
netCDF and HDF5 file
formats on CÉCI clusters

Quentin GLAUDE: quentin.glaude@uliege.be
10th December 2025, CYCL09b - Louvain-La-Neuve

mailto:quentin.glaude@uliege.be

About myself:

- Background in Geomatics, Glaciology and Climate Sciences
- Thesis in CSL & ULB and experience in other research teams

in Belgium and abroad
- Now helping researchers with data, logistics, and technical

support (such as this seminar!)

Skills:

- Remote sensing (especially SAR & InSAR)
- Turning 2D signals and data into something meaningful

Objectives:

- Understanding basics of netCDF and HDF5 data formats
→ their importance in Geosciences (and more)

- How to use these formats in your code and on CÉCI clusters
→ Hands-on session (Fortran90, C / C++, Python)

Difficulty:

- Entry level

2025 novelties !

- C / C++ code a available
- Updated slides with new modules versions and xarray novelties
- More HDF5 python examples
- Youtube video capsule incoming !

PART I
-

Introduction to netCDF and HDF5

 Importance of Data Formats in Sciences

1. Need for structured, efficient data storage
- Increase in the amount of data: need scalable and efficient data for I/O processes
- Cross disciplinary research needs data usable on-the-go, from distincts fields that are not familiar

to specific data format

2. Data formats impact:
- Research quality: organized, efficient, and accessible.
- Reproducibility: Allows experiments to be replicated and validated.
- Cross-disciplinary collaboration*: Facilitates data exchange across domains (e.g., climate

science, bioinformatics).

Practical example:

* Also a reason why shifting to new data format (ex: Zarr) takes some time.

Earth System Model Regional Climate Model Ice Sheet ModelSSP5
-8.5

Sea-
Level
Rise

CESM2 - Utrecht (NL) MAR - ULiège (Be) Kori - ULB (Be)

Data Formats in Scientific Research

1. Structured vs Unstructured Formats:
- Unstructured: Minimal schema, plain-text representation (e.g., JSON, YAML, CSV).
- Structured: Organized, predictable schema (e.g., netCDF, HDF5, Zarr, GeoPackage).

2. Importance of Structured Formats:
- Data over Data: Organizes multi-dimensional datasets and interlinked variables (e.g., temporal,

spatial, and variable dimensions).
- Data Cubes: Support for higher-dimensional arrays for rich scientific analysis.
- Efficiency: Optimized for storage and faster read/write operations.
- Self-Described: Metadata embedded for portability and clarity.

Structured Unstructured

Data Size Efficient Bloated

Metadata support Yes Minimal

Multi-Dimensional Yes No

Read/Write Speed Fast Slow

Real world example:

1. netCDF vs .csv file size
- netCDF : ~11MB
- CSV : 151 files of 101 x 181 values (avg 12B per

FP32 float) + metadata stored separately (5%)
 → ~ 35 MB

2. Other differences
- Slower read and write processes
- Dedicated data readers
- Slower files synchronisation (metadata overhead +

latency)

qglaude@nic5-login1 ~/formation_netcdf_hdf5 $ ncdump
-h MAR_ME_15km.nc
netcdf MAR_ME_15km {
dimensions:
 TIME = UNLIMITED ; // (151 currently)
 bnds = 2 ;
 X10_110 = 101 ;
 Y20_200 = 181 ;
 SECTOR1_1 = 1 ;
variables:
 float TIME(TIME) ;
 TIME:standard_name = "time" ;
 TIME:long_name = "time" ;
 TIME:bounds = "TIME_bnds" ;
 TIME:units = "days since 1947-09-01
00:00:00" ;
 TIME:calendar = "standard" ;
 TIME:axis = "T" ;
 double TIME_bnds(TIME, bnds) ;
 float X10_110(X10_110) ;
 X10_110:long_name = "x" ;
 X10_110:units = "km" ;
 X10_110:axis = "X" ;
 float Y20_200(Y20_200) ;
 Y20_200:long_name = "y" ;
 Y20_200:units = "km" ;
 Y20_200:axis = "Y" ;
 float SECTOR1_1(SECTOR1_1) ;
 SECTOR1_1:standard_name = "depth" ;
 SECTOR1_1:long_name = "sector" ;
 SECTOR1_1:units = "level" ;
 SECTOR1_1:positive = "down" ;
 SECTOR1_1:axis = "Z" ;
 SECTOR1_1:point_spacing = "even" ;
 float ME(TIME, SECTOR1_1, Y20_200, X10_110) ;
 ME:long_name = "Meltwater production"
;
 ME:units = "mmWE/day" ;
 ME:_FillValue = -1.e+34f ;
 ME:missing_value = -1.e+34f ;
 ME:cell_methods = "TIME: mean" ;
 ME:history = "From
ICE.q01.1950.01.01-05" ;

Historical Context and Development

1. Origins
- netCDF : Developed by UCAR (University Corporation for Atmospheric Research). Initially

designed for geosciences and climate modelling (1988)
- HDF5 : Created by NCSA (National Center for Supercomputing Applications). Serve as a

general-purpose format for storing complex scientific data (1987).

2. Evolution of Formats
- netCDF : Transition from netCDF-3 in 1997 (Widely adopted, foundational version for many years)

to netCDF-4 in 2008 (HDF5-based, supporting compression and parallel I/O).
- HDF5 : Continuously adapted for performance in HPC and integration into new tools

3. Emerging Formats
- Zarr : Modern cloud-optimized, chunked, compressed format, designed for distributed and

cloud-based workflows.

netCDF

Introduction to netCDF

1. Introduction to netCDF
- A self-describing data format for managing

multi-dimensional scientific data
- Designed for geospatial and atmospheric datasets

but widely used across domains

2. Why is it important?
- Facilitates portability and scalability in

high-performance computing environments
- Provides tools for efficient I/O operations in

large-scale simulations and real-world data
analysis

3. Common Use Cases:
- Climate modeling / Oceanography
- Earth system science and remote sensing
- Materials science, Physics, and Chemistry

Versions of netCDF

2008 : launch of netCDF4 :

- Built on top of HDF5
- Fully backward-compatible with netCDF-3
- Compression and Chunking: Improved storage efficiency and performance
- Parallel I/O: Optimized for HPC environments
- Unlimited Dimensions: Easier handling of dynamically growing datasets
- Improved Data Types: Support for complex numbers, unsigned integers, and strings
- Use ncdump -k example.nc (see next slides) to get the type

1988: netCDF-1 – Initial release

1990: netCDF-2 – Added

multi-platform portability.

1997: netCDF-3 – Standardized

"classic" format, still widely used.

2008: netCDF-4 – Introduced

HDF5-based backend with

advanced features.

● ● ● ●

netCDF Structure:

How is data stored in netCDF?

- Dimensions: —
- Define the data space

- Variables: —
Contain the actual data, linked to dimensions

- Attributes: —
Metadata providing context (e.g., units).

MAR_ME_15km {

dimensions:
 TIME = UNLIMITED ; // (151 currently)
 bnds = 2 ;
 X10_110 = 101 ;
 Y20_200 = 181 ;
 SECTOR1_1 = 1 ;

variables:
 float TIME(TIME) ;
 TIME:standard_name = "time" ;
 TIME:long_name = "time" ;
 TIME:bounds = "TIME_bnds" ;
 TIME:units = "days since 1947-09-01
00:00:00" ;
 TIME:calendar = "standard" ;
 TIME:axis = "T" ;
 double TIME_bnds(TIME, bnds) ;
 float X10_110(X10_110) ;
 X10_110:long_name = "x" ;
 X10_110:units = "km" ;
 X10_110:axis = "X" ;
 float Y20_200(Y20_200) ;
 Y20_200:long_name = "y" ;
 Y20_200:units = "km" ;
 Y20_200:axis = "Y" ;
 float SECTOR1_1(SECTOR1_1) ;
 SECTOR1_1:standard_name = "depth" ;
 SECTOR1_1:long_name = "sector" ;
 SECTOR1_1:units = "level" ;
 SECTOR1_1:positive = "down" ;
 SECTOR1_1:axis = "Z" ;
 SECTOR1_1:point_spacing = "even" ;
 float ME(TIME, SECTOR1_1, Y20_200, X10_110) ;
 ME:long_name = "Meltwater production" ;
 ME:units = "mmWE/day" ;
 ME:_FillValue = -1.e+34f ;
 ME:missing_value = -1.e+34f ;
 ME:cell_methods = "TIME: mean" ;
 ME:history = "From ICE.q01.1950.01.01-05";

global attributes:
 :CDI = "Climate Data Interface version
2.0.5 (https://mpimet.mpg.de/cdi)" ;
 :Conventions = "CF-1.6" ;
 :institute = "University of Liège
(Belgium)" ;

Advanced features (1) : Compression and Chunking

1. Compression
- Reduces file size using efficient algorithms (zlib in netCDF-4).
- The idea behind DEFLATE algorithm is

- LZ77 compression replaces repeated patterns in the data with shorter references
- Huffman coding assigns shorter binary codes to more common patterns, making the data

even smaller.
- Trade-off: Smaller files but slightly slower read/write operations. Different compression levels are

possible using the nccopy tool

2. Chunking
- Data stored in small, fixed-size blocks (chunks) instead of a single continuous stream.
- Efficient Indexing Mechanism:

- Chunking uses a hash table for indexing, enabling fast lookup of chunks
- Hash function maps the multi-dimensional indices (e.g., time, latitude, longitude) to the

correct chunk
- Chunking allows you to load only the specific parts of the data you need:

- Reduces memory usage
- Faster I/O operations and reduced disk usage
- Faster data access, thanks to efficient data indexing

Advanced features (2) : Efficient Data Access Methods

1. Accessing Subsets of Data
- Use indexing to load specific dimensions or slices, minimizing memory usage.

2. Uses chunk-based hash table indexing for efficient retrieval
- Data at specific coordinates is mapped to the correct chunk using a hash function

hash(TIME, LON, LAT) → Chunk ID

import xarray as xr

Open file in read mode
with xr.open_dataset("example.nc") as ds:
 # Access variable and read specific time step
 melt = ds.["ME"].isel(time=0) # First time slice
 print(melt)

Advanced features (3) : Parallel File Handling

1. What is Parallel I/O?
- Simultaneous access by multiple processes to different parts of the same file.
- Enabled in netCDF-4 through HDF5’s MPI-IO support.

- Divide the dataset into chunks.
- Assign each process to read/write specific chunks concurrently.
- The complexity of MPI-IO is mostly abstracted
- Supported in Fortran, C, C++, Python

2. Requirements
- netCDF-4 compiled with parallel HDF5 support.
- MPI library installed.

https://docs.unidata.ucar.edu/netcdf-c/current/parallel_io.html
https://docs.unidata.ucar.edu/nug/current/getting_and_building_netcdf.html#build_parallel

https://docs.unidata.ucar.edu/netcdf-c/current/parallel_io.html
https://docs.unidata.ucar.edu/nug/current/getting_and_building_netcdf.html#build_parallel

Advanced features (3) : Parallel File Handling - Python Example
1. MPI_example.py

2. Running (4 processes)

3. Output

from mpi4py import MPI
from netCDF4 import Dataset

Initialize MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print(f"Process {rank} of {size} is writing to the file.")

Create a parallel NetCDF file
ncfile = Dataset("MPI_write_example.nc", "w", parallel=True, comm=comm, info=MPI.Info())

ncfile.close()
comm.Barrier() # Ensure all processes sync

mpirun --mca opal_common_ucx_opal_mem_hooks 1 -np 4 python MPI_example.py

Process 0 of 4 is writing to the file.
Process 1 of 4 is writing to the file.
Process 2 of 4 is writing to the file.
Process 3 of 4 is writing to the file.

netCDF Reading and Writing in Python
1. Simplest form of netCDF reading:

2. Simplest form of netCDF writing:

3. Since 2025 h5netcdf has drastically increased I/O-bound operations. Example

from netCDF4 import Dataset

file = Dataset("example.nc", "r")
temperature = file.variables["temperature"][:]
print(temperature)

file.close()

from netCDF4 import Dataset
import numpy as np

file = Dataset("new_file.nc", "w", format="NETCDF4")

file.createDimension("time", None) # Unlimited dimension
file.createDimension("lat", 10)
file.createDimension("lon", 10)

temp = file.createVariable("temperature", "f4", ("time", "lat", "lon"))
temp[0, :, :] = np.random.random((10, 10))

file.close()

→ module load netcdf4-python

import xarray
ds = xr.open_dataset('file.nc', engine='h5netcdf')

Tools and Libraries for netCDF Data

1. Tools already installed on CECI clusters
- netCDF: Data format and library for managing multi-dimensional scientific data.
- NCO: Tools for manipulating and analyzing netCDF files.
- CDO: Tools for climate and atmospheric data operations.
- ncview: Visualization tool for netCDF data (need X11)

2. Loading modules in NIC5 (release 2021b in Easybuild)

(some redundancy among modules’ functionalities)

module load netCDF ⇐ also in releases/2023b
module load NCO
module load CDO ⇐ also in releases/2023b
module load ncview

Tools and Libraries for netCDF Data

netCDF examples

ncdump -h file.nc
Show only the header (metadata).

ncdump -v varname file.nc # careful with this one
Dumps specific variable content.

nccopy -k 4 file.nc file_nc4.nc
Convert to NetCDF-4 format.

nccopy -d9 file.nc compressed_file.nc
Compress a file (level 1-9). High compression

means high decompression time (I/O).

nccopy -c time/10,lat/360,lon/720 file.nc
chunked_file.nc
 Create a chunked dataset.

qglaude@nic5-login1 ~/formation_netcdf_hdf5 $ ncdump
-h MAR_ME_15km.nc
netcdf MAR_ME_15km {
dimensions:
 TIME = UNLIMITED ; // (151 currently)
 bnds = 2 ;
 X10_110 = 101 ;
 Y20_200 = 181 ;
 SECTOR1_1 = 1 ;
variables:
 float TIME(TIME) ;
 TIME:standard_name = "time" ;
 TIME:long_name = "time" ;
 TIME:bounds = "TIME_bnds" ;
 TIME:units = "days since 1947-09-01
00:00:00" ;
 TIME:calendar = "standard" ;
 TIME:axis = "T" ;
 double TIME_bnds(TIME, bnds) ;
 float X10_110(X10_110) ;
 X10_110:long_name = "x" ;
 X10_110:units = "km" ;
 X10_110:axis = "X" ;
 float Y20_200(Y20_200) ;
 Y20_200:long_name = "y" ;
 Y20_200:units = "km" ;
 Y20_200:axis = "Y" ;
 float SECTOR1_1(SECTOR1_1) ;
 SECTOR1_1:standard_name = "depth" ;
 SECTOR1_1:long_name = "sector" ;
 SECTOR1_1:units = "level" ;
 SECTOR1_1:positive = "down" ;
 SECTOR1_1:axis = "Z" ;
 SECTOR1_1:point_spacing = "even" ;
 float ME(TIME, SECTOR1_1, Y20_200, X10_110) ;
 ME:long_name = "Meltwater production"
;
 ME:units = "mmWE/day" ;
 ME:_FillValue = -1.e+34f ;
 ME:missing_value = -1.e+34f ;
 ME:cell_methods = "TIME: mean" ;
 ME:history = "From
ICE.q01.1950.01.01-05" ;

Tools and Libraries for netCDF Data
CDO examples

No man page → cdo -h
https://code.mpimet.mpg.de/projects/cdo/embedded/index.html

cdo sinfo file.nc
Displays detailed file information.

cdo info file.nc
Outputs metadata and variable stats.

cdo selvar,varname file.nc output.nc
Select specific variable(s).

cdo sellonlatbox,lon1,lon2,lat1,lat2 file.nc output.nc
Subset data to a region.

cdo timmean file.nc output.nc
Calculate the temporal mean.

cdo mergetime file1.nc file2.nc output.nc
Merge time-sliced files.

cdo remapbil,gridfile file.nc output.nc
Bilinear interpolation.

cdo diff file1.nc file2.nc
Compares 2 files.

qglaude@nic5-login1 ~/formation_netcdf_hdf5 $
cdo timmean MAR_ME_15km.nc average_melt.nc

cdo timmean: Processed 2760431 values from 1
variable over 151 timesteps [0.03s 37MB].

dimensions:
 TIME = UNLIMITED ; // (1 currently)
 bnds = 2 ;
 X10_110 = 101 ;
 Y20_200 = 181 ;
 SECTOR1_1 = 1 ;

https://code.mpimet.mpg.de/projects/cdo/embedded/index.html

Tools and Libraries for netCDF Data

NCO examples - https://nco.sourceforge.net/nco.html (lots of examples !)

ncap2 -s 'new_var=var*10' input.nc output.nc
Adds a new variable new_var which is 10 * var.

ncks -v varname file.nc output.nc
Extract specific variable(s).

ncatted -a units,temperature,o,c,"K" input.nc
Changes the units attribute of the temperature variable to K.

ncks -d lat,30.,60. -d lon,-10.,40. input.nc output.nc
Extracts data within latitude 30–60 and longitude -10–40.

ncbo --add -v var1,var2 file1.nc file2.nc output.nc
Add variables in file2.nc from file1.nc and stores the result.

ncra input1.nc input2.nc output.nc
Averages variables across files.

ncrename -v old_varname,new_varname input.nc
Renames a variable from old_name to new_name.

https://nco.sourceforge.net/nco.html

Tools and Libraries for netCDF Data

NCVIEW (Visualization for netCDF Data)

- Easy navigation through time-series data.
- Displays spatial data as color-filled plots.

Requirements - X11 Forwarding*

- Use MobaXTerm (recommended)
or

- Use WSL with X11 server (ex: XMing)
- Configure your shell for X11

export DISPLAY=127.0.0.1:0
- Connect to the server using -X argument

*https://support.ceci-hpc.be/doc/_contents/QuickStart/ConnectingToTheClusters/WSL.html

https://support.ceci-hpc.be/doc/_contents/QuickStart/ConnectingToTheClusters/WSL.html

Use Case - Climate Science with ERA5 Reanalysis

1. What is ERA5?
- ERA5 is the fifth-generation atmospheric reanalysis produced by ECMWF (European Centre for

Medium-Range Weather Forecasts).
- Provides hourly estimates of atmospheric, land-surface, and oceanic parameters.
- Widely used in climate modeling, weather forecasting, and research as data forcing
- Python API to download data (pip install cdsapi)

2. Why netCDF

- ERA5 data is distributed in netCDF
format, making it portable, scalable,
and easy to integrate into HPC
workflows.

- Supports efficient chunking,
compression, and variable
metadata for multi-dimensional
data.

Recap Slide : Key Advantages of netCDF

1. Self-Describing Format: Built-in metadata, encoded dimensions/variables/attributes in a structured format.

2. Efficient Handling of Large Multi-Dimensional Data: Optimized for fast and efficient input/output (I/O).

3. Interoperability: Supported by a wide range of programming languages, Software, and research teams.

4. Scalability: Handles datasets that grow dynamically.

5. Compression and Chunking: Reduces storage costs with efficient data access.

6. Reproducibility and Collaboration: Facilitates cross-disciplinary collaboration due to wide adoption

7. Backward and Forward Compatibility: And include new advanced features like HDF5 integration

HDF5

Introduction to HDF5

1. HDF5 is the backbone of modern netCDF (version 4),
with features such as

- Compression
- Chunking
- Parallel I/O

2. Introduction to HDF5
- Hierarchical Data Format
- Versatile, portable file format designed to store and

organize large, complex data efficiently
- General-purpose

3. Common Use Cases:
- Bioinformatics: sequencing results, 3D structures
- Medical Imaging: CT scans, MRI
- Particle Physics
- Remote Sensing (NASA products: Modis)

Comparison with netCDF

1. Similarities:

- Both are self-describing formats with embedded metadata for variables and dimensions.
- Widely supported across operating systems and programming languages.

2. Key difference - Data model flexibility

- HDF5 supports diverse data types, nested structures, and non-uniform data, making it ideal for
general-purpose applications

→ HDF5 structure is Hierarchical (groups, datasets, attributes).

- netCDF is specialized for structured, grid-based scientific data (e.g., climate, geoscience).
→ netCDF structure is Flat (dimensions, variables, attributes).

HDF5 Structure:

HDF5 organizes data into a tree-like structure

- Groups: —
- Containers that can hold datasets and other

groups (like a folder)

- Datasets: —
Containers that hold the actual data (e.g.,

arrays, tables, images)

- Attributes: —
Metadata attached to groups or datasets.

Every HDF5 file starts with a single root group (/), serving
as the top-level directory.

Groups can contain nested groups, datasets, and attributes,
symbolic links, allowing for complex relationships between
data elements

HDF5 Reading and Writing in Python

1. Simplest form of netCDF reading:

2. Simplest form of netCDF writing:

import h5py

file = h5py.File("example.h5", "r")
dataset = file["/group/dataset_name"]
print(dataset [:10])

file.close()

import h5py
import numpy as np

file = h5py.File("example.h5", "w")

group = file.create_group("group_name")

group.create_dataset("dataset_name", data=np.random.random((10, 10)))

group["dataset_name"].attrs["description"] = "Random data example"

file.close()

→ module load SciPy-bundle

Tools and Libraries for HDF5 Data

1. Tools already installed on CECI clusters (or upon request)
- HDF5 : collection of command-line utilities for working

with HDF5 files.

2. Loading modules in NIC5 (release 2021b in Easybuild)

3. Example

module load HDF5

h5dump file.h5
Dumps the entire file.

h5dump -g /group_name file.h5
Dumps only a specific group.

h5dump -d /dataset_name file.h5
Dumps the content of a dataset.

qglaude@nic5-login1 ~/formation_netcdf_hdf5 $ h5dump batch_lm4-w019.h5
HDF5 "batch_lm4-w019.h5" {
GROUP "/" {
 GROUP "lm4-w019" {
 ATTRIBUTE "CPUs per Task" {
 DATATYPE H5T_STD_I32LE
 DATASPACE SIMPLE { (1) / (1) }
 DATA {
 (0): 8
 }
 }
 GROUP "Tasks" {
 DATASET "0" {
 DATATYPE H5T_COMPOUND {
 H5T_STD_U64LE "ElapsedTime";
 H5T_STD_U64LE "EpochTime";
 H5T_STD_U64LE "CPUFrequency";
 H5T_IEEE_F64LE "CPUTime";
 H5T_IEEE_F64LE "CPUUtilization";
 H5T_STD_U64LE "GPUMemMB";
 H5T_IEEE_F64LE "GPUUtilization";
 H5T_STD_U64LE "RSS";
 H5T_STD_U64LE "VMSize";
 H5T_STD_U64LE "Pages";
 H5T_IEEE_F64LE "ReadMB";
 H5T_IEEE_F64LE "WriteMB";
 }

[...]

 (96): {
 2880,
 1730393568,
 21,
 238.5,
 795,
 0,
 0,
 6306280,
 7236076,
 265,
 16.4153,
 2.92087
 },

 }
 }
 }
 }
}

Tools and Libraries for HDF5 Data

Other HDF5 examples - Don’t hesitate to explore the man pages

h5ls -r file.h5
Recursively lists all objects.

h5stat file.h5
Summarizes statistics about an HDF5 file.

h5copy -i source.h5 -o dest.h5 -s /group1/dataset -d /group2/dataset
Copies a dataset from one file to another.

h5repack -f GZIP=6 source.h5 dest.h5
Compresses the file using GZIP with level 6 compression.

h5repack -c chunk[10x10] source.h5 dest.h5
Rechunks datasets to use 10x10 chunks.

h5repart -f family source%05d.h5 single_file.h5
Combines a family of files into one.

h5diff file1.h5 file2.h5
Compares all objects in the files.

man h5dump
Display the General Commands Manual of “h5dump”

Use Case - SDSS Galaxy Datasets (Astronomy)

1. What is a “Sky Survey”?
- Astronomy projects like SDSS (Sloan Digital Sky Survey) and LSST (Vera C. Rubin Observatory)

generate massive datasets to map the universe.
- Data includes:

- High-resolution images.
- Spectroscopic observations (> 4M obs).
- Time-series data for transient events

(e.g., supernovae, asteroid tracking).

2. Why HDF5?

- Handles multi-modal data: Images (2D/3D arrays),
Spectra (1D arrays), Object catalogs (tables with
hundreds of columns).

- Hierarchical organization (datasets are grouped by
Observations, each having spectra, images, etc) in a
Tree format

- Parallel I/O, efficient Storage, etc

Interoperability Between netCDF and HDF5

1. Conversion Limits
- netCDF to HDF5 : Always possible as netCDF-4 files are natively HDF5-based
- HDF5 to netCDF : Fails if

- Hierarchical structures (e.g., nested groups) that cannot be flattened
- Non-standard data types unsupported by netCDF (mixed data types)
- Linked datasets or objects netCDF can’t represent (a dataset can exist in multiple groups)

2. Conversion Tools
- Mostly rely on Python libraries like netCDF4 and h5py.

from netCDF4 import Dataset
import h5py

nc = Dataset("file.nc", "r")
h5 = h5py.File("file.h5", "w")

for var_name in nc.variables:
 h5.create_dataset(var_name, data=nc.variables[var_name][:])

h5.close()
nc.close()

Other Formats Beyond netCDF and HDF5

1. Zarr
- Structured format for storing multi-dimensional arrays.
- Native support for cloud-based object storage (e.g., AWS S3).
- Increasingly popular and well suited for distributed and cloud-native workflows

2. GeoTIFF
- Self-described, embedded metadata about projections and spatial references.
- Stores 2D raster datasets
- Extremely used in remote sensing
- GIS oriented

3. GeoPackage
- Self-described
- Can store raster (e.g., GeoTIFF) and vector data in a single compact file.
- SQLite for database-like storage
- GIS oriented

PART II
-

Hands-on

Extensive documentation with examples:
https://docs.unidata.ucar.edu/netcdf-fortran/current/f90_datasets.html

Exist for other languages
Search bar

Explanations
and examples

0. Loading dependencies (release 2023b) :

Fortran :

module load netCDF-Fortran/4.6.1-gompi-2023b

C :

module load netCDF/4.9.2-gompi-2023b

C++ :

module load netCDF-C++4/4.3.1-gompi-2023b

Python :

module load xarray netcdf4-python

0. Compiling :
Fortran : gfortran your_program.f90 -o your_program
-I${EBROOTNETCDFMINFORTRAN}/include -L${EBROOTNETCDFMINFORTRAN}/lib
-lnetcdff

C : gcc your_program.c -o your_program
-I${EBROOTNETCDF}/include -L${EBROOTNETCDF}/lib -lnetcdf

C++ : g++ your_program.cpp -o your_program
-I${EBROOTNETCDFMINCPLUSPLUS4}/include
-L${EBROOTNETCDFMINCPLUSPLUS4}/lib -lnetcdf_c++4 -lnetcdf

Fortran / C / C++ : ./your_program

Python : python your_program.py

0. Running:

Goal : basics of netcdf / hdf5 format

Fortran / C / C++ :

- Examples are given
- Up to you to adapt to your use case !

Python (netcdf):

- The following exercices contains missing elements,
and look-alike erroneous content

- Try to correct them using the documentation or your
knowledge

Python (hdf5):

- Examples are given

qglaude@nic5-login1 /CECI/proj/training/fileformats $ tree
.
NetCDF HDF5
├── C ├── code
│ ├── 1_open_netcdf.c │ ├── 1_open_hdf5.py
│ ├── 2_inquire_struct.c │ ├── 2_inquire_struct.py
│ ├── 3_read_data.c │ ├── 3_read_data.py
│ ├── 4_read_data_multidim.c │ ├── 4_read_data_multidim.py
│ ├── 5_error_handling.c │ ├── 5_error_handling.py
│ ├── 6_modify_variable.c │ ├── 6_modify_dataset.py
│ ├── 7_create_variable.c │ ├── 7_create_dataset.py
│ ├── 8_create_netcdf.c │ ├── 8_create_hdf5.py
│ └── 9_add_attribute.c │ ├── 9_add_attribute.py
├── CPP │ ├── create_mock_hdf5.py
│ ├── 1_open_netcdf.cpp │ └── new_daily_data.h5
│ ├── 2_inquire_struct.cpp └── input
│ ├── 3_read_data.cpp ├── Copy_of_MAR_ME_15km.h5
│ ├── 4_read_data_multidim.cpp └── MAR_ME_15km.h5
│ ├── 5_error_handling.cpp
│ ├── 6_modify_variable.cpp 8 directories, 60 files
│ ├── 7_create_variable.cpp
│ ├── 8_create_netcdf.cpp
│ └── 9_add_attribute.cpp
├── Fortran
│ ├── 1_open_netcdf.f90
│ ├── 2_inquire_struct.f90
│ ├── 3_read_data.f90
│ ├── 4_read_data_multidim.f90
│ ├── 5_error_handling.f90
│ ├── 6_modify_variable.f90
│ ├── 7_create_variable.f90
│ ├── 8_create_netcdf.f90
│ └── 9_add_attribute.f90
├── PythonN
│ ├── 1_open_netcdf.py
│ ├── 2_inquire_struct.py
│ ├── 3_read_data.py
│ ├── 4_read_data_multidim.py
│ ├── 5_error_handling.py
│ ├── 6_modify_variable.py
│ ├── 7_create_variable.py
│ ├── 8_create_netcdf.py
│ └── 9_add_attribute.py
├── PythonX
│ ├── 1_open_netcdf.py
│ ├── 2_inquire_struct.py
│ ├── 3_read_data.py
│ ├── 4_read_data_multidim.py
│ ├── 5_error_handling.py
│ ├── 6_modify_variable.py
│ ├── 7_create_variable.py
│ ├── 8_create_netcdf.py
│ └── 9_add_attribute.py
└── input
 ├── MAR_ME_15km.nc
 └── copy_of_MAR_ME_15km.nc

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

Goal : cover basics of netcdf files manipulation

1. >> Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

1. Open and close a NetCDF file. (Fortran)
program open_netcdf

 use netcdf
 implicit none

 integer :: ncid, retval

 ! Open the NetCDF file
 retval = nf90_open('../input/MAR_ME_15km.nc', nf90_nowrite, ncid)

 if (retval /= nf90_noerr) then
 print *, 'Error: Unable to open the NetCDF file!'
 stop
 end if

 print *, 'NetCDF file opened successfully.'

 ! Close the file
 retval = nf90_close(ncid)
 if (retval /= nf90_noerr) then
 print *, 'Error: Unable to close the NetCDF file!'
 stop
 end if

 print *, 'NetCDF file closed successfully.'

end program open_netcdf

1. Open and close a NetCDF file. (C)
#include <netcdf.h>
#include <stdio.h>

int main() {
 int ncid, retval;

 // Open the NetCDF file
 retval = nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid);
 if (retval != NC_NOERR) {
 printf("Error: Unable to open the NetCDF file!\n");
 return -1;
 }

 printf("NetCDF file opened successfully.\n");

 // Close the file
 retval = nc_close(ncid);
 if (retval != NC_NOERR) {
 printf("Error: Unable to close the NetCDF file!\n");
 return -1;
 }

 printf("NetCDF file closed successfully.\n");
 return 0;
}

1. Open and close a NetCDF file. (C++)
#include <netcdf>
#include <iostream>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Open the NetCDF file
 NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);
 cout << "NetCDF file opened successfully." << endl;
 // File automatically closes when NcFile object goes out of scope
 } catch (const exceptions::NcException& e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 cout << "NetCDF file closed successfully." << endl;
 return 0;
}

1. Open and close a NetCDF file. (Python)

def open_netcdf(file_path):
 try:
 dataset = Dataset(file_path, mode="r")
 print("NetCDF file opened successfully.")
 dataset.close()
 print("NetCDF file closed successfully.")
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 open_netcdf("../input/MAR_ME_15km.nc")

def open_netcdf(file_path):
 try:
 dataset = xr.open_dataset(file_path)
 print("NetCDF file opened successfully.")
 dataset.close()
 print("NetCDF file closed successfully.")
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 open_netcdf("../input/MAR_ME_15km.nc")

1. Open and close a NetCDF file. (Python)
from netCDF4 import Dataset

def open_netcdf(file_path):
 try:
 dataset = Dataset(file_path, mode="r")
 print("NetCDF file opened successfully.")
 dataset.close()
 print("NetCDF file closed successfully.")
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 open_netcdf("../input/MAR_ME_15km.nc")

import xarray as xr

def open_netcdf(file_path):
 try:
 dataset = xr.open_dataset(file_path)
 print("NetCDF file opened successfully.")
 dataset.close()
 print("NetCDF file closed successfully.")
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 open_netcdf("../input/MAR_ME_15km.nc")

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. >> Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

2. Inquire about NetCDF File Structure (Fortran)
program inquire_netcdf
 use netcdf
 implicit none

 integer :: ncid, ndims, nvars, natts, unlimdimid, retval

 ! Open the NetCDF file
 retval = nf90_open('../input/MAR_ME_15km.nc', nf90_nowrite, ncid)

 ! Inquire about file structure
 retval = nf90_inquire(ncid, ndims, nvars, natts, unlimdimid)

 if (retval /= nf90_noerr) then
 print *, 'Error: Unable to inquire about the NetCDF file!'
 stop
 end if

 ! Print the file structure
 print *, 'Number of dimensions:', ndims
 print *, 'Number of variables:', nvars
 print *, 'Number of attributes:', natts
 print *, 'Unlimited dimension ID:', unlimdimid

 ! Close the NetCDF file
 retval = nf90_close(ncid)

end program inquire_netcdf

NB: from now on, I won’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (C)
#include <netcdf.h>
#include <stdio.h>

int main() {
 int ncid, ndims, nvars, natts, unlimdimid, retval;

 // Open the NetCDF file
 retval = nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid);

 // Inquire about the file structure
 retval = nc_inq(ncid, &ndims, &nvars, &natts, &unlimdimid);
 if (retval != NC_NOERR) {
 printf("Error: Unable to inquire about the NetCDF file!\n");
 nc_close(ncid);
 return -1;
 }

 // Print the file structure
 printf("Number of dimensions: %d\n", ndims);
 printf("Number of variables: %d\n", nvars);
 printf("Number of attributes: %d\n", natts);
 printf("Unlimited dimension ID: %d\n", unlimdimid);

 // Close the file
 retval = nc_close(ncid);

 return 0;
}

NB: from now on, I won’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (C++)
#include <netcdf>
#include <iostream>
#include <map>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Open the NetCDF file
 NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);

 // Inquire about file structure
 cout << "Number of dimensions: " << dataFile.getDimCount() << endl;
 cout << "Number of variables: " << dataFile.getVarCount() << endl;
 cout << "Number of attributes: " << dataFile.getAttCount() << endl;

 // Count unlimited dimensions by iterating through all dimensions
 int unlimCount = 0;
 multimap<string, NcDim> dims = dataFile.getDims();
 for (auto& dim : dims) {
 if (dim.second.isUnlimited()) {
 unlimCount++;
 cout << "Unlimited dimension: " << dim.first << endl;
 }
 }
 cout << "Number of unlimited dimensions: " << unlimCount << endl;

 } catch (const exceptions::NcException& e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 return 0;
}

NB: from now on, I won’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (Python - netCDF4)
import netCDF4 as nc

def nc_struct():
 try:
 # Open the NetCDF file
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r')

 # Inquire about file structure
 ndims = len(dataset.dimensions)
 nvars = len(dataset.variables)
 natts = len(dataset.ncattrs())
 unlimdim = dataset.dimensions.get(None, None)

 # Print the file structure
 print("Number of dimensions:", ndims)
 print("Number of variables:", nvars)
 print("Number of attributes:", natts)
 print("Unlimited dimension ID:", unlimdim if unlimdim else "None")

 # Close the file
 dataset.close()
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 nc_struct()

NB: from now on, I won’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. Inquire about NetCDF File Structure (Python - xarray)
import xarray as xr

def nc_struct():
 try:
 # Open the NetCDF file
 dataset = xr.open_dataset('../input/MAR_ME_15km.nc')

 # Inquire about file structure
 ndims = len(dataset.dims)
 nvars = len(dataset.data_vars)
 natts = len(dataset.attrs)

 # Print the file structure
 print("Number of dimensions:", ndims)
 print("Number of variables:", nvars)
 print("Number of global attributes:", natts)
 print("Dimensions:", dict(dataset.sizes))

 # Close the file
 dataset.close()
 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 nc_struct()

NB: from now on, I won’t include file opening and closing verification for conciseness (best advice is to keep them for debug)

2. netCDF4 and xarray propositions are giving 2 different
outputs : an idea why ?

- netCDF4 :

- Xarray :
Number of dimensions: 5
Number of variables: 2
Number of attributes: 8
Unlimited dimension: None

Number of dimensions: 5
Number of variables: 6
Number of attributes: 8
Unlimited dimension: None

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. >> Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

3. Reading Data from a NetCDF File (Fortran90)
program read_time_variable

 use netcdf
 implicit none

 integer :: ncid, varid, dimid, retval
 integer, dimension(:), allocatable :: dimids
 integer :: ndims, time_len
 real, dimension(:), allocatable :: time_data

 ! Open the NetCDF file
 retval = nf90_open('../input/MAR_ME_15km.nc',
nf90_nowrite, ncid)

 ! Get the varid of 'TIME'
 retval = nf90_inq_varid(ncid, 'TIME', varid)

 ! Get the number of dimensions and their IDs for 'TIME'
 retval = nf90_inquire_variable(ncid, varid, ndims = ndims)

 allocate(dimids(ndims))

 retval = nf90_inquire_variable(ncid, varid, dimids =
dimids)

[...]

[...]

 ! Retrieve the length of the 'TIME' dimension
 dimid = dimids(1) ! 'TIME' is associated with the first
dimension
 retval = nf90_inquire_dimension(ncid, dimid, len =
time_len)

 ! Allocate memory for TIME data
 allocate(time_data(time_len))

 ! Read the 'TIME' variable
 retval = nf90_get_var(ncid, varid, time_data)

 ! Display the TIME data
 print *, 'TIME data:'
 print *, time_data

 ! Close the NetCDF file
 retval = nf90_close(ncid)

end program read_time_variable

3. Reading Data from a NetCDF File (C)
#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
 int ncid, varid, retval;
 size_t time_len;
 float *time_data;

 // Open the NetCDF file
 nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid);

 // Get the varid of 'TIME' and its length
 nc_inq_varid(ncid, "TIME", &varid);
 nc_inq_dimlen(ncid, 0, &time_len);

 // Allocate memory for TIME data
 time_data = (float *)malloc(time_len * sizeof(float));

 // Read the 'TIME' variable
 nc_get_var_float(ncid, varid, time_data);

 // Display the TIME data
 printf("TIME data:\n");
 for (size_t i = 0; i < time_len; i++) {
 printf("%f ", time_data[i]);
 }
 printf("\n");

 // Free memory and close the file
 free(time_data);
 nc_close(ncid);

 return 0;
}

3. Reading Data from a NetCDF File (C++)
#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Open the NetCDF file
 NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);

 // Get the TIME variable
 NcVar timeVar = dataFile.getVar("TIME");

 // Get the length of the TIME dimension
 size_t timeLen = timeVar.getDim(0).getSize();

 // Read the TIME data
 vector<float> timeData(timeLen);
 timeVar.getVar(timeData.data());

[...]

[...]

 // Display the TIME data
 cout << "TIME data:" << endl;
 for (float time : timeData) {
 cout << time << " ";
 }
 cout << endl;

 } catch (const exceptions::NcException &e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 return 0;
}

3. Reading Data from a NetCDF File (Python)
import netCDF4 as nc

def read_data():
 # Open the NetCDF file
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r')

 # Read the 'TIME' variable
 time_data = dataset.variables['TIME_DATA'][:]

 # Display the TIME data
 print("TIME data:")
 print(time_data)

if __name__ == "__main__":
 read_data()

import xarray as xr

def read_data():
 # Open the NetCDF file
 dataset = xr.open_dataset('MAR_ME_15km.nc')

 # Read the 'TIME' variable
 time_data = dataset['TIME_DATA'].values

 # Display the TIME data
 print("TIME data:")
 print(time_data)

if __name__ == "__main__":
 read_data()

3. Reading Data from a NetCDF File (Python)
import netCDF4 as nc

def read_data():
 # Open the NetCDF file
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r')

 # Read the 'TIME' variable
 time_data = dataset.variables['TIME'][:]

 # Display the TIME data
 print("TIME data:")
 print(time_data)

if __name__ == "__main__":
 read_data()

import xarray as xr

def read_data():
 # Open the NetCDF file
 dataset = xr.open_dataset('MAR_ME_15km.nc')

 # Read the 'TIME' variable
 time_data = dataset['TIME'].values

 # Display the TIME data
 print("TIME data:")
 print(time_data)

if __name__ == "__main__":
 read_data()

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. >> Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

[...]

 ! Read the 'ME' variable
 retval = nf90_get_var(ncid, varid_me, me_data)

 ! Display a subset of the ME variable (time step 1, sector 1)
 print *, "ME data (time step 1, sector 1):"
 print *, me_data(1, 1, :, :)

 ! Close the NetCDF file
 retval = nf90_close(ncid)

 print *, "ME variable displayed successfully."

end program display_ME_variable

4. Handling Multidimensional Data (Fortran90)
program display_ME_variable

 use netcdf
 implicit none

 integer :: ncid, varid_me, retval
 integer, dimension(4) :: dimids
 integer :: time_len, sector_len, y_len, x_len
 real, dimension(:,:,:,:), allocatable :: me_data

 ! Open the NetCDF file in read-only mode
 retval = nf90_open('../input/MAR_ME_15km.nc', nf90_nowrite, ncid)

 ! Get the variable ID of 'ME'
 retval = nf90_inq_varid(ncid, 'ME', varid_me)

 ! Get the dimensions of 'ME'
 retval = nf90_inquire_variable(ncid, varid_me, dimids = dimids)

 ! Retrieve dimension lengths
 retval = nf90_inquire_dimension(ncid, dimids(1), len = time_len)
 retval = nf90_inquire_dimension(ncid, dimids(2), len = sector_len)
 retval = nf90_inquire_dimension(ncid, dimids(3), len = y_len)
 retval = nf90_inquire_dimension(ncid, dimids(4), len = x_len)

 ! Allocate memory for ME data
 allocate(me_data(time_len, sector_len, y_len, x_len))

[...]

4. Handling Multidimensional Data (C)
#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>

// Macro for 4D indexing into contiguous array
#define IDX4D(t, s, y, x, ns, ny, nx) ((t) * (ns) * (ny) * (nx) + (s)
* (ny) * (nx) + (y) * (nx) + (x))

int main() {
 int ncid, varid, retval;
 size_t time_len, sector_len, y_len, x_len;
 float *me_data;

 // Open the NetCDF file
 nc_open("../input/MAR_ME_15km.nc", NC_NOWRITE, &ncid);

 // Get the variable ID of 'ME'
 nc_inq_varid(ncid, "ME", &varid);

 // Get the dimensions of 'ME'
 nc_inq_dimlen(ncid, 0, &time_len);
 nc_inq_dimlen(ncid, 1, §or_len);
 nc_inq_dimlen(ncid, 2, &y_len);
 nc_inq_dimlen(ncid, 3, &x_len);

 // Allocate CONTIGUOUS memory for 'ME' data
 me_data = (float *)malloc(time_len * sector_len * y_len * x_len *
sizeof(float));

 // Read the 'ME' variable
 nc_get_var_float(ncid, varid, me_data);

[...]

 // Display a subset of 'ME' data (time step 0, sector 0)
 printf("ME data (time step 1, sector 1):\n");
 for (size_t y = 0; y < y_len && y < 5; y++) { // Limit output
 for (size_t x = 0; x < x_len && x < 5; x++) {
 printf("%f ", me_data[IDX4D(0, 0, y, x, sector_len, y_len,
x_len)]);
 }
 printf("...\n");
 }
 printf("...\n");

 // Free memory and close the file
 free(me_data);
 nc_close(ncid);

 return 0;
}

4. Handling Multidimensional Data (C++)
#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Open the NetCDF file
 NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);

 // Get the 'ME' variable
 NcVar meVar = dataFile.getVar("ME");

 // Get dimensions of 'ME'
 vector<NcDim> dims = meVar.getDims();
 size_t timeLen = dims[0].getSize();
 size_t sectorLen = dims[1].getSize();
 size_t yLen = dims[2].getSize();
 size_t xLen = dims[3].getSize();

 // Read the 'ME' variable into contiguous array
 vector<float> meData(timeLen * sectorLen * yLen * xLen);
 meVar.getVar(meData.data());

 [...]

[...]

 // Display a subset of 'ME' data (time step 0, sector 0)
 cout << "ME data (time step 1, sector 1):" << endl;
 for (size_t y = 0; y < yLen && y < 5; y++) { // Limit output
 for (size_t x = 0; x < xLen && x < 5; x++) {
 // Index: t*sectorLen*yLen*xLen + s*yLen*xLen + y*xLen + x
 size_t idx = 0 * sectorLen * yLen * xLen + 0 * yLen * xLen +
y * xLen + x;
 cout << meData[idx] << " ";
 }
 cout << "..." << endl;
 }
 cout << "..." << endl;

 } catch (const exceptions::NcException &e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 return 0;
}

4. Handling Multidimensional Data (Python)
import netCDF4 as nc

def read_me_data():
 # Open the NetCDF file
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r')

 # Read the 'ME' variable
 me_data = dataset.variables['ME'][:]

 # Display a subset of ME data
 print("ME data (time step 1, sector 2):")
 print(me_data[0, 1, :, :])

if __name__ == "__main__":
 read_me_data()

import xarray as xr

def read_me_data():
 # Open the NetCDF file
 dataset = xr.open_dataset('../input/MAR_ME_15km.nc')

 # Read the 'ME' variable
 me_data = dataset['ME']

 # Display a subset of ME data
 print("ME data (time step 1, sector 2):")
 print(me_data.isel(time=0, sector=1).values)

if __name__ == "__main__":
 read_me_data()

4. Handling Multidimensional Data (Python)
import netCDF4 as nc

def read_me_data():
 # Open the NetCDF file
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r')

 # Read the 'ME' variable
 me_data = dataset.variables['ME'][:]

 # Display a subset of ME data
 print("ME data (time step 1, sector 1):")
 print(me_data[0, 0, :, :])

if __name__ == "__main__":
 read_me_data()

import xarray as xr

def read_me_data():
 # Open the NetCDF file
 dataset = xr.open_dataset('../input/MAR_ME_15km.nc')

 # Read the 'ME' variable
 me_data = dataset['ME']

 # Display a subset of ME data
 print("ME data (time step 1, sector 1):")
 print(me_data.isel(time=0, sector=0).values)

if __name__ == "__main__":
 read_me_data()

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. >> Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

5. Error Handling in NetCDF (Fortran90)
program error_handling
 use netcdf
 implicit none

 integer :: ncid, varid, retval

 ! Open the NetCDF file
 retval = nf90_open('../input/MAR_ME_15km.nc', nf90_nowrite, ncid)
 call check_error(retval, 'Error during opening file')

 ! Get the variable ID of 'ME'
 retval = nf90_inq_varid(ncid, 'ME', varid)
 call check_error(retval, 'Error accessing the ME variable')

 ! Close the NetCDF file
 retval = nf90_close(ncid)
 call check_error(retval, 'Error closing the file')

 contains
 subroutine check_error(retval, error_message)
 integer, intent(in) :: retval
 character(len=*), intent(in) :: error_message

 if (retval /= nf90_noerr) then
 print *, error_message
 stop
 end if
 end subroutine check_error

end program error_handling

5. Error Handling in NetCDF (C)
#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>

void check_error(int retval, const char *error_message) {
 if (retval != NC_NOERR) {
 fprintf(stderr, "%s: %s\n", error_message, nc_strerror(retval));
 exit(EXIT_FAILURE);
 }
}

int main() {
 int ncid, varid, retval;

 // Open the NetCDF file
 retval = nc_open("../inut/MAR_ME_15km.nc", NC_NOWRITE, &ncid);
 check_error(retval, "Error during opening file");

 // Get the variable ID of 'ME'
 retval = nc_inq_varid(ncid, "ME", &varid);
 check_error(retval, "Error accessing the ME variable");

 printf("File opened and ME variable accessed successfully.\n");

 // Close the NetCDF file
 retval = nc_close(ncid);
 check_error(retval, "Error closing the file");

 printf("File closed successfully.\n");

 return 0;
}

5. Error Handling in NetCDF (C++)
#include <netcdf>
#include <iostream>
#include <stdexcept>

using namespace netCDF;
using namespace std;

void check_error(const string &step, const exceptions::NcException &e) {
 cerr << step << ": " << e.what() << endl;
 exit(EXIT_FAILURE);
}

int main() {
 try {
 // Open the NetCDF file
 NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::read);
 cout << "File opened successfully." << endl;

 // Access the 'ME' variable
 NcVar meVar = dataFile.getVar("ME");
 if (meVar.isNull()) {
 throw runtime_error("Error accessing the ME variable.");
 }
 cout << "ME variable accessed successfully." << endl;

 } catch (const exceptions::NcException &e) {
 check_error("NetCDF error", e);
 } catch (const runtime_error &e) {
 cerr << e.what() << endl;
 exit(EXIT_FAILURE);
 }

 cout << "File processed successfully." << endl;
 return 0;
}

5. Error Handling in NetCDF (Python - netCDF4)
from netCDF4 import Dataset
import sys

def check_error(success, message):
 if not success:
 print(message)
 sys.exit(1)

def error_handling():
 try:
 # Open the NetCDF file
 file_path = "../input/MAR_ME_15km.nc"
 try:
 dataset = Dataset(file_path, "r")
 print("File opened successfully.")
 catch Exception as e:
 check_error(False, f"Error during opening file: {e}")

 # Access the variable 'ME'
 variable_name = "ME"
 try:
 var = dataset.variables[variable_name]
 print(f"Variable '{variable_name}' accessed successfully.")
 catch KeyError:
 check_error(False, f"Error accessing the variable '{variable_name}'")

 # Close the NetCDF file
 try:
 dataset.close()
 print("File closed successfully.")
 catch Exception as e:
 check_error(False, f"Error during file closing: {e}")

 catch Exception as e:
 print(f"An unexpected error occurred: {e}")
 sys.exit(1)

if __name__ == "__main__":
 error_handling()

5. Error Handling in NetCDF (Python - netCDF4)
from netCDF4 import Dataset
import sys

def check_error(success, message):
 if not success:
 print(message)
 sys.exit(1)

def error_handling():
 try:
 # Open the NetCDF file
 file_path = "../input/MAR_ME_15km.nc"
 try:
 dataset = Dataset(file_path, "r")
 print("File opened successfully.")
 except Exception as e:
 check_error(False, f"Error during opening file: {e}")

 # Access the variable 'ME'
 variable_name = "ME"
 try:
 var = dataset.variables[variable_name]
 print(f"Variable '{variable_name}' accessed successfully.")
 except KeyError:
 check_error(False, f"Error accessing the variable '{variable_name}'")

 # Close the NetCDF file
 try:
 dataset.close()
 print("File closed successfully.")
 except Exception as e:
 check_error(False, f"Error during file closing: {e}")

 except Exception as e:
 print(f"An unexpected error occurred: {e}")
 sys.exit(1)

if __name__ == "__main__":
 error_handling()

5. Error Handling in NetCDF (Python - xarray)
import xarray as xr
import sys

def check_error(success, message):
 if not success:
 print(message)
 sys.exit(1)

def error_handling():
 try:
 # Open the NetCDF file
 file_path = "../input/MAR_ME_15km.nc"
 try:
 dataset = xr.open_dataset(file_path)
 print("File opened successfully.")
 catch Exception as e:
 check_error(False, f"Error during opening file: {e}")

 # Access the variable 'ME'
 variable_name = "ME"
 try:
 if variable_name in dataset:
 var = dataset[variable_name]
 print(f"Variable '{variable_name}' accessed successfully.")
 else:
 raise KeyError(f"Variable '{variable_name}' not found.")
 catch KeyError as e:
 check_error(False, f"Error accessing the variable '{variable_name}': {e}")

 # Close the NetCDF file
 try:
 dataset.close()
 print("File closed successfully.")
 catch Exception as e:
 check_error(False, f"Error during file closing: {e}")

 catch Exception as e:
 print(f"An unexpected error occurred: {e}")
 sys.exit(1)

if __name__ == "__main__":
 error_handling()

5. Error Handling in NetCDF (Python - xarray)
import xarray as xr
import sys

def check_error(success, message):
 if not success:
 print(message)
 sys.exit(1)

def error_handling():
 try:
 # Open the NetCDF file
 file_path = "../input/MAR_ME_15km.nc"
 try:
 dataset = xr.open_dataset(file_path)
 print("File opened successfully.")
 except Exception as e:
 check_error(False, f"Error during opening file: {e}")

 # Access the variable 'ME'
 variable_name = "ME"
 try:
 if variable_name in dataset:
 var = dataset[variable_name]
 print(f"Variable '{variable_name}' accessed successfully.")
 else:
 raise KeyError(f"Variable '{variable_name}' not found.")
 except KeyError as e:
 check_error(False, f"Error accessing the variable '{variable_name}': {e}")

 # Close the NetCDF file
 try:
 dataset.close()
 print("File closed successfully.")
 except Exception as e:
 check_error(False, f"Error during file closing: {e}")

 except Exception as e:
 print(f"An unexpected error occurred: {e}")
 sys.exit(1)

if __name__ == "__main__":
 error_handling()

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. >> Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

6. Modifying the Content of a Variable (Fortran)
program modify_ME_variable

 use netcdf
 implicit none

 integer :: ncid, varid, retval
 integer, dimension(4) :: dimids
 integer :: time_len, sector_len, y_len, x_len
 real, dimension(:,:,:,:), allocatable :: me_data

 ! Open the NetCDF file in write mode
 retval = nf90_open('../input/MAR_ME_15km.nc', nf90_write, ncid)

 ! Get the variable ID of 'ME'
 retval = nf90_inq_varid(ncid, 'ME', varid)

 ! Get the dimensions of 'ME'
 retval = nf90_inquire_variable(ncid, varid, dimids = dimids)

 ! Retrieve dimension lengths
 retval = nf90_inquire_dimension(ncid, dimids(1), len = time_len)
 retval = nf90_inquire_dimension(ncid, dimids(2), len = sector_len)
 retval = nf90_inquire_dimension(ncid, dimids(3), len = y_len)
 retval = nf90_inquire_dimension(ncid, dimids(4), len = x_len)

 ! Allocate memory for ME data
 allocate(me_data(time_len, sector_len, y_len, x_len))

 ! Read the 'ME' variable
 retval = nf90_get_var(ncid, varid, me_data)

 ! Convert yearly values to daily values (divide by 365)
 me_data = me_data / 365.0

 ! Write the modified 'ME' variable back to the file
 retval = nf90_put_var(ncid, varid, me_data)

 ! Close the NetCDF file
 retval = nf90_close(ncid)

 print *, "Content of 'ME' variable modified successfully."

end program modify_ME_variable

6. Modifying the Content of a Variable (C)
#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
 int ncid, varid, retval;
 size_t time_len, sector_len, y_len, x_len, total_size;
 float *me_data;

 // Open the NetCDF file in write mode
 nc_open("../input/MAR_ME_15km.nc", NC_WRITE, &ncid);

 // Get the variable ID of 'ME'
 nc_inq_varid(ncid, "ME", &varid);

 // Get the dimensions of 'ME'
 nc_inq_dimlen(ncid, 0, &time_len);
 nc_inq_dimlen(ncid, 1, §or_len);
 nc_inq_dimlen(ncid, 2, &y_len);
 nc_inq_dimlen(ncid, 3, &x_len);

 total_size = time_len * sector_len * y_len * x_len;

 // Allocate contiguous memory for 'ME' data
 me_data = (float *)malloc(total_size * sizeof(float));

 // Read the 'ME' variable
 nc_get_var_float(ncid, varid, me_data);

 [...]

[...]

 // Convert yearly values to daily (divide by 365)
 for (size_t i = 0; i < total_size; i++) {
 me_data[i] /= 365.0f;
 }

 // Write the modified 'ME' variable back to the file
 nc_put_var_float(ncid, varid, me_data);

 // Free memory and close the file
 free(me_data);
 nc_close(ncid);

 printf("Content of 'ME' variable modified successfully.\n");

 return 0;
}

6. Modifying the Content of a Variable (C++)
#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Open the NetCDF file in write mode
 NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::write);

 // Get the 'ME' variable
 NcVar meVar = dataFile.getVar("ME");

 // Get dimensions of 'ME'
 vector<NcDim> dims = meVar.getDims();
 size_t timeLen = dims[0].getSize();
 size_t sectorLen = dims[1].getSize();
 size_t yLen = dims[2].getSize();
 size_t xLen = dims[3].getSize();

 // Read the 'ME' variable
 vector<float> meData(timeLen * sectorLen * yLen * xLen);
 meVar.getVar(meData.data());

 // Convert yearly values to daily
 for (auto &value : meData) {
 value /= 365.0f;
 }

[...]

[...]

 // Write the modified 'ME' variable back to the file
 meVar.putVar(meData.data());

 cout << "Content of 'ME' variable modified successfully." <<
endl;

 } catch (const exceptions::NcException &e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 return 0;
}

6. Modifying the Content of a Variable (Python)
import netCDF4 as nc

def modify_variable():
 # Open the NetCDF file in write mode
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+')

 # Access the 'ME' variable
 me_data = dataset.variables['ME'][:]

 # Convert yearly values to daily
 me_data /= 365.0

 # Close the file
 dataset.close()

if __name__ == "__main__":
 modify_variable()

import xarray as xr

def modify_variable():
 # Open the NetCDF file and load into memory
 dataset = xr.open_dataset('../input/MAR_ME_15km.nc')
 dataset = dataset.load() # Load all data into memory
 dataset.close() # Release the file handle

 # Modify the 'ME' variable (convert yearly to daily)
 dataset['ME'] = dataset['ME'] / 365.0

 print("Content of 'ME' variable modified successfully.")

if __name__ == "__main__":
 modify_variable()

6. Modifying the Content of a Variable (Python)
import netCDF4 as nc

def modify_variable():
 # Open the NetCDF file in write mode
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+')

 # Access the 'ME' variable
 me_data = dataset.variables['ME'][:]

 # Convert yearly values to daily
 me_data /= 365.0

 # Write the modified data back to the file
 dataset.variables['ME'][:] = me_data

 # Close the file
 dataset.close()

if __name__ == "__main__":
 modify_variable()

import xarray as xr

def modify_variable():
 # Open the NetCDF file and load into memory
 dataset = xr.open_dataset('../input/MAR_ME_15km.nc')
 dataset = dataset.load() # Load all data into memory
 dataset.close() # Release the file handle

 # Modify the 'ME' variable (convert yearly to daily)
 dataset['ME'] = dataset['ME'] / 365.0

 # Write the modified dataset back to the file
 dataset.to_netcdf('../input/MAR_ME_15km.nc')

 print("Content of 'ME' variable modified successfully.")

if __name__ == "__main__":
 modify_variable()

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. >> Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

7. Creating a New Variable in a NetCDF File (Fortran90)
program create_ME_daily_variable

 use netcdf
 implicit none

 integer :: ncid, varid_me, varid_daily, retval
 integer, dimension(4) :: dimids
 integer :: time_len, sector_len, y_len, x_len
 real, dimension(:,:,:,:), allocatable :: me_data, daily_data

 ! Open the NetCDF file in write mode
 retval = nf90_open('../input/MAR_ME_15km.nc', nf90_write, ncid)

 ! Get the variable ID of 'ME'
 retval = nf90_inq_varid(ncid, 'ME', varid_me)

 ! Get the dimensions of 'ME'
 retval = nf90_inquire_variable(ncid, varid_me, dimids = dimids)

 ! Retrieve dimension lengths
 retval = nf90_inquire_dimension(ncid, dimids(1), len = time_len)
 retval = nf90_inquire_dimension(ncid, dimids(2), len = sector_len)
 retval = nf90_inquire_dimension(ncid, dimids(3), len = y_len)
 retval = nf90_inquire_dimension(ncid, dimids(4), len = x_len)

 ! Allocate memory for ME data and the new daily variable
 allocate(me_data(time_len, sector_len, y_len, x_len))
 allocate(daily_data(time_len, sector_len, y_len, x_len))

[...]

[...]

 ! Read the 'ME' variable
 retval = nf90_get_var(ncid, varid_me, me_data)

 ! Compute the daily variable
 daily_data = me_data / 365.0

 ! Switch to define mode to create a new variable
 retval = nf90_redef(ncid)

 ! Define a new variable 'ME_DAILY'
 retval = nf90_def_var(ncid, 'ME_DAILY', nf90_float, dimids, varid_daily)

 ! End define mode
 retval = nf90_enddef(ncid)

 ! Write the daily data to the new variable
 retval = nf90_put_var(ncid, varid_daily, daily_data)

 ! Close the NetCDF file
 retval = nf90_close(ncid)

 print *, "ME_DAILY variable created successfully."

end program create_ME_daily_variable

7. Creating a New Variable in a NetCDF File (C)
#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
 int ncid, varid_me, varid_daily, dimids[4], retval;
 size_t time_len, sector_len, y_len, x_len, total_size;
 float *me_data, *daily_data;

 // Open the NetCDF file in write mode
 nc_open("../input/MAR_ME_15km.nc", NC_WRITE, &ncid);

 // Get the variable ID of 'ME'
 nc_inq_varid(ncid, "ME", &varid_me);

 // Get the dimensions of 'ME'
 nc_inq_dimlen(ncid, 0, &time_len);
 nc_inq_dimlen(ncid, 1, §or_len);
 nc_inq_dimlen(ncid, 2, &y_len);
 nc_inq_dimlen(ncid, 3, &x_len);

 total_size = time_len * sector_len * y_len * x_len;

 // Allocate contiguous memory for ME data and daily data
 me_data = (float *)malloc(total_size * sizeof(float));
 daily_data = (float *)malloc(total_size * sizeof(float));

 // Read the 'ME' variable
 nc_get_var_float(ncid, varid_me, me_data);

 // Compute the daily variable
 for (size_t i = 0; i < total_size; i++) {
 daily_data[i] = me_data[i] / 365.0f;
 }

[...]

[...]

 // Switch to define mode to create a new variable
 dimids[0] = 0; // TIME
 dimids[1] = 1; // SECTOR
 dimids[2] = 2; // Y
 dimids[3] = 3; // X

 nc_redef(ncid);
 nc_def_var(ncid, "ME_DAILY", NC_FLOAT, 4, dimids, &varid_daily);
 nc_enddef(ncid);

 // Write the daily data to the new variable
 nc_put_var_float(ncid, varid_daily, daily_data);

 // Free memory and close the file
 free(me_data);
 free(daily_data);
 nc_close(ncid);

 printf("ME_DAILY variable created successfully.\n");

 return 0;
}

7. Creating a New Variable in a NetCDF File (C++)
#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Open the NetCDF file in write mode
 NcFile dataFile("../input/MAR_ME_15km.nc", NcFile::write);

 // Get the 'ME' variable
 NcVar meVar = dataFile.getVar("ME");

 // Get dimensions of 'ME'
 vector<NcDim> dimensions = meVar.getDims();
 size_t timeLen = dimensions[0].getSize();
 size_t sectorLen = dimensions[1].getSize();
 size_t yLen = dimensions[2].getSize();
 size_t xLen = dimensions[3].getSize();

 // Read the 'ME' variable
 vector<float> meData(timeLen * sectorLen * yLen * xLen);
 meVar.getVar(meData.data());

 // Compute the daily variable
 vector<float> dailyData(meData.size());
 for (size_t i = 0; i < meData.size(); i++) {
 dailyData[i] = meData[i] / 365.0f;
 }

[...]

[...]

 // Define a new variable 'ME_DAILY' with the same dimensions
 NcVar dailyVar = dataFile.addVar("ME_DAILY", ncFloat, dimensions);

 // Write the daily data to the new variable
 dailyVar.putVar(dailyData.data());

 cout << "ME_DAILY variable created successfully." << endl;

 } catch (const exceptions::NcException &e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 return 0;
}

7. Creating a New Variable in a NetCDF File (Python)
import netCDF4 as nc

def new_variable():
 # Open the NetCDF file in write mode
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+')

 # Read the 'ME' variable
 me_data = dataset.variables['ME'][:]

 # Compute the daily variable
 daily_data = me_data / 365.0

 # Define the new variable 'ME_DAILY'
 dataset.createVariable('ME_DAILY', 'f4')
 dataset.variables['ME_DAILY'][:] = daily_data

 # Close the file
 dataset.close()

if __name__ == "__main__":
 new_variable()

import xarray as xr

def new_variable():
 # Open the NetCDF file and load into memory
 dataset = xr.open_dataset('../input/MAR_ME_15km.nc', 'r+')
 dataset = dataset.load() # Load all data into memory
 dataset.close() # Release the file handle

 # Compute the daily variable
 daily_data = dataset['ME'] / 365.0

 # Add the new variable 'ME_DAILY' with same dimensions as ME
 dataset['ME_DAILY'] = daily_data

 # Save the modified dataset
 dataset.to_netcdf('../input/MAR_ME_15km.nc')

 print("ME_DAILY variable created successfully.")

if __name__ == "__main__":
 new_variable()

7. Creating a New Variable in a NetCDF File (Python)
import netCDF4 as nc

def new_variable():
 # Open the NetCDF file in write mode
 dataset = nc.Dataset('../input/MAR_ME_15km.nc', 'r+')

 # Read the 'ME' variable
 me_data = dataset.variables['ME'][:]

 # Compute the daily variable
 daily_data = me_data / 365.0

 # Define the new variable 'ME_DAILY'
 dataset.createVariable('ME_DAILY', 'f4', dataset.variables['ME'].dimensions)
 dataset.variables['ME_DAILY'][:] = daily_data

 # Close the file
 dataset.close()

if __name__ == "__main__":
 new_variable()

import xarray as xr

def new_variable():
 # Open the NetCDF file and load into memory
 dataset = xr.open_dataset('../input/MAR_ME_15km.nc')
 dataset = dataset.load() # Load all data into memory
 dataset.close() # Release the file handle

 # Compute the daily variable
 daily_data = dataset['ME'] / 365.0

 # Add the new variable 'ME_DAILY' with same dimensions as ME
 dataset['ME_DAILY'] = daily_data

 # Save the modified dataset
 dataset.to_netcdf('../input/MAR_ME_15km.nc')

 print("ME_DAILY variable created successfully.")

if __name__ == "__main__":
 new_variable()

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. >> Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

8. Creating a New NetCDF File (Fortran90)
program create_new_netcdf

 use netcdf
 implicit none

 integer :: ncid, varid, retval
 integer :: dimids(4) ! Dimension IDs
 integer :: time_len, sector_len, y_len, x_len
 real, dimension(:,:,:,:), allocatable :: daily_data

 ! Define dimensions
 time_len = 10
 sector_len = 2
 y_len = 50
 x_len = 50

 ! Allocate memory for data
 allocate(daily_data(time_len, sector_len, y_len, x_len))
 daily_data = 1.0 / 365.0 ! Fill with example daily data

 ! Create a new NetCDF file
 retval = nf90_create('new_daily_data.nc', nf90_clobber, ncid)

 ! Define dimensions
 retval = nf90_def_dim(ncid, 'TIME', time_len, dimids(1))
 retval = nf90_def_dim(ncid, 'SECTOR', sector_len, dimids(2))
 retval = nf90_def_dim(ncid, 'Y', y_len, dimids(3))
 retval = nf90_def_dim(ncid, 'X', x_len, dimids(4))

[...]

[...]

 ! Define a new variable
 retval = nf90_def_var(ncid, 'ME_DAILY', nf90_real, dimids, varid)

 ! End define mode
 retval = nf90_enddef(ncid)

 ! Write data to the new variable
 retval = nf90_put_var(ncid, varid, daily_data)

 ! Close the NetCDF file
 retval = nf90_close(ncid)

 print *, 'NetCDF file created successfully.'

end program create_new_netcdf

8. Creating a New NetCDF File (C)
#include <netcdf.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
 int ncid, varid, dimids[4], retval;
 size_t time_len = 10, sector_len = 2, y_len = 50, x_len = 50;
 size_t total_size;
 float *daily_data;

 total_size = time_len * sector_len * y_len * x_len;

 // Allocate contiguous memory for data
 daily_data = (float *)malloc(total_size * sizeof(float));

 // Fill with example daily data
 for (size_t i = 0; i < total_size; i++) {
 daily_data[i] = 1.0f / 365.0f;
 }

 // Create a new NetCDF file
 nc_create("new_daily_data.nc", NC_CLOBBER, &ncid);

 // Define dimensions
 nc_def_dim(ncid, "TIME", time_len, &dimids[0]);
 nc_def_dim(ncid, "SECTOR", sector_len, &dimids[1]);
 nc_def_dim(ncid, "Y", y_len, &dimids[2]);
 nc_def_dim(ncid, "X", x_len, &dimids[3]);

[...]

[...]

 // Define a new variable
 nc_def_var(ncid, "ME_DAILY", NC_FLOAT, 4, dimids, &varid);

 // End define mode
 nc_enddef(ncid);

 // Write data to the new variable
 nc_put_var_float(ncid, varid, daily_data);

 // Free memory and close the file
 free(daily_data);
 nc_close(ncid);

 printf("NetCDF file created successfully.\n");

 return 0;
}

8. Creating a New NetCDF File (C++)
#include <netcdf>
#include <iostream>
#include <vector>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Create a new NetCDF file
 NcFile dataFile("new_daily_data.nc", NcFile::replace);

 // Define dimensions
 NcDim timeDim = dataFile.addDim("TIME", 10);
 NcDim sectorDim = dataFile.addDim("SECTOR", 2);
 NcDim yDim = dataFile.addDim("Y", 50);
 NcDim xDim = dataFile.addDim("X", 50);

 // Define a new variable
 vector<NcDim> dims = {timeDim, sectorDim, yDim, xDim};
 NcVar dailyVar = dataFile.addVar("ME_DAILY", ncFloat, dims);

 // Write example daily data
 vector<float> dailyData(10 * 2 * 50 * 50, 1.0f / 365.0f);
 dailyVar.putVar(dailyData.data());

 cout << "New NetCDF file created successfully." << endl;

 } catch (const exceptions::NcException &e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 return 0;
}

8. Creating a New NetCDF File (Python)
import netCDF4 as nc
import numpy as np

def main():
 # Create a new NetCDF file
 dataset = nc.Dataset('new_daily_data.nc', 'w', format='NETCDF4')

 # Define dimensions
 time_len, sector_len, y_len, x_len = 10, 2, 50, 50
 dataset.createDimension('TIME', time_len)
 dataset.createDimension('SECTOR', sector_len)
 dataset.createDimension('Y', y_len)
 dataset.createDimension('X', x_len)

 # Define a new variable
 daily_var = dataset.createVariable('ME_DAILY', 'f4', ('X', 'Y',
'SECTOR', 'TIME'))

 # Write example daily data
 daily_data = np.full((time_len, sector_len, y_len, x_len), 1.0 /
365.0, dtype='float32')
 daily_var[:] = daily_data

 # Close the file
 dataset.close()

if __name__ == "__main__":
 main()

import xarray as xr
import numpy as np

def main():
 # Define dimensions
 time_len, sector_len, y_len, x_len = 10, 2, 50, 50
 daily_data = np.full((x_len, y_len, sector_len, time_len), 1.0 / 365.0,
dtype='float32')

 # Create a new NetCDF file
 dataset = xr.Dataset(
 data_vars={"ME_DAILY": (("X", "Y", "SECTOR", "TIME"), daily_data)},
 coords={
 "TIME": range(time_len),
 "SECTOR": range(sector_len),
 "Y": range(y_len),
 "X": range(x_len)
 }
)

 # Write to file
 dataset.to_netcdf("new_daily_data.nc")

if __name__ == "__main__":
 main()

8. Creating a New NetCDF File (Python)
import netCDF4 as nc
import numpy as np

def main():
 # Create a new NetCDF file
 dataset = nc.Dataset('new_daily_data.nc', 'w', format='NETCDF4')

 # Define dimensions
 time_len, sector_len, y_len, x_len = 10, 2, 50, 50
 dataset.createDimension('TIME', time_len)
 dataset.createDimension('SECTOR', sector_len)
 dataset.createDimension('Y', y_len)
 dataset.createDimension('X', x_len)

 # Define a new variable
 daily_var = dataset.createVariable('ME_DAILY', 'f4', ('TIME',
'SECTOR', 'Y', 'X'))

 # Write example daily data
 daily_data = np.full((time_len, sector_len, y_len, x_len), 1.0 /
365.0, dtype='float32')
 daily_var[:] = daily_data

 # Close the file
 dataset.close()

if __name__ == "__main__":
 main()

import xarray as xr
import numpy as np

def main():
 # Define dimensions
 time_len, sector_len, y_len, x_len = 10, 2, 50, 50
 daily_data = np.full((time_len, sector_len, y_len, x_len), 1.0 / 365.0,
dtype='float32')

 # Create a new NetCDF file
 dataset = xr.Dataset(
 data_vars={"ME_DAILY": (("TIME", "SECTOR", "Y", "X"), daily_data)},
 coords={
 "TIME": range(time_len),
 "SECTOR": range(sector_len),
 "Y": range(y_len),
 "X": range(x_len)
 }
)

 # Write to file
 dataset.to_netcdf("new_daily_data.nc")

if __name__ == "__main__":
 main()

Goal : cover basics of netcdf files manipulation

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. >> Adding Descriptive Elements to a NetCDF File

9. Adding Descriptive Elements to a NetCDF File (Fortran)
program add_attribute

 use netcdf
 implicit none

 integer :: ncid, varid, retval

 ! Open the NetCDF file in write mode
 retval = nf90_open('new_daily_data.nc', nf90_write, ncid)

 ! Switch to define mode to add attributes
 retval = nf90_redef(ncid)

 ! Get the variable ID of 'ME_DAILY'
 retval = nf90_inq_varid(ncid, 'ME_DAILY', varid)

 ! Add a global attribute
 retval = nf90_put_att(ncid, nf90_global, 'title', 'Daily melt data')

 ! Add variable-specific attributes
 retval = nf90_put_att(ncid, varid, 'units', 'mm/day')
 retval = nf90_put_att(ncid, varid, 'description', 'Daily surface melt data derived from yearly values')

 ! Leave define mode
 retval = nf90_enddef(ncid)

 ! Close the NetCDF file
 retval = nf90_close(ncid)

 print *, "Attributes added successfully."

end program add_attribute

https://docs.unidata.ucar.edu/netcdf-fortran/current/f90-attributes.html

9. Adding Descriptive Elements to a NetCDF File (C)
#include <netcdf.h>
#include <stdio.h>
#include <string.h>

int main() {
 int ncid, varid, retval;

 // Open the NetCDF file in write mode
 nc_open("new_daily_data.nc", NC_WRITE, &ncid);

 // Switch to define mode to add attributes
 nc_redef(ncid);

 // Get the variable ID of 'ME_DAILY'
 nc_inq_varid(ncid, "ME_DAILY", &varid);

 // Add a global attribute
 const char *title = "Daily melt data";
 nc_put_att_text(ncid, NC_GLOBAL, "title", strlen(title), title);

 // Add variable-specific attributes
 const char *units = "mm/day";
 nc_put_att_text(ncid, varid, "units", strlen(units), units);

 const char *description = "Daily surface melt data derived from yearly values";
 nc_put_att_text(ncid, varid, "description", strlen(description), description);

 // End define mode and close the NetCDF file
 nc_enddef(ncid);
 nc_close(ncid);

 printf("Attributes added successfully.\n");

 return 0;
}

9. Adding Descriptive Elements to a NetCDF File (C++)
#include <netcdf>
#include <iostream>

using namespace netCDF;
using namespace std;

int main() {
 try {
 // Open the NetCDF file in write mode
 NcFile dataFile("new_daily_data.nc", NcFile::write);

 // Get the 'ME_DAILY' variable
 NcVar dailyVar = dataFile.getVar("ME_DAILY");

 // Add a global attribute
 dataFile.putAtt("title", "Daily melt data");

 // Add variable-specific attributes
 dailyVar.putAtt("units", "mm/day");
 dailyVar.putAtt("description", "Daily surface melt data derived from yearly values");

 cout << "Attributes added successfully." << endl;

 } catch (const exceptions::NcException &e) {
 cerr << "Error: " << e.what() << endl;
 return -1;
 }
 return 0;
}

9. Adding Descriptive Elements to a NetCDF File (Python)
import netCDF4 as nc

def main():
 # Open the NetCDF file in write mode
 dataset = nc.Dataset('new_daily_data.nc', 'r')

 # Add a global attribute
 dataset.title = "Daily melt data"

 # Add variable-specific attributes
 daily_var = dataset.variables['ME_DAILY']
 daily_var.units = "mm/day"
 daily_var.description = "Daily surface melt data derived from
yearly values"

 # Close the file
 dataset.close()

if __name__ == "__main__":
 main()

import xarray as xr

def main():
 # Open the NetCDF file in write mode
 dataset = xr.open_dataset('new_daily_data.nc')

 # Add a global attribute
 dataset.attrs['title'] = "Daily melt data"

 # Add variable-specific attributes
 dataset['ME_DAILY'].attrs['units'] = "mm/day"
 dataset['ME_DAILY'].attrs['description'] = "Daily surface melt data
derived from yearly values"

 # Save and close the file
 dataset.to_netcdf("new_daily_data.nc")

if __name__ == "__main__":
 main()

9. Adding Descriptive Elements to a NetCDF File (Python)
import netCDF4 as nc

def main():
 # Open the NetCDF file in write mode
 dataset = nc.Dataset('new_daily_data.nc', 'r+')

 # Add a global attribute
 dataset.title = "Daily melt data"

 # Add variable-specific attributes
 daily_var = dataset.variables['ME_DAILY']
 daily_var.units = "mm/day"
 daily_var.description = "Daily surface melt data derived from
yearly values"

 # Close the file
 dataset.close()

if __name__ == "__main__":
 main()

import xarray as xr

def main():
 # Open the NetCDF file and load into memory
 dataset = xr.open_dataset('new_daily_data.nc')
 dataset = dataset.load() # Load all data into memory
 dataset.close() # Release the file handle

 # Add a global attribute
 dataset.attrs['title'] = "Daily melt data"

 # Add variable-specific attributes
 dataset['ME_DAILY'].attrs['units'] = "mm/day"
 dataset['ME_DAILY'].attrs['description'] = "Daily surface melt data
derived from yearly values"

 # Save the modified dataset
 dataset.to_netcdf("new_daily_data.nc")

 print("Attributes added successfully.")

if __name__ == "__main__":
 main()

Well done !

1. Open and close a NetCDF file
2. Inquire about NetCDF File Structure
3. Reading Data from a NetCDF File
4. Handling Multidimensional Data
5. Error Handling in NetCDF
6. Modifying the Content of a Variable
7. Creating a New Variable in a NetCDF File
8. Creating a New NetCDF File
9. Adding Descriptive Elements to a NetCDF File

BONUS :
HDF5 Examples

1. Open and close a NetCDF file
import h5py

def open_hdf5(file_path):
 try:
 # Open the HDF5 file in read mode
 f = h5py.File(file_path, 'r')
 print("HDF5 file opened successfully.")

 # Close the file
 f.close()
 print("HDF5 file closed successfully.")

 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 open_hdf5("../input/MAR_ME_15km.h5")

2. Inquire about NetCDF File Structure
import h5py

def hdf5_struct():
 try:
 # Open the HDF5 file
 f = h5py.File('../input/MAR_ME_15km.h5', 'r')

 # Inquire about file structure
 n_datasets = len(f.keys())
 n_attrs = len(f.attrs)

 # Print the file structure
 print("Number of datasets:", n_datasets)
 print("Dataset names:", list(f.keys()))
 print("Number of global attributes:", n_attrs)
 print("Global attributes:", dict(f.attrs))

 # Print info about each dataset
 print("\nDataset details:")
 for name in f.keys():
 ds = f[name]
 print(f" {name}: shape={ds.shape}, dtype={ds.dtype}")

 # Close the file
 f.close()

 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 hdf5_struct()

3. Reading Data from a NetCDF File
import h5py

def read_data():
 try:
 # Open the HDF5 file
 f = h5py.File('../input/MAR_ME_15km.h5', 'r')

 # Read the 'TIME' dataset
 time_data = f['TIME'][:]

 # Display the TIME data
 print("TIME data:")
 print(time_data)
 print(f"\nShape: {time_data.shape}")
 print(f"Dtype: {time_data.dtype}")

 # Close the file
 f.close()

 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 read_data()

4. Handling Multidimensional Data
import h5py

def read_me_data():
 try:
 # Open the HDF5 file
 f = h5py.File('../input/MAR_ME_15km.h5', 'r')

 # Get the 'ME' dataset
 me_ds = f['ME']

 # Print dataset info
 print(f"ME shape: {me_ds.shape}")
 print(f"ME dtype: {me_ds.dtype}")

 # Read a subset of ME data (time step 0, sector 0)
 # HDF5 supports efficient slicing without loading entire dataset
 me_subset = me_ds[0, 0, :, :]

 # Display the subset
 print("\nME data (time step 1, sector 1):")
 print(me_subset)

 # Or read the entire dataset into memory
 # me_data = me_ds[:]

 # Close the file
 f.close()

 except Exception as e:
 print(f"Error: {e}")

if __name__ == "__main__":
 read_me_data()

5. Error Handling in NetCDF
import h5py
import sys

def check_error(success, message):
 if not success:
 print(message)
 sys.exit(1)

def error_handling():
 f = None
 try:
 # Open the HDF5 file
 file_path = "../input/MAR_ME_15km.h5"
 try:
 f = h5py.File(file_path, 'r')
 print("File opened successfully.")
 except OSError as e:
 check_error(False, f"Error during opening file: {e}")

 # Access the dataset 'ME'
 dataset_name = "ME"
 try:
 if dataset_name in f:
 ds = f[dataset_name]
 print(f"Dataset '{dataset_name}' accessed successfully.")
 print(f" Shape: {ds.shape}")
 else:
 raise KeyError(f"Dataset '{dataset_name}' not found.")
 except KeyError as e:
 check_error(False, f"Error accessing dataset: {e}")

 # Close the file
 try:
 f.close()
 print("File closed successfully.")
 except Exception as e:
 check_error(False, f"Error during file closing: {e}")

 except Exception as e:
 print(f"An unexpected error occurred: {e}")
 if f:
 f.close()
 sys.exit(1)

if __name__ == "__main__":
 error_handling()

6. Modifying the Content of a Variable
import h5py

def modify_dataset():
 # Open the HDF5 file in read/write mode
 f = h5py.File('../input/MAR_ME_15km.h5', 'r+')

 # Access the 'ME' dataset
 me_ds = f['ME']

 # Read the data
 me_data = me_ds[:]

 # Convert yearly values to daily
 me_data = me_data / 365.0

 # Write the modified data back
 me_ds[...] = me_data

 # Close the file
 f.close()

 print("Content of 'ME' dataset modified successfully.")

if __name__ == "__main__":
 modify_dataset()

7. Creating a New Variable in a NetCDF File
import h5py

def new_dataset():
 # Open the HDF5 file in read/write mode
 f = h5py.File('../input/MAR_ME_15km.h5', 'r+')

 # Read the 'ME' dataset
 me_data = f['ME'][:]

 # Compute the daily variable
 daily_data = me_data / 365.0

 # Create a new dataset 'ME_DAILY' with the same shape
 # If it already exists, delete it first
 if 'ME_DAILY' in f:
 del f['ME_DAILY']

 me_daily_ds = f.create_dataset('ME_DAILY', data=daily_data)

 # Copy attributes from ME to ME_DAILY
 me_daily_ds.attrs['long_name'] = 'Daily meltwater production'
 me_daily_ds.attrs['units'] = 'mmWE/day'

 # Close the file
 f.close()

 print("ME_DAILY dataset created successfully.")

if __name__ == "__main__":
 new_dataset()

8. Creating a New NetCDF File
import h5py
import numpy as np

def main():
 # Define dimensions
 time_len, sector_len, y_len, x_len = 10, 2, 50, 50

 # Create example daily data
 daily_data = np.full((time_len, sector_len, y_len, x_len), 1.0 / 365.0, dtype='float32')

 # Create a new HDF5 file ('w' mode overwrites if exists)
 f = h5py.File('new_daily_data.h5', 'w')

 # Create coordinate datasets
 f.create_dataset('TIME', data=np.arange(time_len, dtype='float32'))
 f.create_dataset('SECTOR', data=np.arange(sector_len, dtype='float32'))
 f.create_dataset('Y', data=np.arange(y_len, dtype='float32'))
 f.create_dataset('X', data=np.arange(x_len, dtype='float32'))

 # Create the main data dataset
 me_daily = f.create_dataset('ME_DAILY', data=daily_data)

 # Add attributes to dimensions
 f['TIME'].attrs['units'] = 'days'
 f['Y'].attrs['units'] = 'km'
 f['X'].attrs['units'] = 'km'

 # Close the file
 f.close()

 print("New HDF5 file created successfully.")

if __name__ == "__main__":
 main()

9. Adding Descriptive Elements to a NetCDF File
import h5py

def main():
 # Open the HDF5 file in read/write mode
 f = h5py.File('new_daily_data.h5', 'r+')

 # Add global attributes (attached to the root group)
 f.attrs['title'] = 'Daily melt data'
 f.attrs['institution'] = 'Example Institution'
 f.attrs['history'] = 'Created from yearly values'

 # Add dataset-specific attributes
 me_daily = f['ME_DAILY']
 me_daily.attrs['units'] = 'mm/day'
 me_daily.attrs['long_name'] = 'Daily meltwater production'
 me_daily.attrs['description'] = 'Daily surface melt data derived from yearly values'

 # Close the file
 f.close()

 print("Attributes added successfully.")

if __name__ == "__main__":
 main()

netCDF and HDF5 file
formats on CÉCI clusters

Thank You !

Quentin GLAUDE: quentin.glaude@uliege.be
10th December 2025, CYCL09b - Louvain-La-Neuve

mailto:quentin.glaude@uliege.be

