Introduction to data versioning

damien.francois@uclouvain.be

2024 CISM/CECI HPC training session

mailto:damien.francois@uclouvain.be

50 here we nave
poster.psd, posteriinal.psd,
posteriinal_last.psd...

" One thing | love about
designers is the way they
nandle versions!

nd then
posterfinal_finallast.psd,

posterinal_finallast_FINAL.psd

P = .5 seen AN

But then | auess you don't have
any kind of versioning system!

Something with real
version numbers and real

When is one of VErsion MESS00ES, ..

wou going to invent |
0. VErsioning sustem
for PSDs?

Bugfix DONE

Fyaadmin camenifed M oge e

Bugfix Fixed

Sysodmin commited 24 oga S04

Bugfix !

Sysndimin comenited Th, P

It would be o bit more
professional, eh ?

CommitStrip.com
https://www.commitstrip.com/en/2017/09/12/versioning-is-important/

https://www.commitstrip.com/en/2017/09/12/versioning-is-important/

Introduction to data versioning

damien.francois@uclouvain.be

2024 CISM/CECI HPC training session

mailto:damien.francois@uclouvain.be

Code/Text versioning:

2024 CISM/CECI HPC training session

RADIATION DETECTION
AND MEASUREMENT

~—

> Radiation Detection

and Measurement
THIRD EDITION

GLENN F. KNOLL

RADIATION

DETECTION
AND

MEASUREMENT

Data versioning:

- *I RADIATION
B |

DETECTION

AND
N— MEASUREMENT

> Radiation Detection

and Measurement
THIRD EDITION

LLLLLLLLLLLL

%‘—V@—V%‘—V%‘—V%

‘Versioningods ~ Versioning2ods Versioningwith Versioning finalods Versioning final +

2024 CISM/CECI HPC training session

What ..

Data versioning is the transposition of the ideas of code
versioning to data files rather than source code.

More specifically:

Data versioning is creating a unique reference for a
collection of data. This reference most commonly is a
timestamp or a version number and is associated a

comment or annotation.

2024 CISM/CECI HPC training session

Why ..

Track provenance

e aid compliance and auditing

e revert errors to a known working state
Ensure reproducibility

o replicate previous experiments

e run expriments on multiple versions of the data
Ease collaboration

e centralize storage and manage multiple contributions
e communicate changes in the data

How ..

Source code: 0 git is the standard

Data: why not use git ?

2024 CISM/CECI HPC training session

Git was not meant for data

git and its whole ecosystem is designed to version
source code, i.e. small line-oriented text files.

Data, by contrast,

e can be large

e can undergo column-oriented changes
e is not necessarily stored in a text file

e is not even necessarily stored in a file

2024 CISM/CECI HPC training session

No universal tool/method for data versioning

e Naive Approach: Full Duplication

o Copy on write approach: Valid_ from/to Metadata
Use a file-writing library with built-in versioning

Use data a data hosting service that features versioning

Version Control with arbitrary file types
o Abuse git
= Version .csv files

= \ersion text dump of data

= \ersion code that alters the data
o Use git extension
o Use dedicated tool

2024 CISM/CECI HPC training session 10

Copy on write

The idea:

rather than overwriting a data element, append it and
timestamp the modification

Referred to as Type 2 slowly changing dimension (SCD) in the
database world. Notice the valid_from, valid to ,and
comment columns.

Student ID Note /20 valid_from valid_to comment
123 15
142 9 2022-02-01
4324 -5 2022-01-13
23 12
4325 19
4324 5 2022-01-13 human error
34324 12
532 12
142 10 2022-02-01 decision overridden by council
6345 15
1235 17

https://en.wikipedia.org/wiki/Slowly_changing_dimension 11

https://en.wikipedia.org/wiki/Slowly_changing_dimension

File-writing library with built-in versioning

e.g. Versioned HDFb5:

eee M- < 0 © & & deshawgithub. ofversi bl ¢ ©@ 0+ @
(B Quickstart Guide — Versioned HDF5 documentation
Versioned Quickstart Guide
HDEF5 Let’s say you have an HDFS5 file with contents that might change over time. You may add
or remove datasets, change the contents of the data or the metadata, and would like to
keep a record of which changes occurred when, and a way to recover previous versions of
Navigation this file. Versioned HDFS5 allows you to do that by building a versioning API on top of
h5py.
Contents:
Quickstart Guide First, you must open an . h5 file and create a h5py File Object in write mode:

= Other Options

N >>> import h5py
Installatior >>> fileobject = h5py.File('filename.h5', 'w')
Performance

AFl Documentation Now, you can use the VersionedHDFSFile constructor on this file object to create a ver-

Design sioned HDFS5 file object:

Versioned HDF5 Change

Log >>> from versioned_hdf5 import VersionedHDF5File

Releasing >>> versioned_file = VersionedHDF5File(fileobject)

Related TOPiCS You can see that this versioned_file object has the following attributes:

Documentation overview
= Previous: Versioned HDF5
= Next: Installation

Quick search

e f: the original h5py File Object;
e current_version: at this point, it should return __first_version__, as we haven’t
created any additional versions.

To create a new version, use the stage_version function. For example, if we do

>>> with versioned_file.stage_version('version2') as group:
o group['mydataset'] = np.ones(10000)

https://deshaw.github.io/versioned-hdf5/quickstart.html

12

https://deshaw.github.io/versioned-hdf5/quickstart.html

Multi-featured data hosting services

Cloud services: Designed for team collaboration on documents

e Google spreadsheet
e Dropbox and the likes

Backup systems: Designed to keep a history of files

o Borg https://www.borgbackup.org
e Duplicati https://www.duplicati.com

2024 CISM/CECI HPC training session

13

https://www.borgbackup.org/
https://www.duplicati.com/

Multi-featured data hosting services (cont'd)

Data repositories: Designed to publish data alongside articles

o Dataverse https://dataverse.org
e /Zenodo https://zenodo.org

Data lakes: Designed to foster team collaboration around files

e Neptune https://neptune.ai/lhome

e Pachyderm https://www.pachyderm.com
Delta Lake https://delta.io

lakeFS https://docs.lakefs.io

Qri https://github.com/qgri-io/qgri

2024 CISM/CECI HPC training session

14

https://dataverse.org/
https://zenodo.org/
https://neptune.ai/home
https://www.pachyderm.com/
https://delta.io/
https://docs.lakefs.io/
https://github.com/qri-io/qri

Multi-featured data hosting services (cont'd)

Workflow management systems: Designed to keep track of
experiments

e DAGsHub https://[dagshub.com

MLflow https://mlflow.org

ClearML https://clear.ml

Fireworks https://materialsproject.github.io/fireworks/
NextFlow https://nextflow.io

2024 CISM/CECI HPC training session

15

https://dagshub.com/
https://mlflow.org/
https://clear.ml/
https://materialsproject.github.io/fireworks/
https://nextflow.io/

Version Control with arbitrary file types

2024 CISM/CECI HPC training session

16

Git

e The most used code versioning solution

e Distributed solution (no need for a main server)

o Can interact with code sharing websites (GitHub, GitLab)
e Mainly a command line tool

©)

©)

©)

git init -- create arepository

git commit --freeze aversion with author+comment
git push --share code

git merge -- merge code from multiple collaborators

https://indico.cism.ucl.ac.be/event/125/contributions/71/ 17

https://indico.cism.ucl.ac.be/event/125/contributions/71/

If it is a file, why not Git?

Using git with text datafiles (.csv, tsv, .yml, .json,
.xml , etc.) can work.

But...

e git is designed for small files
o pull operations assume enough local space

o commit hashes files, which can be time-consuming

e git tools (merge, diff, etc.) are line-oriented
o operations on columns create very large changesets

o line breaks in the data are mis-interpreted
o What about binary files?

2024 CISM/CECI HPC training session 18

Git custom diff tools (e.g. daff for CSV files)

$ cat animals.csv
"animal","uid"
"dog" ,@

" demogorgon",5
||Cat|| , 1

"t-rex ",3
"python", 2
""unicorn",4

$ pip install daff
$ daff git csv

https://paulfitz.github.io/daff/

$ cat animals.csv
"animal", "uid"
"dog" ’0

" demogorgon",5
"bobcat",1

"t-rex ",3
"python", 2
""unicorn",5

19

https://paulfitz.github.io/daff/

Git custom diff tools (e.g. daff for CSV files)

without daff
$ git diff animals.csv
diff -—git a/animals.csv b/animals.csv
index 2b87cbh6..7a4e810 100644
——— a/animals.csv
+++ b/animals.csv
@@ _117 +1I7 @@
"animal","uid"
||dogll’0
" demogorgon",5
_Ilcatll’l
+"bobcat", 1
"t-rex ",3
"python", 2
-""unicorn",4
+"unicorn",5

with daff
$ git diff animals.csv
——— a/animals.csv
+++ b/animals.csv
@@ ,animal ,uid

I’II ’III

,''" demogorgon",5

- ,cat-bobcat , 1
,'t-rex ")3
,python , 2

- ,unicorn , 4-5

https://paulfitz.github.io/daff/ | https://recursive-diff.readthedocs.io/en/latest/ncdiff.html

20

https://paulfitz.github.io/daff/
https://recursive-diff.readthedocs.io/en/latest/ncdiff.html

Git custom diff for binaries (e.g. for SQLite)

Configure your global ~/.gitconfig orthe local
.git/config:

[diff "sqlite3"]
binary = true
textconv = "echo .dump | sqglite3"

and create a .gitattributes inthe repository
*.sqlite diff=sqlite3

so that the (binary) .sqlite file is dumped into text before any
diff operation.

2024 CISM/CECI HPC training session 21

Workaround for binaries: Version a text dump

e dump a text version of the data
o mysqgldump > dump.sql
o h5dump -x FILE > dump.xml
o pickle2json.py FILE > dump.json

O eee

e version the files

o git add *.sqgl && git commit -m COMMENT
o git add *.xml && git commit -m COMMENT
o git add *.json && git commit -m COMMENT

O oo

2024 CISM/CECI HPC training session

22

Git filters to automate the dump (e.g. for SQLite)

git config filter.sqlite.smudge "sqglite3 Sf"
git config filter.sqlite.clean "sqlite3 %f .dump"

and createa .gitattributes inthe repository

*.sqlite filter=sqglite3

2024 CISM/CECI HPC training session

23

Workaround for binaries : Co-version code and data

e insert version in filename, e.g.:
o data.vl.Rdata

o data.vl.sqlite3

O eeoe

o version code that generates the file
o git add create_data.R && git commit -m"v1"

o git add create_data.sql && git commit -m"v1"

o eee

2024 CISM/CECI HPC training session

24

Git extensions to manage (large) binary files

e git—annex
o based on symbolic links
o separate commands to manage the files
o designed for one-to-one file exchanges
e git-1fs
o based on placeholder files (pointer files)
o uses filters so file management is transparent
o requires specific hosting service for the files
e git-fat
o based on placeholder files
o uses filters so file management is transparent
o relieson rsync to acentral location

https://linuxaria.com/recensioni/storing-large-binary-files-in-git-repositories

25

https://linuxaria.com/recensioni/storing-large-binary-files-in-git-repositories

Dedicated Git-like tools

e Datalad https://www.datalad.org/

Datalad is a free and open source distributed data
management system that keeps track of your data,
creates structure, ensures reproducibility, supports
collaboration, and integrates with widely used data
infrastructure.

Alternatives:

e DVC https://dvc.org/
o ArtiV https://artivc.io

2024 CISM/CECI HPC training session 26

https://www.datalad.org/
https://dvc.org/
https://artivc.io/

Datalad tutorial

Based on Chapter 5 of the

Dafg
Qe

")
|
u —e— O
O
° a

http://handbook.datalad.org/en/latest/

27

http://handbook.datalad.org/en/latest/

Datalad

e command-line tool written in Python

e builtupon git and git-annex

o workflow simplified compared to git

e noneedtoknow git but git command will work
o file type and application domain agnostic

o works with arbitrarily large data

e minimum custom procedures and data strutures

e can interact with many other systems

e documentation is remarkable

2024 CISM/CECI HPC training session

28

Installation

From the doc:

If you want to install DatalLad on a machine you do not have
root access to, DataLad can be installed with Miniconda.

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux—x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh
acknowledge license, keep everything at default
$ conda install -c conda-forge datalad
This should install Git, git-annex, and Datalad. The installer
automatically configures the shell to make conda-installed

tools accessible, so no further configuration is necessary.

2024 CISM/CECI HPC training session 29

On Lemaitre4

[dfr@lm4-f001 ~]$ ml spider datalad

datalad: datalad/0.18.4-GCCcore-12.2.0

Description:
Datalad is a free and open source distributed data management system that keeps track of your

data, creates structure, ensures reproducibility, supports collaboration, and integrates with
widely used data infrastructure.

You will need to load all module(s) on any one of the lines below before the "datalad/0.18.4-GCCcore-
12.2.0" module is available to load.

releases/2022b

Help:
Description

DatalLad is a free and open source distributed data management system that keeps track of your data,
creates structure, ensures reproducibility, supports collaboration, and integrates with widely used data

infrastructure.

More information

- Homepage: https://www.datalad.org/

Included extensions

annexremote-1.6.0, boto-2.49.0, datalad-0.18.4, fasteners-0.18,
humanize-3.13.1, 1iso08601-1.0.2, looseversion-1.2.0, patool-1.12, python-
gitlab-3.10.0

2024 CISM/CECI HPC training session

30

Initial configuration

Datalad needs git to be configured properly regarding your
identity:

% git config ——global ——add user.name "John Doe"
git config ——global ——add user.email jd@example.com

o
)

2024 CISM/CECI HPC training session

31

Create a dataset

create new, empty datasets to populate...

% datalad create

! :ii i ..[basics/101-101-create.html

% datalad create -f

.... or transform existing directories into datasets

2024 CISM/CECI HPC training session

32

Create a dataset

e datalad create : create a dataset
e datalad status :show dataset status

[dfr@lemaitre3 ~]$ datalad create —--description "Test dataset for datalad" ./testdatalad
create(ok): /home/ucl/pan/dfr/testdatalad (dataset)
[dfr@lemaitre3 ~]$ 1s -la ./testdatalad

total 109

drwxrwx—-— 4 dfr dfr 5 Jan 12 14:36 .

drwxr-x——x 64 dfr dfr 122 Jan 12 14:36 ..

drwxrwx—— 2 dfr dfr 4 Jan 12 14:36 .datalad
drwxrwx——— 9 dfr dfr 15 Jan 12 14:36 .git
-rw—rw———— 1 dfr dfr 55 Jan 12 14:36 .gitattributes

[dfr@lemaitre3 ~]$ cd testdatalad/
[dfr@lemaitre3 testdataladl$ datalad status
nothing to save, working tree clean
[dfr@lemaitre3 testdataladl$

2024 CISM/CECI HPC training session

Add file to adataset

e datalad save : add afile to the dataset and commit

[dfr@lemaitre3 testdatalad]$ cp ~/data.tar.gz ./

[dfr@lemaitre3 testdataladl$ datalad status
untracked: /home/ucl/pan/dfr/testdatalad/data.tar.gz (file)

[dfr@lemaitre3 testdatalad]$ datalad save —-m "add initial version of data tar file"
add(ok): data.tar.gz (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

[dfr@lemaitre3 testdatalad]$ datalad status
nothing to save, working tree clean

[dfr@lemaitre3 testdataladl]l$ 1ls -1la

total 124

drwxrwx—— 4 dfr dfr 6 Jan 12 14:42 .

drwxr-x-—-x 64 dfr dfr 122 Jan 12 14:36 ..

drwxrwx——— 2 dfr dfr 4 Jan 12 14:36 .datalad

lrwxrwxrwx 1 dfr dfr 136 Jan 12 14:40 data.tar.gz —> .git/annex/[...].tar.gz
drwxrwx——— 9 dfr dfr 15 Jan 12 14:42 .git

-rw—rw——— 1 dfr dfr 55 Jan 12 14:36 .gitattributes

2024 CISM/CECI HPC training session

34

Update a file

save
changes

% datalad save

2024 CISM/CECI HPC training session

modify the
dataset

35

Unlocking files

Files must be "unlocked" before they are modified.

[dfr@lemaitre3 testdatalad]$ datalad unlock data.tar.gz
unlock(ok): data.tar.gz (file)

[dfr@lemaitre3 testdataladl$ 11 -1a

total 51261

—rw—rw——— 1 dfr dfr 55 Jan 12 14:36 .gitattributes
drwxrwx——— 2 dfr dfr 4 Jan 12 14:36 .datalad
drwxr—=x—-—x 64 dfr dfr 122 Jan 12 14:47 ..

—rw—r————-— 1 dfr dfr 52901945 Jan 12 14:47 data.tar.gz
drwxrwx—— 4 dfr dfr 6 Jan 12 14:56 .

drwxrwx——— 9 dfr dfr 15 Jan 12 14:56 .git

2024 CISM/CECI HPC training session 36

Unlocking files

The tar.gz file can then be modified to add a README file, and

then saved again.

[dfr@lemaitre3 testdataladl$ datalad status
modified: /home/ucl/pan/dfr/testdatalad/data.tar.gz (file)

[dfr@lemaitre3 testdataladl$ datalad save -m 'update data archive with README file'
add(ok): data.tar.gz (file)
save(ok): . (dataset)
action summary:
add (ok: 1)

save (ok: 1)
[dfr@elemaitre3 testdatalad]$ datalad status

nothing to save, working tree clean

[dfr@lemaitre3 testdatalad]$ git log ——oneline
3903790 (HEAD —> master) update data archive with README file

012d634 add initial version of data tar file
e53138a [DATALAD] new dataset

2024 CISM/CECI HPC training session

37

Pull/push data

Consume existing datasets and stay up-to-date

% datalad clone
% datalad update

% datalad create-sibling place
% datalad publish

O - GitHub GitLab

— ——

—

your w

Create sibling datasets to publish to or update from

2024 CISM/CECI HPC training session

38

Pull data

Datalad clone is used to copy a dataset in another location.

[dfr@lemaitre3 testdatalad]$ cd $GLOBALSCRATCH
[dfr@lemaitre3 dfr]$ datalad clone ~/testdatalad
install(ok): /scratch/ucl/pan/dfr/testdatalad (dataset)

[dfr@lemaitre3 dfr]$ cd testdatalad/
[dfr@lemaitre3 testdataladl$ 1s

data.tar.gz

[dfr@lemaitre3 testdataladl$ file data.tar.gz
data.tar.gz: broken symbolic link [...]

[dfr@elemaitre3 testdatalad]$ datalad status ——annex all

1 annex'd file (0.0 B/85.7 MB present/total size)
nothing to save, working tree clean

2024 CISM/CECI HPC training session

39

Pull data

Datalad get is used to actually retrieve data files (only for
checked out revision)

[dfr@lemaitre3 testdatalad]$ datalad get data.tar.gz
get(ok): data.tar.gz (file) [from origin...]
[dfr@lemaitre3 testdatalad]$ datalad status ——annex all
1 annex'd file (85.7 MB/85.7 MB present/total size)
nothing to save, working tree clean

[dfr@lemaitre3 testdatalad]$ datalad drop data.tar.gz
drop(ok): data.tar.gz (file)

[dfr@lemaitre3 testdataladl$ datalad status ——annex all
1 annex'd file (0.0 B/85.7 MB present/total size)
nothing to save, working tree clean

2024 CISM/CECI HPC training session 40

Push data

The copy can be "registered"” back to the original location with
datalad siblings :

In the original directory:
[dfr@lemaitre3 testdatalad]$ datalad siblings add -d . \
> ——name scratch ——url $GLOBALSCRATCH/testdatalad
.+ scratch(+) [/scratch/ucl/pan/dfr/testdatalad (git)]
[dfr@lemaitre3 testdatalad]$ datalad siblings

: here(+) [git]

: scratch(+) [/scratch/ucl/pan/dfr/testdatalad (git)]

[dfr@lemaitre3 testdataladl$ git remote -v

scratch /scratch/ucl/pan/dfr/testdatalad (fetch)
scratch /scratch/ucl/pan/dfr/testdatalad (push)

2024 CISM/CECI HPC training session 41

Push data

Or a copy can be created from the original location with create-
sibling :

[dfr@lemaitre3 testdataladl$ datalad create-sibling -s cecistorage $CECIHOME/testdatalad
[INFO] Considering to create a target dataset [...]/testdatalad at /CECI/[...]/testdatalad
[INFO] Fetching updates for Dataset(/home/ucl/pan/dfr/testdatalad)

update(ok): . (dataset)

[INFO] Adjusting remote git configuration

[INFO] Running post-update hooks in all created siblings

create_sibling(ok): /home/ucl/pan/dfr/testdatalad (dataset)

[dfr@lemaitre3 testdataladl$ git remote -v

cecistorage /CECI/home/ucl/pan/dfr/testdatalad (fetch)

cecistorage /CECI/home/ucl/pan/dfr/testdatalad (push)

scratch /scratch/ucl/pan/dfr/testdatalad (fetch)

scratch /scratch/ucl/pan/dfr/testdatalad (push)

through SSH
[dfr@lemaitre3 testdataladl$ datalad create-sibling -s workstation workstation:testdatalad

2024 CISM/CECI HPC training session

42

Push data

O amazon

X
O Git Hub
, flgShaI'e % datalad create-sibling-github

L

GIELAD ceogeori

% datalad create-sibling-gitlab

c‘.»

ownlou

% datalad export-to-figshare

-———"%\

https://git-annex.branchable.com/special_remotes/ | https://rclone.org 43

https://git-annex.branchable.com/special_remotes/
https://rclone.org/

Nesting datasets

Preprocessed Analysis

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy

2024 CISM/CECI HPC training session

44

Nesting datasets

A foreign dataset can be "included" as a Git submodule :

[dfr@lemaitre3 testdatalad]l$ datalad clone —--dataset . \
> https://github.com/damienfrancois/dataladset.git random
install(ok): random (dataset)
add(ok): random (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
install (ok: 1)
save (ok: 2)
[dfr@lemaitre3 testdatalad]$ 1s
data.tar.gz random

[dfrelemaitre3 testdatalad]$ git submodule

fclb8ff45b59b2cb04f83fd13cffbd8603974ff5 random (heads/main)
2024 CISM/CECI HPC training session

Nesting datasets

The save command then freezes the version of the foreign
dataset that is included.

[dfrelemaitre3 testdatalad]$ cd random/
[dfr@lemaitre3 random]$ git log —-oneline
fclb8ff (HEAD —> main, origin/main, origin/HEAD) add random file

7eafald Initial commit

[dfr@lemaitre3 random]$ datalad status —-annex all
1 annex'd file (0.0 B/95.4 MB present/total size)
nothing to save, working tree clean

[dfr@lemaitre3 random]$ datalad get random.dat
get(ok): random.dat (file) [from web...]

dfr@lemaitre3 testdatalad]$ datalad save -m"include random dataset from github"
add(ok): random (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (ok: 1)

2024 CISM/CECI HPC training session

46

Tracking experiments

capture the origin

link input, code, containerized fOf files gbtained ‘:' ~
software environments, and output, rom web sources L=4\/
or re-run previous executions « datalad download-url

G

2024 CISM/CECI HPC training session

~

% datalad run
% datalad rerun

% datalad run-procedure

47

Tracking experiments

Use datalad run torun acommand and commit the result.

[dfr@lemaitre3 testdatalad]$ datalad run -m "count number of @'s in the random file" \

> '"grep -co \@ random/random.dat > ./count.txt"

[INFO] == Command start (output follows) =====

[INFO] == Command exit (modification check follows) =====

run(ok): /home/ucl/pan/dfr/testdatalad (dataset) [grep -co \@ random/random.dat > ./count....]
add(ok): count.txt (file)

save(ok): . (dataset)

[dfr@lemaitre3 testdataladl$ cat count.txt
195367

[dfr@lemaitre3 testdataladl$ git log ——oneline
fdb7a81 (HEAD —> master) [DATALAD RUNCMD] count number of @'s in the random file

7065bd1l include random dataset from github
a63adf3 [DATALAD] Added subdataset

3903790 update data archive with README file
012d634 add initial version of data tar file
e53138a [DATALAD] new dataset

2024 CISM/CECI HPC training session 48

Tracking experiments

The command is stored in git.

[dfr@lemaitre3 testdatalad]l$ git log

commit fdb7a816cb5cae370d9ec39dd54e26b950ef5fa7
Author: Damien Francois <damien.francois@uclouvain.be>
Date: Thu Jan 12 16:17:13 2023 +0100

[DATALAD RUNCMD] count number of 0's in the random file

=== Do not change lines below ===

{
"chain": [1,
"cmd": "grep —-co \\@ random/random.dat > ./count.txt",
"dsid": "4383763f-7f51-4193-b57d-e96d029f3526",
"exit": 0,
"extra_inputs": [],
"inputs": [1],
"outputs": [1],
"de": II.II
2024 CISM/CE;&\IAHAPC training session 49

Do not change lines above ™%

Tracking experiments

Experiments can be rerun :

[dfr@lemaitre3 testdataladl$ datalad rerun fdb7a81

[INFO] run commit fdb7a81; (count number of 0...)
unlock(ok): count.txt (file)

[INFO] == Command start (output follows) =====

[INFO] == Command exit (modification check follows) =====

run(ok): /home/ucl/pan/dfr/testdatalad (dataset) [grep -co \@ random/random.dat > ./count....]

add(ok): count.txt (file)
action summary:

add (ok: 1)

run (ok: 1)

save (notneeded: 2)

unlock (ok: 1)
[dfr@lemaitre3 testdatalad]$

2024 CISM/CECI HPC training session

50

Datalad and conta

Dafg

Qe
4

O Star 127

Table of
Contents

reproducibility with software
containers

Related Topics

Documentation overview

2024 CISM/CECI HPC training session

Iners

7.2.2. Using datalad containers

One core feature of the datalad containers extension is that it registers computation-
al containers with a dataset. This is done with the datalad containers-add (manual)
command. Once a container is registered, arbitrary commands can be executed inside of
it, i.e., in the precise software environment the container encapsulates. All it needs for
this it to swap the datalad run (manual) command introduced in section Keeping track
with the datalad containers-run (manual) command.

Let’s see this in action for the midterm_analysis dataset by rerunning the analysis you
did for the midterm project within a Singularity container. We start by registering a
container to the dataset. For this, we will pull an image from Singularity hub. This im-
age was made for the handbook, and it contains the relevant Python setup for the analy-
sis. Its recipe lives in the handbook’s resources repository. If you are curious how to cre-
ate a Singularity image, the Find-out-more on this topic has some pointers:

The datalad containers-add command takes an arbitrary name to give to the con-
tainer, and a path or URL to a container image:

$ # we are in the midterm_project subdataset

$ datalad containers—add midterm-software ——url shub://adswa/resources
[INFO] Initializing special remote datalad

add(ok): .datalad/config (file)

save(ok): . (dataset)

add(ok): .datalad/config (file)

save(ok): . (dataset)

containers_add(ok): /home/me/dl-101/DatalLad-101/midterm_project/.datal

51

Parallel Datalad and Slurm

Performing multiple parallel operations (e.g. a job array) on the

same Datalad repository could possibly raise issues. From the
Handbook:

Operations carried out during one datalad run command
can lead to modifications that prevent a second, slightly
later run command from being started [and] lead to internal
command failures

The datalad save (manual) command at the end of datalad
run could save modifications that originate from a different
job, leading to mis-associated provenance

2024 CISM/CECI HPC training session

52

https://handbook.datalad.org/en/latest/beyond_basics/101-170-dataladrun.html

Parallel Datalad and Slurm

Solution:

o work locally on a throw-away dataset clone
e use one branch per Slurm job

o use explicit file locking to protect datalad commands
e merge branches at the end

2024 CISM/CECI HPC training session

53

Parallel Datalad and Slurm

#'!/bin/bash

#SBATCH ...
#SBATCH ——array=...

set —euo pipefail
LOCKFILE=$HOME/.$SLURM_ARRAY_JOB_ID

FILES=(...)
CURFILE=${FILES[$SLURM_ARRAY_TASK_ ID]}

cd $LOCALSCRATCH # create local temporary clone

flock ——verbose $LOCKFILE datalad clone $GLOBALSCRATCH/database ds
;gtdgnnex dead here # mark the clone as 'temporary'

git checkout -b "job-${SLURM-JOBID}" # checkout unique branch for the job
datalad run -m "Computing data $CURFILE" ... # run the job

flock ——verbose $LOCKFILE datalad push ——to origin # push back

2024 CISM/CECI HPC training session

54

Further reading:

Dafd

o https://www.datalad.org
o https://github.com/datalad/tutorials
e https://www.youtube.com/watch?v=QsAgnP7TwyY

http://handbook.datalad.org/en/latest/

55

https://www.datalad.org/
https://github.com/datalad/tutorials
https://www.youtube.com/watch?v=QsAqnP7TwyY
http://handbook.datalad.org/en/latest/

Summary and conclusions

2024 CISM/CECI HPC training session

56

Data versioning

Same stakes/challenges as code versioning except with possibly
large binary files and no single clear solution.

o Use a file-writing library with built-in versioning
e Use data a data hosting service that features versioning

e \ersion Control with arbitrary file types
o Workaround with git
= \ersion text dump of data

= \ersion code that alters the data
o git extensions
o datalad

2024 CISM/CECI HPC training session

57

Further reading

o https://startupstash.com/data-versioning-tools/
o https://www.fuzzylabs.ai/guides/data-version-control

Choosing a versioning system

e http://calver.org
o http://[semver.org

Tips for writing commit messages

o https://[www.conventionalcommits.org
e https://git-scm.com/book/en/v2/Distributed-Git-
Contributing-to-a-Project

2024 CISM/CECI HPC training session

58

https://startupstash.com/data-versioning-tools/
https://www.fuzzylabs.ai/guides/data-version-control
http://calver.org/
http://semver.org/
https://www.conventionalcommits.org/
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

