
Introduction to data versioning
damien.francois@uclouvain.be

2024 CISM/CÉCI HPC training session 1

mailto:damien.francois@uclouvain.be

https://www.commitstrip.com/en/2017/09/12/versioning-is-important/ 2

https://www.commitstrip.com/en/2017/09/12/versioning-is-important/

Introduction to data versioning
damien.francois@uclouvain.be

2024 CISM/CÉCI HPC training session 3

mailto:damien.francois@uclouvain.be

Code/Text versioning:

2024 CISM/CÉCI HPC training session 4

Data versioning:

2024 CISM/CÉCI HPC training session 5

What ..

Data versioning is the transposition of the ideas of code
versioning to data files rather than source code.

More specifically:

Data versioning is creating a unique reference for a

collection of data. This reference most commonly is a
timestamp or a version number and is associated a

comment or annotation.

2024 CISM/CÉCI HPC training session 6

Why ..

Track provenance
aid compliance and auditing
revert errors to a known working state

Ensure reproducibility
replicate previous experiments
run expriments on multiple versions of the data

Ease collaboration
centralize storage and manage multiple contributions
communicate changes in the data

7

How ..

Source code : is the standard

Data: why not use git ?

2024 CISM/CÉCI HPC training session 8

Git was not meant for data

git and its whole ecosystem is designed to version
source code, i.e. small line-oriented text files.

Data, by contrast,

can be large
can undergo column-oriented changes
is not necessarily stored in a text file
is not even necessarily stored in a file

2024 CISM/CÉCI HPC training session 9

No universal tool/method for data versioning
Naive Approach: Full Duplication
Copy on write approach: Valid_from/to Metadata
Use a file-writing library with built-in versioning
Use data a data hosting service that features versioning
Version Control with arbitrary file types

Abuse git
Version .csv files
Version text dump of data
Version code that alters the data

Use git extension
Use dedicated tool

2024 CISM/CÉCI HPC training session 10

Copy on write

The idea:

rather than overwriting a data element, append it and
timestamp the modification

Referred to as Type 2 slowly changing dimension (SCD) in the
database world. Notice the valid_from , valid_to , and

comment columns.

https://en.wikipedia.org/wiki/Slowly_changing_dimension 11

https://en.wikipedia.org/wiki/Slowly_changing_dimension

File-writing library with built-in versioning

e.g. Versioned HDF5:

https://deshaw.github.io/versioned-hdf5/quickstart.html 12

https://deshaw.github.io/versioned-hdf5/quickstart.html

Multi-featured data hosting services

Cloud services: Designed for team collaboration on documents

Google spreadsheet
Dropbox and the likes

Backup systems: Designed to keep a history of files

Borg https://www.borgbackup.org
Duplicati https://www.duplicati.com

2024 CISM/CÉCI HPC training session 13

https://www.borgbackup.org/
https://www.duplicati.com/

Multi-featured data hosting services (cont'd)

Data repositories: Designed to publish data alongside articles

Dataverse https://dataverse.org
Zenodo https://zenodo.org

Data lakes: Designed to foster team collaboration around files

Neptune https://neptune.ai/home
Pachyderm https://www.pachyderm.com
Delta Lake https://delta.io
lakeFS https://docs.lakefs.io
Qri https://github.com/qri-io/qri

2024 CISM/CÉCI HPC training session 14

https://dataverse.org/
https://zenodo.org/
https://neptune.ai/home
https://www.pachyderm.com/
https://delta.io/
https://docs.lakefs.io/
https://github.com/qri-io/qri

Multi-featured data hosting services (cont'd)

Workflow management systems: Designed to keep track of

experiments

DAGsHub https://dagshub.com
MLflow https://mlflow.org
ClearML https://clear.ml
Fireworks https://materialsproject.github.io/fireworks/
NextFlow https://nextflow.io

2024 CISM/CÉCI HPC training session 15

https://dagshub.com/
https://mlflow.org/
https://clear.ml/
https://materialsproject.github.io/fireworks/
https://nextflow.io/

Version Control with arbitrary file types

2024 CISM/CÉCI HPC training session 16

Git
The most used code versioning solution
Distributed solution (no need for a main server)
Can interact with code sharing websites (GitHub, GitLab)
Mainly a command line tool

git init -- create a repository
git commit -- freeze a version with author+comment
git push -- share code
git merge -- merge code from multiple collaborators

https://indico.cism.ucl.ac.be/event/125/contributions/71/ 17

https://indico.cism.ucl.ac.be/event/125/contributions/71/

If it is a file, why not Git?

Using git with text data files (.csv , tsv , .yml , .json ,

.xml , etc.) can work.

But...

git is designed for small files
pull operations assume enough local space
commit hashes files, which can be time-consuming

git tools (merge, diff, etc.) are line-oriented
operations on columns create very large changesets
line breaks in the data are mis-interpreted

What about binary files?

2024 CISM/CÉCI HPC training session 18

Git custom diff tools (e.g. daff for CSV files)

 before after
 ------ -----
$ cat animals.csv $ cat animals.csv
"animal","uid" "animal","uid"
"dog",0 "dog",0
" demogorgon",5 " demogorgon",5
"cat",1 "bobcat",1
"t-rex ",3 "t-rex ",3
"python",2 "python",2
"unicorn",4 "unicorn",5

$ pip install daff
$ daff git csv

https://paulfitz.github.io/daff/ 19

https://paulfitz.github.io/daff/

Git custom diff tools (e.g. daff for CSV files)

 without daff with daff
 ------------ ---------
$ git diff animals.csv $ git diff animals.csv
diff --git a/animals.csv b/animals.csv --- a/animals.csv
index 2b87cb6..7a4e810 100644 +++ b/animals.csv
--- a/animals.csv @@ ,animal ,uid
+++ b/animals.csv ...,... ,...
@@ -1,7 +1,7 @@ ," demogorgon",5
 "animal","uid" → ,cat→bobcat ,1
 "dog",0 ,"t-rex " ,3
 " demogorgon",5 ,python ,2
-"cat",1 → ,unicorn ,4→5
+"bobcat",1
 "t-rex ",3
 "python",2
-"unicorn",4
+"unicorn",5

https://paulfitz.github.io/daff/ | https://recursive-diff.readthedocs.io/en/latest/ncdiff.html 20

https://paulfitz.github.io/daff/
https://recursive-diff.readthedocs.io/en/latest/ncdiff.html

Git custom diff for binaries (e.g. for SQLite)

Configure your global ~/.gitconfig or the local
.git/config :

[diff "sqlite3"]
 binary = true
 textconv = "echo .dump | sqlite3"

and create a .gitattributes in the repository

*.sqlite diff=sqlite3

so that the (binary) .sqlite file is dumped into text before any

diff operation.

2024 CISM/CÉCI HPC training session 21

Workaround for binaries: Version a text dump
dump a text version of the data

mysqldump > dump.sql
h5dump -x FILE > dump.xml
pickle2json.py FILE > dump.json
...

version the files

git add *.sql && git commit -m COMMENT
git add *.xml && git commit -m COMMENT
git add *.json && git commit -m COMMENT
...

2024 CISM/CÉCI HPC training session 22

Git filters to automate the dump (e.g. for SQLite)

git config filter.sqlite.smudge "sqlite3 %f"
git config filter.sqlite.clean "sqlite3 %f .dump"

and create a .gitattributes in the repository

*.sqlite filter=sqlite3

2024 CISM/CÉCI HPC training session 23

Workaround for binaries : Co-version code and data
insert version in filename, e.g.:

data.v1.Rdata
data.v1.sqlite3
...

version code that generates the file
git add create_data.R && git commit -m"v1"
git add create_data.sql && git commit -m"v1"
...

2024 CISM/CÉCI HPC training session 24

Git extensions to manage (large) binary files
git-annex
based on symbolic links
separate commands to manage the files
designed for one-to-one file exchanges

git-lfs
based on placeholder files (pointer files)
uses filters so file management is transparent
requires specific hosting service for the files

git-fat
based on placeholder files
uses filters so file management is transparent
relies on rsync to a central location

https://linuxaria.com/recensioni/storing-large-binary-files-in-git-repositories 25

https://linuxaria.com/recensioni/storing-large-binary-files-in-git-repositories

Dedicated Git-like tools
Datalad https://www.datalad.org/

DataLad is a free and open source distributed data

management system that keeps track of your data,
creates structure, ensures reproducibility, supports

collaboration, and integrates with widely used data
infrastructure.

Alternatives:

DVC https://dvc.org/
ArtiV https://artivc.io

2024 CISM/CÉCI HPC training session 26

https://www.datalad.org/
https://dvc.org/
https://artivc.io/

Datalad tutorial

Based on Chapter 5 of the

http://handbook.datalad.org/en/latest/ 27

http://handbook.datalad.org/en/latest/

Datalad
command-line tool written in Python
built upon git and git-annex
workflow simplified compared to git
no need to know git but git command will work
file type and application domain agnostic
works with arbitrarily large data
minimum custom procedures and data strutures
can interact with many other systems
documentation is remarkable

2024 CISM/CÉCI HPC training session 28

Installation

From the doc:

If you want to install DataLad on a machine you do not have

root access to, DataLad can be installed with Miniconda.

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh
acknowledge license, keep everything at default
$ conda install -c conda-forge datalad

This should install Git, git-annex, and DataLad. The installer
automatically configures the shell to make conda-installed

tools accessible, so no further configuration is necessary.

2024 CISM/CÉCI HPC training session 29

On Lemaitre4
[dfr@lm4-f001 ~]$ ml spider datalad

 datalad: datalad/0.18.4-GCCcore-12.2.0

 Description:
 DataLad is a free and open source distributed data management system that keeps track of your
 data, creates structure, ensures reproducibility, supports collaboration, and integrates with
 widely used data infrastructure.

 You will need to load all module(s) on any one of the lines below before the "datalad/0.18.4-GCCcore-
12.2.0" module is available to load.

 releases/2022b

 Help:
 Description
 ===========
 DataLad is a free and open source distributed data management system that keeps track of your data,
 creates structure, ensures reproducibility, supports collaboration, and integrates with widely used data
 infrastructure.

 More information
 ================
 - Homepage: https://www.datalad.org/

 Included extensions
 ===================
 annexremote-1.6.0, boto-2.49.0, datalad-0.18.4, fasteners-0.18,
 humanize-3.13.1, iso8601-1.0.2, looseversion-1.2.0, patool-1.12, python-
 gitlab-3.10.0

2024 CISM/CÉCI HPC training session 30

Initial configuration

Datalad needs git to be configured properly regarding your
identity:

% git config --global --add user.name "John Doe"
% git config --global --add user.email jd@example.com

2024 CISM/CÉCI HPC training session 31

Create a dataset

2024 CISM/CÉCI HPC training session 32

Create a dataset
datalad create : create a dataset
datalad status : show dataset status

[dfr@lemaitre3 ~]$ datalad create --description "Test dataset for datalad" ./testdatalad
create(ok): /home/ucl/pan/dfr/testdatalad (dataset)
[dfr@lemaitre3 ~]$ ls -la ./testdatalad
total 109
drwxrwx--- 4 dfr dfr 5 Jan 12 14:36 .
drwxr-x--x 64 dfr dfr 122 Jan 12 14:36 ..
drwxrwx--- 2 dfr dfr 4 Jan 12 14:36 .datalad
drwxrwx--- 9 dfr dfr 15 Jan 12 14:36 .git
-rw-rw---- 1 dfr dfr 55 Jan 12 14:36 .gitattributes

[dfr@lemaitre3 ~]$ cd testdatalad/
[dfr@lemaitre3 testdatalad]$ datalad status
nothing to save, working tree clean
[dfr@lemaitre3 testdatalad]$

2024 CISM/CÉCI HPC training session 33

Add file to adataset
datalad save : add a file to the dataset and commit

[dfr@lemaitre3 testdatalad]$ cp ~/data.tar.gz ./

[dfr@lemaitre3 testdatalad]$ datalad status
untracked: /home/ucl/pan/dfr/testdatalad/data.tar.gz (file)

[dfr@lemaitre3 testdatalad]$ datalad save -m "add initial version of data tar file"
add(ok): data.tar.gz (file)
save(ok): . (dataset)
action summary:
 add (ok: 1)
 save (ok: 1)

[dfr@lemaitre3 testdatalad]$ datalad status
nothing to save, working tree clean

[dfr@lemaitre3 testdatalad]$ ls -la
total 124
drwxrwx--- 4 dfr dfr 6 Jan 12 14:42 .
drwxr-x--x 64 dfr dfr 122 Jan 12 14:36 ..
drwxrwx--- 2 dfr dfr 4 Jan 12 14:36 .datalad
lrwxrwxrwx 1 dfr dfr 136 Jan 12 14:40 data.tar.gz -> .git/annex/[...].tar.gz
drwxrwx--- 9 dfr dfr 15 Jan 12 14:42 .git
-rw-rw---- 1 dfr dfr 55 Jan 12 14:36 .gitattributes

2024 CISM/CÉCI HPC training session 34

Update a file

2024 CISM/CÉCI HPC training session 35

Unlocking files

Files must be "unlocked" before they are modified.

[dfr@lemaitre3 testdatalad]$ datalad unlock data.tar.gz
unlock(ok): data.tar.gz (file)
[dfr@lemaitre3 testdatalad]$ ll -la
total 51261
-rw-rw---- 1 dfr dfr 55 Jan 12 14:36 .gitattributes
drwxrwx--- 2 dfr dfr 4 Jan 12 14:36 .datalad
drwxr-x--x 64 dfr dfr 122 Jan 12 14:47 ..
-rw-r----- 1 dfr dfr 52901945 Jan 12 14:47 data.tar.gz
drwxrwx--- 4 dfr dfr 6 Jan 12 14:56 .
drwxrwx--- 9 dfr dfr 15 Jan 12 14:56 .git

2024 CISM/CÉCI HPC training session 36

Unlocking files

The tar.gz file can then be modified to add a README file, and

then saved again.

[dfr@lemaitre3 testdatalad]$ datalad status
 modified: /home/ucl/pan/dfr/testdatalad/data.tar.gz (file)

[dfr@lemaitre3 testdatalad]$ datalad save -m 'update data archive with README file'
add(ok): data.tar.gz (file)
save(ok): . (dataset)
action summary:
 add (ok: 1)
 save (ok: 1)
[dfr@lemaitre3 testdatalad]$ datalad status
nothing to save, working tree clean

[dfr@lemaitre3 testdatalad]$ git log --oneline
3903790 (HEAD -> master) update data archive with README file
012d634 add initial version of data tar file
e53138a [DATALAD] new dataset

2024 CISM/CÉCI HPC training session 37

Pull/push data

2024 CISM/CÉCI HPC training session 38

Pull data

Datalad clone is used to copy a dataset in another location.

[dfr@lemaitre3 testdatalad]$ cd $GLOBALSCRATCH
[dfr@lemaitre3 dfr]$ datalad clone ~/testdatalad
install(ok): /scratch/ucl/pan/dfr/testdatalad (dataset)

[dfr@lemaitre3 dfr]$ cd testdatalad/
[dfr@lemaitre3 testdatalad]$ ls
data.tar.gz
[dfr@lemaitre3 testdatalad]$ file data.tar.gz
data.tar.gz: broken symbolic link [...]

[dfr@lemaitre3 testdatalad]$ datalad status --annex all
1 annex'd file (0.0 B/85.7 MB present/total size)
nothing to save, working tree clean

2024 CISM/CÉCI HPC training session 39

Pull data

Datalad get is used to actually retrieve data files (only for
checked out revision)

[dfr@lemaitre3 testdatalad]$ datalad get data.tar.gz
get(ok): data.tar.gz (file) [from origin...]
[dfr@lemaitre3 testdatalad]$ datalad status --annex all
1 annex'd file (85.7 MB/85.7 MB present/total size)
nothing to save, working tree clean

[dfr@lemaitre3 testdatalad]$ datalad drop data.tar.gz
drop(ok): data.tar.gz (file)
[dfr@lemaitre3 testdatalad]$ datalad status --annex all
1 annex'd file (0.0 B/85.7 MB present/total size)
nothing to save, working tree clean

2024 CISM/CÉCI HPC training session 40

Push data

The copy can be "registered" back to the original location with

datalad siblings :

In the original directory:
[dfr@lemaitre3 testdatalad]$ datalad siblings add -d . \
> --name scratch --url $GLOBALSCRATCH/testdatalad
.: scratch(+) [/scratch/ucl/pan/dfr/testdatalad (git)]
[dfr@lemaitre3 testdatalad]$ datalad siblings
.: here(+) [git]
.: scratch(+) [/scratch/ucl/pan/dfr/testdatalad (git)]

[dfr@lemaitre3 testdatalad]$ git remote -v
scratch /scratch/ucl/pan/dfr/testdatalad (fetch)
scratch /scratch/ucl/pan/dfr/testdatalad (push)

2024 CISM/CÉCI HPC training session 41

Push data

Or a copy can be created from the original location with create-

sibling :

[dfr@lemaitre3 testdatalad]$ datalad create-sibling -s cecistorage $CECIHOME/testdatalad
[INFO] Considering to create a target dataset [...]/testdatalad at /CECI/[...]/testdatalad
[INFO] Fetching updates for Dataset(/home/ucl/pan/dfr/testdatalad)
update(ok): . (dataset)
[INFO] Adjusting remote git configuration
[INFO] Running post-update hooks in all created siblings
create_sibling(ok): /home/ucl/pan/dfr/testdatalad (dataset)
[dfr@lemaitre3 testdatalad]$ git remote -v
cecistorage /CECI/home/ucl/pan/dfr/testdatalad (fetch)
cecistorage /CECI/home/ucl/pan/dfr/testdatalad (push)
scratch /scratch/ucl/pan/dfr/testdatalad (fetch)
scratch /scratch/ucl/pan/dfr/testdatalad (push)

through SSH
[dfr@lemaitre3 testdatalad]$ datalad create-sibling -s workstation workstation:testdatalad

2024 CISM/CÉCI HPC training session 42

Push data

https://git-annex.branchable.com/special_remotes/ | https://rclone.org 43

https://git-annex.branchable.com/special_remotes/
https://rclone.org/

Nesting datasets

2024 CISM/CÉCI HPC training session 44

Nesting datasets

A foreign dataset can be "included" as a Git submodule :

[dfr@lemaitre3 testdatalad]$ datalad clone --dataset . \
> https://github.com/damienfrancois/dataladset.git random
install(ok): random (dataset)
add(ok): random (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
 add (ok: 3)
 install (ok: 1)
 save (ok: 2)
[dfr@lemaitre3 testdatalad]$ ls
data.tar.gz random

[dfr@lemaitre3 testdatalad]$ git submodule
 fc1b8ff45b59b2cb04f83fd13cffbd8603974ff5 random (heads/main)

2024 CISM/CÉCI HPC training session 45

Nesting datasets

The save command then freezes the version of the foreign
dataset that is included.

[dfr@lemaitre3 testdatalad]$ cd random/
[dfr@lemaitre3 random]$ git log --oneline
fc1b8ff (HEAD -> main, origin/main, origin/HEAD) add random file
7eafa1d Initial commit

[dfr@lemaitre3 random]$ datalad status --annex all
1 annex'd file (0.0 B/95.4 MB present/total size)
nothing to save, working tree clean
[dfr@lemaitre3 random]$ datalad get random.dat
get(ok): random.dat (file) [from web...]

dfr@lemaitre3 testdatalad]$ datalad save -m"include random dataset from github"
add(ok): random (dataset)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
 add (ok: 2)
 save (ok: 1)

2024 CISM/CÉCI HPC training session 46

Tracking experiments

2024 CISM/CÉCI HPC training session 47

Tracking experiments

Use datalad run to run a command and commit the result.

[dfr@lemaitre3 testdatalad]$ datalad run -m "count number of 0's in the random file" \
> "grep -co \0 random/random.dat > ./count.txt"
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
run(ok): /home/ucl/pan/dfr/testdatalad (dataset) [grep -co \0 random/random.dat > ./count....]
add(ok): count.txt (file)
save(ok): . (dataset)

[dfr@lemaitre3 testdatalad]$ cat count.txt
195367

[dfr@lemaitre3 testdatalad]$ git log --oneline
fdb7a81 (HEAD -> master) [DATALAD RUNCMD] count number of 0's in the random file
7065bd1 include random dataset from github
a63adf3 [DATALAD] Added subdataset
3903790 update data archive with README file
012d634 add initial version of data tar file
e53138a [DATALAD] new dataset

2024 CISM/CÉCI HPC training session 48

Tracking experiments

The command is stored in git.

[dfr@lemaitre3 testdatalad]$ git log
commit fdb7a816cb5cae370d9ec39dd54e26b950ef5fa7
Author: Damien François <damien.francois@uclouvain.be>
Date: Thu Jan 12 16:17:13 2023 +0100

 [DATALAD RUNCMD] count number of 0's in the random file

 === Do not change lines below ===
 {
 "chain": [],
 "cmd": "grep -co \\0 random/random.dat > ./count.txt",
 "dsid": "4383763f-7f51-4193-b57d-e96d029f3526",
 "exit": 0,
 "extra_inputs": [],
 "inputs": [],
 "outputs": [],
 "pwd": "."
 }
 ^^^ Do not change lines above ^^^

2024 CISM/CÉCI HPC training session 49

Tracking experiments

Experiments can be rerun :

[dfr@lemaitre3 testdatalad]$ datalad rerun fdb7a81
[INFO] run commit fdb7a81; (count number of 0...)
unlock(ok): count.txt (file)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
run(ok): /home/ucl/pan/dfr/testdatalad (dataset) [grep -co \0 random/random.dat > ./count....]
add(ok): count.txt (file)
action summary:
 add (ok: 1)
 run (ok: 1)
 save (notneeded: 2)
 unlock (ok: 1)
[dfr@lemaitre3 testdatalad]$

2024 CISM/CÉCI HPC training session 50

Datalad and containers

2024 CISM/CÉCI HPC training session 51

Parallel Datalad and Slurm

Performing multiple parallel operations (e.g. a job array) on the

same Datalad repository could possibly raise issues. From the
Handbook:

Operations carried out during one datalad run command
can lead to modifications that prevent a second, slightly

later run command from being started [and] lead to internal
command failures

The datalad save (manual) command at the end of datalad
run could save modifications that originate from a different

job, leading to mis-associated provenance

2024 CISM/CÉCI HPC training session 52

https://handbook.datalad.org/en/latest/beyond_basics/101-170-dataladrun.html

Parallel Datalad and Slurm

Solution:

work locally on a throw-away dataset clone
use one branch per Slurm job
use explicit file locking to protect datalad commands
merge branches at the end

2024 CISM/CÉCI HPC training session 53

Parallel Datalad and Slurm

#!/bin/bash

#SBATCH ...
#SBATCH --array=...

set -euo pipefail
LOCKFILE=$HOME/.$SLURM_ARRAY_JOB_ID

FILES=(...)
CURFILE=${FILES[$SLURM_ARRAY_TASK_ID]}

cd $LOCALSCRATCH # create local temporary clone
flock --verbose $LOCKFILE datalad clone $GLOBALSCRATCH/database ds
cd ds
git annex dead here # mark the clone as 'temporary'

git checkout -b "job-${SLURM-JOBID}" # checkout unique branch for the job

datalad run -m "Computing data $CURFILE" ... # run the job

flock --verbose $LOCKFILE datalad push --to origin # push back

2024 CISM/CÉCI HPC training session 54

Further reading:

https://www.datalad.org
https://github.com/datalad/tutorials
https://www.youtube.com/watch?v=QsAqnP7TwyY

http://handbook.datalad.org/en/latest/ 55

https://www.datalad.org/
https://github.com/datalad/tutorials
https://www.youtube.com/watch?v=QsAqnP7TwyY
http://handbook.datalad.org/en/latest/

Summary and conclusions

2024 CISM/CÉCI HPC training session 56

Data versioning

Same stakes/challenges as code versioning except with possibly

large binary files and no single clear solution.

Use a file-writing library with built-in versioning
Use data a data hosting service that features versioning
Version Control with arbitrary file types
Workaround with git
Version text dump of data
Version code that alters the data

git extensions
datalad

2024 CISM/CÉCI HPC training session 57

Further reading
https://startupstash.com/data-versioning-tools/
https://www.fuzzylabs.ai/guides/data-version-control

Choosing a versioning system

http://calver.org
http://semver.org

Tips for writing commit messages

https://www.conventionalcommits.org
https://git-scm.com/book/en/v2/Distributed-Git-
Contributing-to-a-Project

2024 CISM/CÉCI HPC training session 58

https://startupstash.com/data-versioning-tools/
https://www.fuzzylabs.ai/guides/data-version-control
http://calver.org/
http://semver.org/
https://www.conventionalcommits.org/
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project
https://git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project

