
Introduction to Object -Oriented
Programming with C++

Olivier Mattelaer
UCLouvain
CP3 & CISM

CECI training: OOP with C ++ 20202

Programming paradigm
Paradigm = style of computer programming

• Procedural languages:

➡ Describe step by step the procedure that should be followed to
solve a specific problem.

• Object-oriented programming:

➡ Data and methods of manipulating data are kept as single unit called
object

➡ A user can access the data via the object’s method

➡ The internal working of an object maybe changed without affecting
any code that uses the object

CECI training: OOP with C ++ 2020

Why C++

3

Tiobe Ranking

• Extension of C (originally called “C with Classes”)

• Compiled, high level language, strongly-typed unsafe language, static and
dynamic type checking, supports many paradigm, is portable

CECI training: OOP with C ++ 2020

Program of today

• Basic of C++
➡ Presentation of concept
➡ Code presentation

• Introduction to Class/object in C++
➡ Presentation of concept
➡ Code presentation
➡ Exercise

• (Multi) Inheritance
➡ Presentation of concept
➡ Code presentation
➡ Exercise

4

Slides and examples/solutions are on indico

CECI training: OOP with C ++ 2020

Hello World

5

• line1: Comment

➡ also /* … */

• line 2: preprocessor directive:

➡ Include a section of standard C++ code in the code

• line 3: empty line: do nothing (but clarity for human reader)

• line 4: declaration of a function

➡ main is a special function which is run automatically

➡ starts and stops with the braces (line 5 and 7)

• Statement. Send character to the output device

➡ Note the semi-column at the end of the line

http://www.cpp.sh/2dd

cpp.sh/2dd

http://cpp.sh/
http://cpp.sh/
http://cpp.sh/2dd
http://cpp.sh/2dd

CECI training: OOP with C ++ 2020

Compile the code

6

Cluster/linux

C++ C++11

g++ -o EXECNAME input.cpp

Cluster/linux

g++ -std=c++11 —o EXECNAME input.cpp

module load GCC
Run Once

Mac
g++ -o EXECNAME input.cpp

Mac
clang++ -std=c++11 -stdlib=libc++ \
—o EXECNAME input.cpp

Note some C++11 syntax
supported

Problem Problem
https://ideone.com/

Select C++ (bottom left)
https://ideone.com/

Select C++14 (bottom left)

http://www.cpp.sh/2dd http://www.cpp.sh/2dd
https://www.tutorialspoint.com/compile_cpp_online.php

module load GCC
Run Once

https://www.tutorialspoint.com/compile_cpp_online.php

CECI training: OOP with C ++ 20207

Basic of C++ : variables

C++11

Variable = portion of memory storing a value

• C++ is strongly typed
➡ Need to know the type of variable
➡ The type determines the size of the house

C++11

http://cpp.sh/8yl

http://cpp.sh/7d4

http://cpp.sh/8yl
http://cpp.sh/8yl
http://cpp.sh/7d4
http://cpp.sh/7d4

CECI training: OOP with C ++ 2020

Basic of C++: pointer

8

Pointer = variable containing the
 adress of another variable

Deference:

• Due to deference pointer also have typed:

➡ Those are the type of the variable suffix
by a star

CECI training: OOP with C ++ 2020

Basic of C++: functions

9

Function = group of statements
 - that has a given name,
 - which can be called from some point of the program

Passing Parameters by Value Passing Parameters by reference http://cpp.sh/9b2cpp.sh/2lp

Input Variable CAN not be changed by the
function

Input Variable CAN be changed by the function

http://cpp.sh/9b2
http://cpp.sh/9b2
http://cpp.sh/2lp
http://cpp.sh/2lp

CECI training: C 2020

Data structure

• Can we have a special data-type with metadata
➡ Like a “formation”

✦ With the number of student

✦ The name of the formation

✦ The name of the teacher

10

http://tpcg.io/umjalDnr

CECI training: C 2020

More on Data structure

• Access data:
➡ From variable use the “.”
➡ From pointer use the “->”

11

CECI training: OOP with C ++ 2020

Classes

12

classes = data structure with functions
data structure = group of data elements grouped
 together under a single name

• “myrect” is an object
➡ Also called instance

• Call to function
“similar” to accessing
attribute (“.” Or “->”)

• Simpler syntax than
structure for the
creation of the object

http://cpp.sh/34lna

CECI training: OOP with C ++ 2020

Classes

13

classes = data structure with functions
data structure = group of data elements grouped
 together under a single name

http://cpp.sh/34lna

• As for normal function,
you do not have to
define the full function
in the class definition
you can postpone it.

• Note that we do not
define width/height
inside the function

http://tpcg.io/bKCfmxxQ

CECI training: OOP with C ++ 2020

C++ classes have private attribute/fct

14

http://cpp.sh/34lna

• Public attribute are readable and writable
➡ Can be annoying in large code

• Allows distinction between

• Visible information

• Internal mechanism

CECI training: OOP with C ++ 2020

Visibility of attribute/function

15

private publicprotected
Only accessible from other
instance of the same class

Accessible from friends

Accessible from other
instance of the same class

Accessible from friends
Accessible from instance of
the derived/child class

Accessible from
everywhere where the
object is visible

READ and WRITE!
DEFAULT

CECI training: OOP with C ++ 2020

Private argument

• Use get/set public
attribute to allow to
read/write attribute

• Allow to “cache”
some result

• Function can also be
private

16

http://tpcg.io/bKCfmxxQ

CECI training: OOP with C ++ 2020

Constructor

17

constructor = function called after the object is created

• The name of the constructor
is the name of the function
itself!

• Shortcut for setting attribute

cpp.sh/8lr

http://cpp.sh/8lr
http://cpp.sh/8lr

CECI training: OOP with C ++ 2020

Overloading

• The name of two functions CAN be the same if
the number of argument or the type of argument
are different.

18

Overloading = more than one function with the same name

• Any function can be
overloaded.

• You can overload basic
operation between object
like addition:

• operator +

CECI training: OOP with C ++ 2020

Overloading

19

Overloading = more than one function with the same name

cpp.sh/27l

http://cpp.sh/27l
http://cpp.sh/27l

CECI training: OOP with C ++ 2020

Special members

20

Special members = member functions implicitly defined

• Default constructor:

➡ Present only if no other constructor exists!

• Destructor ~CLASSNAME:

➡ Perform cleanup (remove dynamical allocated
memory) when the object is deleted/out of scope

• Copy Constructor:

➡ Called when you call that class (by value) in a
function.

➡ Perform shallow copy of all attribute

CECI training: OOP with C ++ 2020

Example

21

cpp.sh/3zgct

http://cpp.sh/3zgct
http://cpp.sh/3zgct

CECI training: OOP with C ++ 2020

Exercise I

• Create a class for three dimensional vector
➡ Define function to get/set each component

• Define a function returning the norm(squared) of the
vector
➡ x[0]**2+x[1]**2+x[2]**2

• Define the scalar product between two vector:
➡ x[0]*y[0]+ x[1]*y[1]+ x[2]*y[2]

• Define the vectoriel product of two vector

• Define a Class parallelogram
➡ Can be initialised by two vector
➡ Set a function to compute the associated area (norm

of vectoriel product)

22

CECI training: OOP with C ++ 2020

Solution

23

cpp.sh/6vgu2c

http://cpp.sh/6vgu2c
http://cpp.sh/6vgu2c

CECI training: OOP with C ++ 2020

Solution

24

http://cpp.sh/3pj6pp

http://cpp.sh/3pj6pp
http://cpp.sh/3pj6pp

CECI training: OOP with C ++ 2020

Inheritance

25

Electric Car
Color
Release date
Plate number
Battery status

Age()
Position()
drive()
add_electricity()

Fuel Car
Color
Release date
Plate number
Fuel

Age()
Position()
drive()
add_fuel()

Electric Car
Color
Release date
Plate number
Battery status

Age()
Position()
drive()
add_electricity()

Fuel Car
Color
Release date
Plate number
Fuel

Age()
Position()
drive()
add_fuel()

http://cpp.sh/72itc
http://cpp.sh/72itc

CECI training: OOP with C ++ 2020

Inheritance

26

Car
Color
Release date
Plate number

Age()
Position()
drive()

Electric Car
Color
Release date
Plate number
Battery status

Age()
Position()
drive()
add_electricity()

Fuel Car
Color
Release date
Plate number
Fuel

Age()
Position()
drive()
add_fuel()

Inherit from
Inherit from

• The two class (Electric/fuel car) does not to
redefine their structure just what they changed
compare to the original class!

• They can change/ammend the behaviour

Electric Car
is a car

Battery status
drive()
add_electricity()

Fuel Car
Is a car

Fuel
drive()
add_fuel()

Car
Color
Release date
Plate number
Total distance

Age()
Position()
drive()

• The two class (Electric/fuel car) does not to
redefine their structure just what they changed
compare to the original class!

• They can change or superseed the behaviour

http://cpp.sh/72itc
http://cpp.sh/72itc

CECI training: OOP with C ++ 2020

Visibility of attribute/function

27

private publicprotected
Only accessible from other
instance of the same class

Accessible from friends

Accessible from other
instance of the same class

Accessible from friends
Accessible from instance of
the derived/child class

Accessible from
everywhere where the
object is visible

READ and WRITE!
DEFAULT

CECI training: OOP with C ++ 2020

Inheritance

28

Inheritance = new classes which retain characteristics of the base class.

• The idea is the heritage. What a parent can do,
their child can do it too.

Polygon

set_values

Triangle

area()

Rectangle

Inherit from Inherit from

Both Rectangle and Triangle can call
set_values

area()

http://cpp.sh/9m2

CECI training: OOP with C ++ 2020

Inheritance

29

Inheritance = new classes which retain characteristics of the base class.

• The idea is the heritage. What a parent can do,
their child can do it too.

Polygon

set_values()

Rectangle

Inherit from

area()

http://tpcg.io/bKCfmxxQ

Square

set_values()

CECI training: OOP with C ++ 2020

Inheritance

30

cpp.sh/72itc

Inheritance = new classes which retain characteristics of the base class.

• The idea is the heritage. What a parent can do,
their child can do it too.

• “public” tells the maximum level of visibility of
the attribute coming from the base class

• Rare case when not set on public

• Private argument are not passed to the child
(but they still exits!)

• Constructor/Destructor are not passed to the
child

• Assignment operator (operator =) are not
passed to the child

http://cpp.sh/72itc
http://cpp.sh/72itc

CECI training: OOP with C ++ 2020

Multi-inheritance

31

FatherMother

Can still call hello()

hello() Age

Child

set_age()
print()

Can access to age (protected)

Inherit fromInherit from

cpp.sh/3nhb

http://cpp.sh/24gmd
http://cpp.sh/24gmd
http://cpp.sh/3nhb
http://cpp.sh/3nhb

CECI training: OOP with C ++ 2020

• Cp

32

FatherMother

Can call hello()

hello() Age (priv)

Child

set_age()

print()

Can not call age (since private)
But can call the public routine of
father which set/get the age
variable

Inherit fromInherit from
get_age()

cpp.sh/8vev

Multi-inheritance

http://cpp.sh/8vev
http://cpp.sh/8vev

CECI training: OOP with C ++ 202033

Exercise II

• Update your Rectangle class to have a function returning
the smallest Rectangle

• Define a class VectorRectangle

• Which inherits from your parralelogram class

• Which inherits from your rectangle class

solution: cpp.sh/2ssxh

http://cpp.sh/2ssxh
http://cpp.sh/2ssxh

CECI training: OOP with C ++ 2020

Polymorphism

34

a pointer to a derived class is type-compatible with a pointer to its base class

cpp.sh/3tz

• We can use a pointer of the class
CPolygon (CPolygon*) with
object from his derived class

• Note that from pointer you can
access attribute/member function
with ->

• Carefull which function you
access with polymorphism

http://cpp.sh/3tz
http://cpp.sh/3tz

CECI training: OOP with C ++ 2020

Diamond Diagram

35

cpp.sh/4inoj

hello() Age

Child

Inherit fromInherit from

Ancestor
Year

Inherit from
Inherit from

tell_something()

Mother Father

http://cpp.sh/4inoj
http://cpp.sh/4inoj

CECI training: OOP with C ++ 2020

Diamond Diagram

36

cpp.sh/4inoj

• Two copy of the Ancestor class

➡ test.Mother::year

➡ test.Father::year

• You can use virtual inheritance to
have a single copy

➡ “public virtual Ancestor”

• Consider as bad design in C++

➡ Because C++ sucks on those!

http://cpp.sh/4inoj
http://cpp.sh/4inoj

CECI training: OOP with C ++ 2020

Template

• Repeat yourself is bad but often you have to have
the exact same definition but for different type
➡ Template is the solution

37

Template = define functions class with generic type

cpp.sh/4jq

http://cpp.sh/4jq
http://cpp.sh/4jq

CECI training: OOP with C ++ 2020

Conclusion

• Oriented Object
➡ Are a nice way to separate the inner work from the

way the object are called
➡ Inheritance allows you to build/expand without the

need to restart from scratch
➡ Private argument help you to sand box yourself

• You need to play with it
➡ Coding is learning by exercise/exploration
➡ Read book on coding style

✦ How to present you code (space/comment/indentation)

✦ Type of good structure/…

38

