
 1

 Introduction to Scientific Software
Deployment and Development

damien.francois@uclouvain.be
October 2020

http://www.ceci-hpc.be/training.html

 2

What is this?

https://xebialabs.com/periodic-table-of-devops-tools/

 3

Not this...

Source: Wikipedia

 4

… but this:

https://xebialabs.com/periodic-table-of-devops-tools/

 5

Goal of this session:

“Give you access to the same tools
the professionals are using

for developing and deploying programs.”

 6

Dev's toolkit :

1. Programming languages

2. Good practices/principles/style

3. Text editor

4. Source control management

5. Debuggers / Profilers

6. Databases

7. Packaging / Distributing tools

8. Comments and documentation

9. Tests

10. Licensing

 7

1. Programming language

Imperative – “Do this”
BASIC, Assembly

Declarative – “I need this”
SQL

Structured – Subroutines, scopes
C, FORTRAN77

algorithms + data : good for explicit computing

Functional – Pure functions, lazy evaluation
Haskell, Scala

functions o functions : good for reasoning

Object-Oriented – Encapsulation, Inheritance, ...
C++, Python

objects + messages : good for modeling

Logic – Predicates and rules
Prolog, Datalog

facts + rules : good for searching

Be aware of the 'other' paradigm...

 8

1. Programming language

HaskellC

Purely functional
Static strong typing

Lazy evaluation

Completely different
mindset, often very concise

and (mostly) bugfree

 9

1. Programming language

● Good reasons for choosing language X:

– it offers useful paradigms for your problem

– it offers high-level constructs/tools - e.g. for parsing arguments

– it offers (directly or indirectly) useful libraries - e.g. for linear algebra

● Ok reasons for choosing language X:

– standard in your community – easier to get accepted

● Bad reasons for choosing language X:

– it runs fast – probably needs high skills to be fast

– it is the language you already know

 10

2. Good practices

● Write for humans, not for computers

● Use the appropriate language(s)

● Organize for change, and make incremental changes

● Plan for mistakes, automate testing

● Automate repetitive tasks

● Use modern source-code management system

● Document the design and purpose, not the implementation

● Optimize only when it works already

● Follow good coding principles

https://github.com/Droogans/unmaintainable-code/blob/master/README.md

 11

2. Good practices

Paul F. Dubois. 1999. Ten Good Practices in Scientific Programming. Computing in
Science and Eng. 1, 1 (January 1999), 7-11. DOI=10.1109/MCISE.1999.743610
http://dx.doi.org/10.1109/MCISE.1999.743610

Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. (2014) Best
Practices for Scientific Computing. PLoS Biol 12(1): e1001745.
doi:10.1371/journal.pbio.1001745

Dubois PF, Epperly T, Kumfert G (2003) Why Johnny can't build (portable scientific
software). Comput Sci Eng 5: 83–88. doi: 10.1109/mcise.2003.1225867

Prlić A, Procter JB (2012) Ten Simple Rules for the Open Development of Scientific
Software. PLoS Comput Biol 8(12): e1002802. doi:10.1371/journal.pcbi.1002802

Victor R. Basili, Jeffrey C. Carver, Daniela Cruzes, Lorin M. Hochstein, Jeffrey K.
Hollingsworth, Forrest Shull, Marvin V. Zelkowitz, "Understanding the High-
Performance-Computing Community: A Software Engineer's Perspective," IEEE
Software, vol. 25, no. 4, pp. 29-36, July/August, 2008

Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK (2017) Good enough
practices in scientific computing. PLoS Comput Biol 13(6): e1005510.
https://doi.org/10.1371/journal.pcbi.1005510

 12

2. Good coding principles

● Don't repeat yourself (DRY)

● Keep it simple, Stupid (KISS)

● One level of abstraction

● Single responsibility principle

● Separation of concern

● Avoid premature optimization

● Many others...

Clean Code: A Handbook of Agile Software Craftsmanship, R. C. Martin, Prentice Hall, 2008

 13

Good principle for good quality

 14

2. Good style

● Makes sure the code is
readable by all

– easily
– quickly vs

 15

2. Good style

● Makes sure the code is
readable by all

– easily
– quickly

● Depends on

– the language
– the project

https://stackoverflow.com/questions/1642028/what-is-the-operator-in-c

 16

2. Good style

https://towardsdatascience.com/winning-arguments-with-data-leading-with-commas-in-sql-672b3b81eac9

 17

2. Good style

● Makes sure the code is
readable by all

– easily
– quickly

● Depends on

– the language
– the project

vs

 18

2. Good style

https://github.com/SalGnt/cscs

 19

3. Text editor

● Some files are better edited directly on the clusters;

● If you prefer a graphical user interface, some good candidates are:

– Sublime text: http://www.sublimetext.com/

– Atom: https://atom.io/

– VSCode https://code.visualstudio.com/download

● Choose one and learn it from inside out

https://jaxbot.me/articles/why-i-use-vim

 20

3. Text editor

https://blog.robenkleene.com/2020/09/21/the-era-of-visual-studio-code/

 21

Dev's toolkit :

1. Programming language

2. Good practices / Code Style Guides

3. Text editor / IDE

4. Source control management

5. Debuggers / Profilers

6. Databases

7. Packaging / Distributing tools

8. Comments and documentation

9. Tests

10.Licensing

Own dedicated sessions

 22

7. Packaging Fortran/C/C++ code

https://cmake.org/ , https://en.wikipedia.org/wiki/GNU_build_system

Making sure it
compiles on your

laptop is not
enough

It has to compile
on all the
clusters...

 23

8. Comments / Documentation

Lots of useless comments Less comments but useful comments

Write doc in a lightweight markup language (Markdown, rst, etc.)

 24

9. Tests - TDD

http://dx.doi.org/10.1016/j.infsof.2014.05.006

 25

10. Licensing your code: Why?

● Commercial reason :

– you want to make money out of it – forbid distribution

 – forbid reverse engineering

● Scientific reason :

– you want to it to be used and get citations

– you need to allow usage, and/or modification, etc.

– you require others to cite your work
– you want to protect yourself from liability claims

 26

10. Licensing your code: How?

● Choose a license type, e.g.

– Apache License 2.0

– BSD 3-Clause "New" or "Revised" license

– BSD 2-Clause "Simplified" or "FreeBSD" license

– GNU General Public License (GPL)

– GNU Library or "Lesser" General Public License (LGPL)

– MIT license

– Mozilla Public License 2.0

– Common Development and Distribution License

– Eclipse Public License

● Copy/adapt the text

● Distribute a LICENSE file with your code

 27

10. Licensing your code: MIT

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

 28

10. Licensing your code: BSD,GPL

BSD

GPL

Reproduced from https://tldrlegal.com

 29

10. Licensing your code: BSD,GPL

http://www.ltto.com/upload/documents/02-guide-software-PDF-LIEU.pdf

 30

10. Licensing your code: BSD,GPL

Slide credit Sébastien ADAM

 31

Ops' toolkit :

1. Virtualization platforms

2. Multi-host connexions

3. Configuration management

4. Installing

5. Automatic build tests

6. Monitoring

 32

1. Virtualization

● Install on your laptop an environment similar to that of the
cluster to test your workflow

● With

– VirtualBox: https://www.virtualbox.org/
– Vagrant: https://www.vagrantup.com/

● you can build a virtual cluster in one command:

 “vagrant up”

 33

1. Virtualization

 34

2. Multi-host SSH

 https://clustershell.readthedocs.io http://www.ansible.com/

https://clustershell.readthedocs.io/

 35

3. Configuration Management

 36

3. Configuration Management

 37

3. Configuration Management

 38

4. Easy installing

 39

4. Easy installing

https://easybuild.readthedocs.io/en/latest/

 40

4. Easy installing

https://sylabs.io/docs/

 41

4. Easy installing

http://linuxbrew.sh

 42

5. Automatic build tests

https://www.jenkins.io

 43

6. Terminal multiplexing

Commands: tmux or screen

 44

Dev's toolkit :

1. Programming language

2. Good practices / Code Style Guides

3. Text editor / IDE

4. Source control management

5. Debuggers / Profilers

6. Databases

7. Packaging / Distributing tools

8. Comments and documentation

9. Tests

10.Licensing

 45

Ops' toolkit :

1. Virtualization platforms (Virtual box, Vagrant)

2. Multi-host connexions (clustershell)

3. Configuration management/ (ansible)

4. Installing (easybuild)

5. Automatic build tests (jenkins)

6. Terminal multiplexing (tmux, screen)

 46

The 'Phillip' test

● 12 simple questions

● ordered by 'difficulty'

● measures quality of organization

● for research programming

If you do not score at least a 7
there is room for improvement
using the tools presented here

http://pgbovine.net/research-programming-workflow.htm

 47

Work quicker & more reliably

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

