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Aim of the session

o answer discuss questions like
o "What are best practice to work with sensitive and/or

personally identifiable data?"
o "What precautionary measures do | need to take to
ensure data privacy?"
o "How is confidentiality ensured on the clusters?”
e bring up awareness on challenges and tools
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Example concerns

e 2 fMRI clinical data for machine learning research

° interview records for sociology research

° materials research for an industrial partner
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Disclaimers

e Sysadmins cannot answer the question "are my data
sensitive?" or "what are the best practices?"

o Confidentiality requires security, and security is a shared
duty

e Fireproof confidentiality would require major infrastructure
adaptation
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Are my data sensitive? What are hest practices?

2025 CISM/CECI HPC training session



What makes data sensitive?

e & Legislation (RGPD et al.)
o = Agreements (NDAS)

Who can answer:

o I3 Lawyers (Data Protection Officers)
e ;' Signees of the agreements (Principal Investigators)
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There are multiple levels of confidentiality
requirements:

e to abstain, and only work on 'local' hardware ; or

e to work only on aggregations, or intermediate results
e to anonymize the data

e to pseudonymize the data

o to encrypt the data, either
o intransit (always the case)
o at rest on disks (user duty)
o at work in RAM (very difficult) ; or

to protect the (clear) data from unauthorized access.
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Data protection
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Challenges

1. Clusters are designed primarily for performances and
usability, but not confidentiality and security

o Allowing users to build and run custom code

o Maximizing uptime vs. frequent updates

o Unigueness of the hardware (e.g. GPUs) can be issue
o Batch system does not allow interactive authentication
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Challenges

2. UNIX itself is not primarily designed for confidentiality

o Process names, logins, default file permissions, port

access are "public data"
o Hardening methods harm performance and usability
o User root has god-like powers
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User responsibilities

Protect the infrastructure;

e Do not share credentials (SSH keys)
e Do not use "magic through firewalls" tools (i.e. third-party

based) for file transfer or terminal sharing
e Beware of the tools you install (supply chain attacks)
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A sophisticated cybercriminal operation has infiltrated developer ecosystems worldwide.

Security researchers at Koi have uncovered at least 11 malicious Visual Studio Code (VS Code)
extensions created by a threat actor known as TigerJack, who embedded spyware, cryptocurrency
miners, and remote backdoors into tools downloaded by more than 17,000 developers.
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Tools and Methods

e File System Permissions ( 777 is never a solution)

chmod -R o-rwx .
chmod -R g+rX .
umask 0077

https://support.ceci-hpc.be/doc/ManagingFiles/SharingFiles/
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Tools and Methods

o Request exclusive access to nodes

sbatch ——exclusive

https://slurm.schedmd.com/sbatch.htmI#OPT_exclusive

e Prevent untrusted software from "calling home"

unshare —-n

https://man7.org/linux/man-pages/mani/unshare.1.html
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Tools and Methods

e Protect network access to open ports
tensorboard ——path_prefix

rserver ——auth—-pam-helper
vncpasswd

Refer to the documentation pages of the webservices you start
on compute nodes.
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Data encryption
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Challenges

0. Encryption in transit: SSH

1. Encryption at rest: what about the storage of the secret
password/key in a batch system?

2. Encryption at work: not entirely a solved problem

On the cluster,the root account can impersonate any user...
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Encryption at rest

Key-based/password-based Encryption

- age (for file decryption/encryption)
https://github.com/FiloSottile/age

- gocryptfs (for full directory encryption)
https://support.ceci-hpc.be/doc/ManagingFiles/encryption/
- munge (for secret sharing with other users)

[dfr@lm4-f001 ~]$ munge -u bvr -s "secretpassword"

MUNGE : AwQFAACeZ1JvKP1rZV8maz fLBQPS@iF25qa37yyBRau@VMc/GsIn [...]

[dfr@lm4-f001 ~]$ unmunge <<<"MUNGE:AwQFAACeZ1JvKP1rZV8mazfLBQPS0iF25ga37yyBRau@VMc [...]
unmunge: Error: Unauthorized credential for client UID=3000003 GID=3000003

[bvr@lm4-f001l ~]$ unmunge <<<"MUNGE:AwQFAACeZ1JvKP1lrzV8mazfLBQPS@iF25qa37yyBRau@VMI[. .. ]
secretpassword
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Storage of the secret

e Steganography

secret = ''.join(format(i, 'b') for i in bytearray("password", encoding ='utf-8'))

with open("instrumented_code.py", "w'") as new:
with open("code.py") as f:
for i, line in enumerate(f, start=1):
line.strip()
if 1 < len(secret) and secret[i]:
'l-ine += 11 1]
new.write(line)

e Obfuscation

# Pyarmor 9.1.8 (trial), 000000, non-profits, 2025-09-05T09:45:41.220705
from pyarmor_runtime_000000 import __pyarmor__

__pyarmor__(__name__, _ file__, b'PY000000\x00\x03\r\x00\xf3\r\00\x00@\x0+\x8. ..

e One time passwords online service (Vault)

$ curl https://secretstore.com/get/azl-sdfs—ere
secret

$ curl https://secretstore.com/get/azl-sdfs—ere
> 404 Not Found
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Encryption at work : Homomorphic encryption

Compute in a transformed space e.g. RSA multiplication:

e Choose two large prime numbers,say p and q .
e Calculate the product of primes, n = p *x q.

o Choose encryption exponent e

e Calculate decryption exponent d

Public Key = (n, e) ;PrivateKey= (n, d) .

e Encrypt first number C1 = (m1%e) (mod n)

e Encrypt second number C2 = (m2”~e) (mod n)

o Multiplying the two encrypted texts, C1 and C2, gives:

e (m1”e) (mod n) x (m2%e) (mod n) = ( (m1%e) x
(m27~e) ) (mod n) = ( (ml x m2) ~e) (mod n)

e Which is the encryption of m1xm?2
2025 CISM/CECI HPC training session
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Homomorphic encryption

>>> import numpy as np

>>> from Pyfhel import Pyfhel

>>> HE = Pyfhel()

>>> HE.contextGen(scheme='bfv', n=2%%x14, t_bits=20)
'success: valid'

>>> HE.keyGen()

>>>

>>> integerl = np.array([123], dtype=np.int64)

>>> integer2 = np.array([1], dtype=np.int64)

>>> ctxtl = HE.encryptInt(integerl)

>>> ctxt2 = HE.encryptInt(integer2)

>>> print(ctxtl)

<Pyfhel Ciphertext at 0x14da90377560, scheme=bfv, size=2/2, noiseBudget=361>
>>> HE.decryptInt(ctxtl)

array([123, 0, 0, ..., 0, 9, 0])

>>>

>>> ctxtSum = ctxtl + ctxt2

>>>

>>> resSum = HE.decryptInt(ctxtSum)
>>>

>>> print(resSum)
[124 © ©0 ... ©0 0 0]

https://pyfhel.readthedocs.io

https://github.com/jonaschn/awesome-he
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Trusted Execution Environments

Figure 1
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Secure CPU Instruction Set

— Intel: Software Guard Extensions (SGX) ; Trust Domain Extensions

— AMD: Secure Encrypted Virtualization (SEV)
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Data pseudonimization
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Pseudonimization ("reduce risks")

both the concealment of the identifying information as well
as the imposition of technical and organizational measures
that prevent attribution to an identified or identifiable
natural person without additional data

Pseudonymisation
secrets

Original data * Pseudonymised data
| Pseudonym Further attributes

Pseudonymising
transformation

https://www.edpb.europa.eu/system/files/2025-
01/edpb_guidelines_202501_pseudonymisation_en.pdf
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Challenges

1. Storage of the pseudonimization secrets
2. |ldentification of PIl in the data

3. Quasi-identifiers

Variable values or combinations of variable values
within a dataset that are not structural unigues but
might be empirically unigue and therefore in principle
uniquely identify a population unit.
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Tools and methods

Detection of PIl:

o https://github.com/EdyVision/pii-codex
e https://github.com/DataFog/datafog-python

Do not use an online service for this task!

For quasi-identifiers:

e Generalization: e.g. use ranges instead of exact values

o Data Swapping: exchange values between records but
keep marginal distributions

o Differential Privacy: add controlled mathematical noise
with privacy guarantees
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Data anonymization ("prevent re-identification’)
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Data Anonymisation

process by which personal data is altered in such a way
that a data subject can no longer be identified directly or
indirectly, either by the data controller alone or in
collaboration with any other party
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Challenges

Same as for pseudonymisation, except must it must be bullet-
proof.

Especially problematic with non-tabular data:

e speech data (voice identification, Pll being spoken out, etc.)
e images of people (physical traits, geoguessing, etc.)
o free text (style recognition e.g. typos, Pll being refered to in

the text, etc.)
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Tools and methods

e pitch alteration with e.g. with FFMPEG
o face detection in pictures with OpenCV
e authorship anonymization with adversarial stylometry
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https://hoop.dev/blog/data-anonymization-with-ffmpeg-a-practical-guide/
https://coehelp.uoregon.edu/using-openshot-to-blur-a-face-in-a-video/
https://en.wikipedia.org/wiki/Adversarial_stylometry

Data aggregation/summarization
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Data aggregation/summarization

The process of only sharing aggregate data, which is not related
to a single individual.

2025 CISM/CECI HPC training session

33



Challenges

1. Reduces the scope of possible analyses
2. Requires a distributed infrastructure
3. More difficult to integrate a cluster in the processing
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Federated computation

Method allowing multiple data owners to compute a common
statistic without sharing their data.

For instance: compute federated variance. Thanks to

k n; = 2 k k X < 2
L X (x” _x) _ X st Zi- "i(xi _x)

ZI; n; Zi n Zi n;
i=1 i=1 i=1

S2

multiple dataset owners can compute their subset variance and
share it along with the subset size and mean. Then everyone can
calculate the overall variance.
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Federated computation
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Secure MultiParty Computation

Example: "Additive secret sharing”: Alice, Bob, and Charlie want
to calculate their average salary but not share them

e Everyone "splits" their salary into random sum
Alice: 40=44-11+7 - Bob 50=-6+32+24 - Charlie 60=20+0+40
e Everyone shares the first two terms with the others

e Every one computes the sum of the half sum of the shared

values with its third (secret) term
o Alice can compute (-6+32+20+0)/2 + 7 = 30

o Bob can compute (44-11+20+0)/2 + 24 = 50.5
o Charlie can compute (44-11-6+32)/2 + 40 = 69.5
e Every one shares their results and sums them to get 150
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Secure MultiParty Computation

from mpyc.runtime import mpc

async def main():
secint = mpc.SecInt(16)

await mpc.start()

my_salary = int(input('Enter your salary: '))
our_salaries = mpc.input(secint(my_salary))

total_salary = sum(our_salaries)
m = len(mpc.parties)

print('Average salary:', await mpc.output(total_salary) / m)
await mpc.shutdown()

mpc.run(main())

Started 3 times with python t.py -M3 -I$i
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Further reading

e Salomon, D., 2003. Data Privacy and Security. Springer New
York, New York, NY.

e Venkataramanan, N., 2017. Data privacy: principles and
practice. CRC Press, Boca Raton, FL.

o Jarmul, K., 2023. Practical Data Privacy, 1st ed. ed. O'Reilly

Media, Incorporated, Sebastopol.
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