling():
try:

file_path = "../input/MAR_ME_15km.nc"
try:
dataset = xr.open_dataset(file_path)
print("File opened successfully.")
except Exception as e:
check_error(False, f"Error during opening file: {e}")

variable_name = "ME"
try:
if variable_name in dataset:
var = dataset[variable_name]
0 print(f"Variable '{variable_name}' accessed successfully.")
else:
raise KeyError(f"Variable '{variable_name}' not found.")
except KeyError as e:
check_error(False, f"Error accessing the variable '{variable_name}'

try:
dataset.closeﬁ)
print("File closed successfully.")
except Exception as e:
check_error(False, f"Error during file closing: {e}")

except Exception as e:
print(f"An unexpected error occurred: {e}")
sys.exit(1

if __name__ == "__main__":
error_handling()

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

nquire about NetCDF File Structure

Reading Data from a NetCDF File

Handling Multidimensional Data

Error Handling in NetCDF

>> Modifying the Content of a Variable
Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

CooNoOhwN =

6. Modifying the Content of a Variable (Fortran)

program modify_ME_variable

use netcdf
implicit none

integer :: ncid, varid, retval

integer, dimension(4) :: dimids

integer :: time_len, sector_len, y_len, x_len
real, dimension(:,:,:,:), allocatable :: me_data

retval = nf90@_open('../input/MAR_ME_15km.nc', nf9@_write, ncid)
retval = nf968_inq_varid(ncid, 'ME', varid)
retval = nf90_inquire_variable(ncid, varid, dimids = dimids)

retval
retval
retval
retval

nf90_inquire_dimension(ncid, dimids(1 len
nf908_inquire_dimension(ncid, dimids(2 len
nf908_inquire_dimension(ncid, dimids(3 len
nf908_inquire_dimension(ncid, dimids(4 len

time_len)
sector_len)
y_len

x_len

allocate(me_data(time_len, sector_len, y_len, x_len))
retval = nf90_get_var(ncid, varid, me_data)

me_data = me_data / 365.0

retval = nf90_put_var(ncid, varid, me_data)

retval = nf90_close(ncid)
print *, "Content of 'ME' variable modified successfully."

end program modify_ME_variable

6. Modifying the Content of a Variable (C)

#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>
for (size_t i = @; 1 < total_size; i++) {
int main() { me_data[i] /= 365.0f;
int ncid, varid, retval; }
size_t time_len, sector_len, y_len, x_len, total_size;
float *me_data;
nc_put_var_float(ncid, varid, me_data);

nc_open("../input/MAR_ME_15km.nc", NC_WRITE, &ncid);
free(me_data);
nc_close(ncid);
nc_ing_varid(ncid, "ME", &varid);
printf("Content of 'ME' variable modified successfully.\n");
nc_ing_dimlen(ncid, @, &time_len); return 0;
nc_ing_dimlen(ncid, 1, §or_len);
nc_ing_dimlen(ncid, 2, &y_len);
nc_ing_dimlen(ncid, 3, &x_len);

total_size = time_len * sector_len * y_len * x_len;

me_data = (float *)malloc(total_size * sizeof(float));

nc_get_var_float(ncid, varid, me_data);

[...]

6. Modifying the Content of a Variable (C++)

#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF; meVar .putVar(meData.data());
using namespace std;
cout << "Content of 'ME' variable modified successfully." <<
int main() { endl;
try {
} catch (const exceptions::NcException &e) {
NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::write); cerr << "Error: " << e.what() << endl;
return -1;

}
NcVar meVar = dataFile.getVar("ME"); return 0;

vector<NcDim> dims = meVar.getDims();
size_t timelLen = dims[@].getSize();
size_t sectorLen = dims[1].getSize();
size_t yLen = dims[2].getSize();
size_t xLen = dims[3].getSize();

vector<float> meData(timeLen * sectorLen * ylLen * xLen);
meVar .getVar(meData.data());

for (auto &value : meData) {
value /= 365.0f;
}

6. Modifying the Content of a Variable (Python)

import netCDF4 as nc import xarray as xr
def modify_variable(): def modify_variable():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+"') dataset = xr.open_dataset('../input/MAR_ME_15km.nc")
dataset = dataset.load()
dataset.close()

me_data = dataset.variables['ME'][:]

dataset['ME'] = dataset['ME'] / 365.0
me_data /= 365.0
print("Content of 'ME' variable modified successfully.")
dataset.close() if __name__ == "__main__":
modify_variable()
if __name__ == "__
modify_variable()

6. Modifying the Content of a Variable (Python)

import netCDF4 as nc import xarray as xr
def modify_variable(): def modify_variable():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+"') dataset = xr.open_dataset('../input/MAR_ME_15km.nc")
dataset = dataset.load()
dataset.close()

me_data = dataset.variables['ME'][:]

dataset['ME'] = dataset['ME'] / 365.0
me_data /= 365.0

dataset.to_netcdf('../input/MAR_ME_15km.nc")
dataset.variables['ME'][:] = me_data
print("Content of 'ME' variable modified successfully.")
dataset.close() if __name__ == "__main__":
modify_variable()
if __name__ == "__
modify_variable()

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

nquire about NetCDF File Structure

Reading Data from a NetCDF File

Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

>> Creating a New Variable in a NetCDF File
Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

CoONOORWN =

/. Creating a New Variable in a NetCDF File (Fortran90)

program create_ME_daily_variable

use netcdf
implicit none
retval = nf98_get_var(ncid, varid_me, me_data)
integer :: ncid, varid_me, varid_daily, retval
integer, dimension(4) :: dimids
integer :: time_len, sector_len, y_len, x_len daily_data = me_data / 365.0
real, dimension(:,:,:,:), allocatable :: me_data, daily_data

retval = nf90_redef(ncid)
retval = nf908_open('../input/MAR_ME_15km.nc', nf98_write, ncid)

retval nf90_def_var(ncid, 'ME_DAILY', nf90_float, dimids, varid_daily)
retval = nf90_inqg_varid(ncid, 'ME', varid_me)

retval = nf908_enddef(ncid)
retval = nf90_inquire_variable(ncid, varid_me, dimids = dimids)

retval = nf9@_put_var(ncid, varid_daily, daily_data)
retval
retval
retval
retval

nf908_inquire_dimension(ncid, dimids(1), len = time_len)

nf90_inquire_dimension(ncid, dimids(2), len = sector_len)

nf90_inquire_dimension(ncid, dimids(3), len = y_len) retval = nf90_close(ncid)
nf90_inquire_dimension(ncid, dimids(4), len = x_len)

print *, "ME_DAILY variable created successfully."

allocate(me_data(time_len, sector_len, y_len, x_len)) end program create_ME_daily_variable
allocate(daily_data(time_len, sector_len, y_len, x_len))

-]

/. Creating a New Variable in a NetCDF File (C)

#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>
dimids[@]
int main() { dimids[1]
int ncid, varid_me, varid_daily, dimids[4], retval; dimids[2]
size_t time_len, sector_len, y_len, x_len, total_size; dimids[3]
float *me_data, *daily_data;

9; // TIME
1; // SECTOR
2; /1Y
3; // X

nc_redef(ncid);
nc_def_var(ncid, "ME_DAILY", NC_FLOAT, 4, dimids, &varid_daily);
nc_open("../input/MAR_ME_15km.nc", NC_WRITE, &ncid); nc_enddef(ncid) ;

nc_ing_varid(ncid, "ME", &varid_me); nc_put_var_float(ncid, varid_daily, daily_data);

nc_ing_dimlen(ncid,
nc_ing_dimlen(ncid,

&time_len); free(me_data);
§or_len); free(daily_data);

0,
1,

nc_ing_dimlen(ncid, 2, &y_len); nc_close(ncid);
3,

nc_ing_dimlen(ncid, &x_len);
printf("ME_DAILY variable created successfully.\n");
total_size = time_len * sector_len * y_len * x_len;

return 0;
me_data = (float *)malloc(total_size * sizeof(float));
daily_data = (float *)malloc(total_size * sizeof(float));

nc_get_var_float(ncid, varid_me, me_data);

for (size_t i = @; i < total_size; i++) {
daily_data[i] = me_data[i] / 365.0f;

7. Creating a New Variable in a NetCDF File (C++)

#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF; NcVar dailyVar = dataFile.addVar("ME_DAILY", ncFloat, dimensions);
using namespace std;

int main() { dailyVar.putVar(dailyData.data());
try {
cout << "ME_DAILY variable created successfully." << endl;
NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::write);
} catch (const exceptions::NcException &e) {
cerr << "Error: " << e.what() << endl;
NcVar meVar = dataFile.getVar("ME"); return -1;
}
return 0;
vector<NcDim> dimensions = meVar.getDims();
size_t timeLen = dimensions[@].getSize();
size_t sectorLen = dimensions[1].getSize();
size_t yLen = dimensions[2].getSize();
size_t xLen = dimensions[3].getSize();

vector<float> meData(timeLen * sectorLen * ylLen * xLen);
meVar .getVar(meData.data());

vector<float> dailyData(meData.size());

for (size_t i = @; i < meData.size(); i++) {
dailyData[i] = meData[i] / 365.0f;

}

/. Creating a New Variable in a NetCDF File (Python)

import netCDF4 as nc import xarray as xr
def new_variable(): def new_variable():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+') dataset = xr.open_dataset('../input/MAR_ME_15km.nc', 'r+')
dataset = dataset.load()
dataset.close()

me_data dataset.variables['ME'][:]

daily_data = dataset['ME'] / 365.0
daily_data = me_data / 365.0

dataset['ME_DAILY'] = daily_data
dataset.createVariable('ME_DAILY', 'f4')
dataset.variables['ME_DAILY'][:] = daily_data
dataset.to_netcdf('../input/MAR_ME_15km.nc")
Close the file
dataset.close() print("ME_DAILY variable created successfully.")

if __name__ == "__main__": if __name__ == "__main__":
new_variable() new_variable()

/. Creating a New Variable in a NetCDF File (Python)

import netCDF4 as nc import xarray as xr

def new_variable(): def new_variable():

dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+')

me_data dataset.variables['ME'][:]

daily_data = me_data / 365.0

dataset.createVariable('ME_DAILY', 'f4', dataset.variables['ME'].dimensions)
dataset.variables['ME_DAILY'][:] = daily_data

dataset.close()

if __name__ == "__main__":

new_variable()

dataset = xr.open_dataset('../input/MAR_ME_15km.nc")
dataset = dataset.load()
dataset.close()

daily_data = dataset['ME'] / 365.0
dataset['ME_DAILY'] = daily_data

dataset.to_netcdf('../input/MAR_ME_15km.nc")
print("ME_DAILY variable created successfully.")

if __name__ == "__main__":
new_variable()

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

nquire about NetCDF File Structure

Reading Data from a NetCDF File

Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File

>> Creating a New NetCDF File

Adding Descriptive Elements to a NetCDF File

CoONoOkwh =

8. Creating a New NetCDF File (Fortran90)

program create_new_netcdf

use netcdf
implicit none
retval nf90_def_var(ncid, 'ME_DAILY', nf90_real, dimids, varid)
integer :: ncid, varid, retval
integer :: dimids(4) ! Dimension IDs
integer :: time_len, sector_len, y_len, x_len retval nf90_enddef (ncid)
real, dimension(:,:,:,:), allocatable :: daily_data

retval = nf9@_put_var(ncid, varid, daily_data)
time_len = 10
sector_len = 2
y_len = 50 retval = nf90_close(ncid)
x_len 50
print *, 'NetCDF file created successfully.'

allocate(daily_data(time_len, sector_len, y_len, x_len)) end program create_new_netcdf
daily_data = 1.0 / 365.8 ! Fill with example daily data

retval = nf90_create('new_daily_data.nc', nf90_clobber, ncid)

retval
retval
retval
retval

-]

nf90_def_dim(ncid, 'TIME', time_len, dimids(1))
nf90_def_dim(ncid, 'SECTOR', sector_len, dimids(2))
nf90_def_dim(ncid, 'Y', y_len, dimids(3))
nf90_def_dim(ncid, 'X', x_len, dimids(4))

8. Creating a New NetCDF File (C)

#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>

int main() { nc_def_var(ncid, "ME_DAILY", NC_FLOAT, 4, dimids, &varid);
int ncid, varid, dimids[4], retval;
size_t time_len = 10, sector_len = 2, y_len = 50, x_len = 50;
size_t total_size; nc_enddef(ncid) ;
float *daily_data;

total_size = time_len * sector_len * y_len * x_len; nc_put_var_float(ncid, varid, daily_data);

daily_data (float *)malloc(total_size * sizeof(float)); free(daily_data);
nc_close(ncid);

for (size_t i = @; i < total_size; i++) { printf("NetCDF file created successfully.\n");
daily_data[i] = 1.0f / 365.0f;
} return 0;

nc_create("new_daily_data.nc", NC_CLOBBER, &ncid);

nc_def_dim(ncid, "TIME", time_len, &dimids[@]);
nc_def_dim(ncid, "SECTOR", sector_len, &dimids[1]);
nc_def_dim(ncid, "Y", y_len, &dimids[2]);
nc_def_dim(ncid, "X", x_len, &dimids[3]);

8. Creating a New NetCDF File (C++)

#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std;

int main() {
try {

NcFile dataFile("new_daily_data.nc", NcFile::replace);

NcDim timeDim = dataFile.addDim("TIME", 18);
NcDim sectorDim = dataFile.addDim("SECTOR", 2);
NcDim yDim = dataFile.addDim("Y", 50);

NcDim xDim = dataFile.addDim("X", 50);

vector<NcDim> dims = {timeDim, sectorDim, yDim, xDim};
NcVar dailyVar = dataFile.addVar("ME_DAILY", ncFloat, dims);

vector<float> dailyData(10 * 2 * 50 * 50, 1.0f / 365.0f);
dailyVar.putVar(dailyData.data());

cout << "New NetCDF file created successfully." << endl;
} catch (const exceptions::NcException &e) {

cerr << "Error: " << e.what() << endl;

return -1;
}

return 0;

8. Creating a New NetCDF File (Python)

import netCDF4
import numpy a

def main():

dataset =

time_len,

dataset.cr
dataset.cr
dataset.cr
dataset.cr

daily_var
"SECTOR', 'TIM

daily_data
365.0, dtype='
daily_var(

dataset.cl

if __name__ ==
main()

as nc
s np

nc.Dataset('new_daily_data.nc', 'w', format='NETCDF4')

sector_len, y_len, x_len = 10, 2, 50, 50
eateDimension('TIME', time_len)
eateDimension('SECTOR', sector_len)
eateDimension('Y', y_len)
eateDimension('X', x_len)

= dataset.createVariable('ME_DAILY",
E'))

= np.full((time_len, sector_len, y_len, x_len), 1.0 /
float32"')
:] = daily_data

ose()

"__main__":

import xarray as xr
import numpy as np

def main():

time_len, sector_len, y_len, x_len = 10, 2, 50, 50
daily_data = np.full((x_len, y_len, sector_len, time_len), 1.0 / 365.0,
dtype='float32"')

dataset = xr.Dataset(
data_vars={"ME_DAILY": (("X", "Y", "SECTOR", "TIME"), daily_data)},
coords={
"TIME": range(time_len),
"SECTOR": range(sector_len),
"Y": range(y_len),
"X": range(x_len)

dataset.to_netcdf("new_daily_data.nc")

if __name__ == "__main__":
main()

8. Creating a New NetCDF File (Python)

import netCDF4 as nc import xarray as xr
import numpy as np import numpy as np

def main(): def main():

dataset = nc.Dataset('new_daily_data.nc', 'w', format='NETCDF4') time_len, sector_len, y_len, x_len = 10, 2, 50, 50
daily_data = np.full((time_len, sector_len, y_len, x_len), 1.0 / 365.0,
dtype='float32"')
time_len, sector_len, y_len, x_len = 10, 2, 50, 50
dataset.createDimension('TIME', time_len)
dataset.createDimension('SECTOR', sector_len) dataset = xr.Dataset(
dataset.createDimension('Y', y_len) data_vars={"ME_DAILY": (("TIME", "SECTOR", "Y", "X"), daily_data)}
dataset.createDimension('X

, x_len) coords={
"TIME": range(time_len),
"SECTOR": range(sector_len),
daily_var = dataset.createVariable('ME_DAILY', 'f4', ('TIME', "Y": range(y_len),
"SECTOR', 'Y', 'X")) "X": range(x_len)

daily_data = np.full((time_len, sector_len, y_len, x_len), 1.0 /
365.0, dtype='float32"')
daily_var[:] = daily_data dataset.to_netcdf("new_daily_data.nc")

if __name__ == "__main__":
dataset.close() main()

if __name__ == "__main__":
main()

Goal : cover basics of netcdf files manipulation

Open and close a NetCDF file

nquire about NetCDF File Structure

Reading Data from a NetCDF File

Handling Multidimensional Data

Error Handling in NetCDF

Modifying the Content of a Variable

Creating a New Variable in a NetCDF File

Creating a New NetCDF File

>> Adding Descriptive Elements to a NetCDF File

©OoOo~NSOORAEWN =

9. Adding Descriptive Elements to a NetCDF File (Fortran)

program add_attribute

use netcdf

implicit none

integer :: ncid, varid, retval

retval = nf90_open('new_daily_data.nc', nf90_write, ncid)
retval = nf90_redef(ncid)

retval = nf9@_inq_varid(ncid, 'ME_DAILY', varid)

retval = nf9@_put_att(ncid, nf90_global, 'title', 'Daily melt data')

retval = nf90_put_att(ncid, varid, 'units', 'mm/day’)
retval nf90_put_att(ncid, varid, 'description', 'Daily surface melt data derived from yearly values')

retval = nf90_enddef(ncid)

retval = nf90_close(ncid)
print *, "Attributes added successfully."

end program add_attribute

https://docs.unidata.ucar.edu/netcdf-fortran/current/f90-attributes.html

9. Adding Descriptive Elements to a NetCDF File (C)

#include <netcdf.h>

#include <stdio.h>

#include <string.h>

int main() {
int ncid, varid, retval;
nc_open("new_daily_data.nc", NC_WRITE, &ncid);
nc_redef(ncid) ;

nc_ing_varid(ncid, "ME_DAILY", &varid);

const char *title = "Daily melt data";
nc_put_att_text(ncid, NC_GLOBAL, "title", strlen(title), title);

const char *units = "mm/day";

nc_put_att_text(ncid, varid, "units", strlen(units), units);

const char *description = "Daily surface melt data derived from yearly values";
nc_put_att_text(ncid, varid, "description", strlen(description), description);
nc_enddef(ncid) ;

nc_close(ncid);

printf("Attributes added successfully.\n");

return 0;

9. Adding Descriptive Elements to a NetCDF File (C++)

#include <netcdf>
#include <iostream>

using namespace netCDF;
using namespace std;

int main() {
try {

NcFile dataFile("new_daily_data.nc", NcFile::write);
NcVar dailyVar = dataFile.getVar("ME_DAILY");
dataFile.putAtt("title", "Daily melt data");

dailyVar.putAtt("units", "mm/day");
dailyVar.putAtt("description"”, "Daily surface melt data derived from yearly values");

cout << "Attributes added successfully." << endl;

} catch (const exceptions::NcException &e) {
cerr << "Error: " << e.what() << endl;
return -1;

}

return 0;

9. Adding Descriptive Elements to a NetCDF File (Python)

import netCDF4 as nc import xarray as xr
def main(): def main():

dataset = nc.Dataset('new_daily_data.nc', 'r') dataset = xr.open_dataset('new_daily_data.nc")

dataset.title = "Daily melt data" dataset.attrs['title'] = "Daily melt data"

daily_var = dataset.variables['ME_DAILY'] dataset['ME_DAILY'].attrs['units'] = "mm/day"
daily_var.units = "mm/day" dataset['ME_DAILY'].attrs['description'] = "Daily surface melt data
daily_var.description = "Daily surface melt data derived from derived from yearly values"

yearly values"

dataset.to_netcdf("new_daily_data.nc")
dataset.close()
if __name__ == "__main__":
if __name__ == "__main__": main()
main()

9. Adding Descriptive Elements to a NetCDF File (Python)

import netCDF4 as nc import xarray as xr
def main(): def main():
dataset = nc.Dataset('new_daily_data.nc', 'r+') dataset xr.open_dataset('new_daily_data.nc')

dataset = dataset.load()
dataset.close()

dataset.title = "Daily melt data"

dataset.attrs['title'] = "Daily melt data"
daily_var = dataset.variables['ME_DAILY']
daily_var.units = "mm/day"
daily_var.description = "Daily surface melt data derived from dataset['ME_DAILY'].attrs['units'] = "mm/day"
yearly values" dataset['ME_DAILY'].attrs['description'] = "Daily surface melt data
derived from yearly values"

dataset.close()
dataset.to_netcdf("new_daily_data.nc")
if __name__ == "__main__":
main() print("Attributes added successfully.")

if __name__ == "__main__":
main()

Well done !

LI LD

BONUS :
HDF5 Examples

1. Open and close a NetCDF file

import h5py

def open_hdf5(file_path):
try:

f = h5py.File(file_path, 'r')
print("HDF5 file opened successfully.")
f.close()

print("HDF5 file closed successfully.")

except Exception as e:
print(f"Error: {e}")

if __name__ == "__main__":
open_hdf5("../input/MAR_ME_15km.h5")

2. Inquire about NetCDF File Structure

import h5py

def hdf5_struct():
try:

f = h5py.File('../input/MAR_ME_15km.h5"', 'r")

n_datasets = len(f.keys())
n_attrs = len(f.attrs)

print("Number of datasets:", n_datasets)
print("Dataset names:", list(f.keys()))
print("Number of global attributes:", n_attrs)
print("Global attributes:", dict(f.attrs))

print("\nDataset details:")
for name in f.keys():
ds = f[name]
print(f" {name}: shape={ds.shape}, dtype={ds.dtype}")

f.close()

except Exception as e:
print(f"Error: {e}")

if __ __ == "__main__":
hdf5_struct()

3. Reading Data from a NetCDF File

import h5py

def read_data():
try:

f = h5py.File('../input/MAR_ME_15km.h5", 'r")

time_data = f['TIME'][:]

print("TIME data:")

print(time_data)

print(f"\nShape: {time_data.shape}")
print(f"Dtype: {time_data.dtype}")

f.close()

except Exception as e:
print(f"Error: {e}")

if __name__ == "__main__":
read_data()

4. Handling Multidimensional Data

import h5py

def read_me_data():
try:

f = h5py.File('../input/MAR_ME_15km.h5"', 'r")
me_ds = f['ME']

print(f"ME shape: $me_ds.shape§"
print(f"ME dtype: {me_ds.dtype}"

HDF5 supports eff1c1ent sllc1ng without loading entire dataset
me_subset = me_ds[0, 0, :, :]

print("\nME data (time step 1, sector 1):")
print(me_subset)

f.close()

except Exception as e:
print(f"Error: {e}")

. _ " __main_
read_me_dat 0)

5. Error Handling in NetCDF

import h5py
import sys

def check_error(success, message):
if not success:
print(message)
sys.exit(1)

def error_handling():
= None

try:

file_path = "../input/MAR_ME_15km.h5"
try:
f = h5py.File(file_path, 'r'i
print("File opened successfully.")
except OSError as e:
check_error(False, f"Error during opening file: {e}")

dataset_name = "ME"
try:
if dataset_name in f:
ds = f[dataset_name]
printéf“Dataset '§dataset_name}' accessed successfully.")
print(f" Shape: {ds.shape}")

else:

raise KeyError(f"Dataset '{dataset_name}' not found.")

except KeyError as e:

check_error(False, f"Error accessing dataset: {e}")

try:
f.close()
print("File closed successfully.")
except Exception as e:
check_error(False, f"Error during file closing: {e}")

except Exception as e:
pri?t(f'An unexpected error occurred: {e}")

if f:
f.close()
sys.exit(1)

if name__ == "__main__
error_handling()

6. Modifying the Content of a Variable

import h5py
def modify_dataset():

f = h5py.File('../input/MAR_ME_15km.h5", 'r+")

me_ds = f['ME']

me_data = me_ds|[:]

me_data me_data / 365.0

me_ds[...] = me_data

f.close()
print("Content of 'ME' dataset modified successfully.")

if __name__ == "__main__":
modify_dataset()

/. Creating a New Variable in a NetCDF File

import h5py
def new_dataset():

f = h5py.File('../input/MAR_ME_15km.h5", 'r+")

me_data = f['ME'][:]

daily_data = me_data / 365.0

if "ME_DAILY' in f:
del f['ME_DAILY']

me_daily_ds = f.create_dataset('ME_DAILY', data=daily_data)

me_daily_ds.attrs['long_name'] = 'Daily meltwater production'
me_daily_ds.attrs['units'] = 'mmWE/day’

f.close()

print("ME_DAILY dataset created successfully.")

if __name__ == "__main__":
new_dataset()

8. Creating a New NetCDF File

import h5py
import numpy as np

def main():

time_len, sector_len, y_len, x_len = 10, 2, 50, 50
daily_data = np.full((time_len, sector_len, y_len, x_len), 1.8 / 365.0, dtype='float32")
f = h5py.File('new_daily_data.h5', 'w')

.create_dataset('TIME', data=np.arange(time_len, dtype='float32'))
.create_dataset('SECTOR', data=np. aran%e(sector len, dtype=! float32'))
.create_dataset('Y", data= np.arange(y dtype=" float32'
.create_dataset('X', data=np.arange(x_len, dtype='float32'

= f.create_dataset('ME_DAILY', data=daily_data)

E']. attrs[units’] = 'days’
attrs[units' "km'

attrs|'units' "km'

f.close()
print("New HDF5 file created successfully.")

if __name__ == "__main__
main()

9. Adding Descriptive Elements to a NetCDF File

import h5py

def main():
f = h5py.File('new_daily_data.h5', 'r+")
f.attrs['title'] = 'Daily melt data’

f.attrs['institution'] = 'Example Institution'
f.attrs['history'] = 'Created from yearly values'

me_daily = f['ME_DAILY']

me_daily.attrs['units'] = 'mm/day’

me_daily.attrs['long_name'] = 'Daily meltwater production'

me_daily.attrs['description'] = 'Daily surface melt data derived from yearly values'

f.close()
print("Attributes added successfully.")

if __name__ == "__main__":
main()

netCDF and HDF5 file
formats on CECI clusters

Thank You !

Quentin GLAUDE: E
10th December 2025, CYCLO09b - Louvain-La-Neuve I

mailto:quentin.glaude@uliege.be

