

Introduction to structured
programming with Fortran

CISM/CÉCI Training Sessions 25/10/2018

Pierre-Yves Barriat

Fortran : shall we start ?

● You know already one computer langage ?

● You understand the very basic concepts :
– What is a variable, an assignment, function call, etc.?

– Why do I have to compile my code?

– What is an executable?

● You (may) already know some Fortran ?

● You are curious about what comes next ?

● How to proceed from old Fortran, to much more modern
languages like Fortran 90/2003?

Fortran : why ?

Because of the execution speed of a program

Fortran is a simple langage and it is (kind-of) easy to learn

We want to get our science done! Not learn languages!

How easy/difficult is it really to learn Fortran ?

The concept is easy:

variables, operators, controls, loops, subroutines/functions

Invest some time now, gain big later!

History

FORmula TRANslation invented 1954–8

by John Backus and his team at IBM

● FORTRAN 66 (ISO Standard 1972)
● FORTRAN 77 (1980)
● Fortran 90 (1991)
● Fortran 95 (1996)
● Fortran 2003 (2004)
● Fortran 2008 (2010)
● Fortran 2015 (ongoing)

Starting with Fortran77

● Old Fortran (Fortran77) provides only the absolute
minimum!

● Basic features : data containers (integer, float, ...),
arrays, basic operators, loops, I/O, subroutines and
functions

● But this language has flaws:

Fortran77: no dynamic memory allocation, old &
obsolete constructs, “spaghetti” code, etc.

● Is that enough to write code?

Fortran 77 – Fortran >90

If Fortran77 is so simple,
Why is it then so difficult to write good code?

Is simple really better?

Using a language allows us to express our thoughts (on a computer)

A more sophisticated language allows for more complex thoughts

More language elements to get organized

 ⇒ Fortran 90/95/2003 (recursive, OOP, etc)

How to Build a FORTRAN Program

FORTRAN is a compiled language (like C) so the source
code (what you write) must be converted into machine
code before it can be executed (e.g. Make command)

FORTRAN
Program

FORTRAN
Compiler

Libraries

Link with
Libraries

Executable
File

Source Code Object Code
Executable

Code

Execute
Program

Test & Debug
Program

Make Changes
in Source Code

Statement Format
● FORTRAN 77 requires a fixed format for programs

 PROGRAM MAIN

C COMMENTS ARE ALLOWED IF A “C” IS PLACED IN COLUMN #1

 DIMENSION X(10)

 READ(5,*) (X(I),I=1,10)

 WRITE(6,1000) X

 1000 FORMAT(1X,’THIS IS A VERY LONG LINE OF TEXT TO SHOW HOW TO CONTINUE ’

 * ‘THE STATEMENT TO A SECOND LINE’,/,10F12.4)

1-5
Label

6 7-72 Statements 73-80
Optional
Line #s

Any character: continuation line

● FORTRAN 90/95 relaxes these requirements:

– allows free field input

– comments following statements (! delimiter)

– long variable names (31 characters)

Program Organization

● Most FORTRAN programs consist of a main
program and one or more subprograms
(subroutines, functions)

● There is a fixed order:

Heading
Declarations
Variable initializations
Program code
Format statements

Subprogram definitions
(functions & subroutines)

● Basic data types are:
– INTEGER – integer numbers (+/-)
– REAL – floating point numbers
– DOUBLE PRECISION – extended precision floating point
– CHARACTER*n – string with up to n characters
– LOGICAL – takes on values .TRUE. or .FALSE.

● Integer and Reals can specify number of bytes to use
– Default is: INTEGER*4 and REAL*4
– DOUBLE PRECISION is same as REAL*8

● Arrays of any type must be declared:
– DIMENSION A(3,5) – declares a 3 x 5 array (implicitly

REAL)
– CHARACTER*30 NAME(50) – directly declares a character

array with 30 character strings in each element
● FORTRAN 90/95 allows user defined types

Data Type Declarations

Implicit vs Explicit Declarations
● By default, an implicit type is assumed depending on

the first letter of the variable name:
– A-H, O-Z define REAL variables
– I-N define INTEGER variable

● Can use the IMPLICIT statement:
– IMPLICIT REAL (A-Z) makes all variables REAL if not

declared
– IMPLICIT CHARACTER*2 (W) makes variables starting

with W be 2-character strings
– IMPLICIT DOUBLE PRECISION (D) makes variables

starting with D be double precision
● Good habit: force explicit type declarations

– IMPLICIT NONE
– User must explicitly declare all variable types

● Old assignment statement:
<label> <variable> = <expression>
– <label> - statement label number (1 to 99999)
– <variable> - FORTRAN variable (max 6

characters, alphanumeric only for standard FTN-
77)

● Expression:
– Numeric expressions: VAR = 3.5*COS(THETA)
– Character expressions: DAY(1:3)=‘TUE’
– Relational expressions: FLAG = ANS .GT. 0
– Logical expressions: FLAG = F1 .OR. F2

Assignment Statements

Numeric Expressions

● Very similar to other languages
– Arithmetic operators:
– Precedence: ** (high) →- (low)

– Casting: numeric expressions are up-cast to the highest data
type in the expression according to the precedence:
(low) logical – integer – real – complex (high) and smaller byte
size (low) to larger byte size (high)

● Example
arith.f

Operator Function
** exponentiation
* multiplication
/ division
+ addition
- subtraction

Character Expressions

● Only built-in operator is Concatenation
– defined by // - ‘ILL’//‘-’//‘ADVISED’

● Character arrays are most commonly encountered…
– treated like any array (indexed using : notation)
– fixed length (usually padded with blanks)
– Example:

CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’
PRINT*,FAMILY(:6)
PRINT*,FAMILY(8:9)
PRINT*,FAMILY(11:)
PRINT*,FAMILY(:6)//FAMILY(10:)

GEORGE
P.
BURDELL
GEORGE BURDELL

CODE OUTPUT

Relational Expressions

● Two expressions whose values are compared to
determine whether the relation is true or false
– may be numeric (common) or non-numeric
– Relational operators:

● Character strings can be compared
– done character by character
– shorter string is padded with blanks for comparison

Operator Relationship
.LT. or < less than
.LE. or <= less than or equal to
.EQ. or == equal to
.NE. or /= not equal to
.GT. or > greater than
.GE. or >= greater than or equal to

Logical Expressions

● Consists of one or more logical operators and logical,
numeric or relational operands
– values are .TRUE. or .FALSE.
– Operators:

● Need to consider overall operator precedence
● Remark: can combine logical and integer data with

logical operators but this is tricky (avoid!)

Operator Example Meaning
.AND. A .AND. B logical AND

.OR. A .OR. B logical OR

.NEQV. A .NEQV. B logical inequivalence

.XOR. A .XOR. B exclusive OR (same as .NEQV.)

.EQV. A .EQV. B logical equivalence

.NOT. .NOT. A logical negation

Arrays in FORTRAN
● Arrays can be multi-dimensional (up to 7) and are

indexed using ():
– TEST(3)
– FORCE(4,2)

● Indices are normally defined as 1…N
● Can specify index range in declaration

– REAL L(2:11,5) – L is dimensioned with rows numbered
2-11 and columns numbered 1-5

– INTEGER K(0:11) – K is dimensioned from 0-11 (12
elements)

● Arrays are stored in column order (1st column, 2nd
column, etc) so accessing by incrementing row index
first usually is fastest.

● Whole array reference:
– K=-8 - assigns 8 to all elements in K (not in 77)

● Branching statements (GO TO and variations)
● IF constructs (IF, IF-ELSE, etc)
● CASE (90+)
● Looping (DO, DO WHILE constructs)
● CONTINUE
● PAUSE
● STOP
● CALL
● RETURN
● END

NOTE:
We will try to present the
FORTRAN 77 versions and then
include some of the common
variations that may be encountered
in older versions.

NOTE:
We will try to present the
FORTRAN 77 versions and then
include some of the common
variations that may be encountered
in older versions.

Execution Control in FORTRAN

Unconditional GO TO

● This is the only GOTO in FORTRAN 77
– Syntax: GO TO label
– Unconditional transfer to labeled statement

● Flowchart:

● Problem: leads to confusing “spaghetti code”

 10 -code-
 GO TO 30
 -code that is bypassed-
 30 -code that is target of GOTO-
 -more code-
 GO TO 10

GOTO 30 30

IF ELSE IF Statement
● Basic version:

– Syntax: IF (logical_expr1) THEN
 statement1(s)
ELSE IF (logical_expr2) THEN
 statement2(s)
ELSE
 statement3(s)
ENDIF

– If logical expr1 is true, execute statement1(s), if logical expr2 is
true, execute statement2(s), otherwise execute statemens3(s).

– Ex:
 IF (KSTAT.EQ.1) THEN
 CLASS=‘FRESHMAN’
 ELSE IF (KSTAT.EQ.2) THEN
 CLASS=‘SOPHOMORE’
 ELSE IF (KSTAT.EQ.3) THEN
 CLASS=‘JUNIOR’
 ELSE IF (KSTAT.EQ.4) THEN
 CLASS=‘SENIOR’
 ELSE
 CLASS=‘UNKNOWN’
 ENDIF

KEY= 1?

no

yes
X=X+1

X=X+2KEY= 2?

KEY= N?

no

…

X=X+N

yes

yes

no

X=-1

Spaghetti Code

● Use of GO TO and arithmetic IF’s leads to bad
code that is very hard to maintain

● Here is the equivalent of an IF-THEN-ELSE
statement:

● Now try to figure out what a complex IF ELSE IF
statement would look like coded with this kind of
simple IF. . .

 10 IF (KEY.LT.0) GO TO 20
 TEST=TEST-1
 THETA=ATAN(X,Y)
 GO TO 30
 20 TEST=TEST+1
 THETA=ATAN(-X,Y)
 30 CONTINUE

Loop Statements
● DO loop: structure that executes a specified number of

times
● Nonblock DO

– Syntax: DO label , loop_control
 do_block
 label terminating_statement

– Execute do_block including terminating statement, a number of
times determined by loop-control

– Ex:

– Loop _control can include variables and a third parameter to
specify increments, including negative values.

– Loop always executes ONCE before testing for end condition

 K=2
 10 PRINT*,A(K)
 K=K+2
 IF (K.LE.11) GO TO 10
 20 CONTINUE

 DO 100 K=2,10,2
 PRINT*,A(K)
 100 CONTINUE

Spaghetti Code Version

New Loop Statements

● Block DO
– Syntax: DO loop_control

 do_block
 END DO

– Execute do_block including terminating statement, a
number of times determined by loop-control

– Ex:

– Loop _control can include a third parameter to specify
increments, including negative values.

– Loop always executes ONCE before testing for end
condition

– If loop_control is omitted, loop will execute indefinitely or
until some statement in do-block transfers out.

 DO K=2,10,2
 PRINT*,A(K)
 END DO

New Loop Statements - cont’d

● DO WHILE
– Syntax: DO [label][,] WHILE (logical_expr)

 do_block
 [label] END DO

– Execute do_block while logical_expr is true, exit
when false

– Ex:

– Loop will not execute at all if logical_expr is not true
at start

 READ*,R
 DO WHILE (R.GE.0)
 VOL=2*PI*R**2*CLEN
 READ*,R
 END DO

 READ*,R
 DO 10 WHILE (R.GE.0)
 VOL=2*PI*R**2*CLEN
 READ*,R
 10 CONTINUE

Comments on Loop Statements

● In old versions:
– to transfer out (exit loop), use a GO TO
– to skip to next loop, use GO TO terminating statement

(this is a good reason to always make this a CONTINUE
statement)

● In NEW versions:
– to transfer out (exit loop), use EXIT statement and

control is transferred to statement following loop end.
This means you cannot transfer out of multiple nested
loops with a single EXIT statement (use named loops
if needed - myloop : do i=1,n). This is much like a
BREAK statement in other languages.

– to skip to next loop cycle, use CYCLE statement in loop.

● Much of early FORTRAN was devoted to reading input
data from Cards and writing to a line printer, and what
we have seen so far is quite adequate.

● Today, most I/O is to and from a file.
– Requires more extensive I/O capabilities.
– This was not standardized until FORTRAN 77 but each

manufacturer often created a specific “dialect.”
– It is included in FORTRAN 90 which we will discuss.

● Important concepts:
– OPEN, CLOSE and position commands manipulate a file,
– Once opened, file is referred to by an assigned device

number,
– Files can have variable length records (sequential access),

or they can be fixed length (direct access) which is faster,
– Can use unformatted READ & WRITE if no human readable

data are involved (much faster access, smaller files).

File-Directed Input and Output

READ Statement

● Format controlled READ:
– Syntax: READ(dev_no, format_label) variable_list
– Read a record from dev_no using format_label and

assign results to variables in variable_list
– Ex: READ(5,1000) A,B,C

 1000 FORMAT(3F12.4)
– Device numbers 1-7 are defined as standard I/O

devices and 1 is the keyboard, but 5 is also commonly
taken as the keyboard (used to be card reader)

– Each READ reads one or more lines of data and any
remaining data in a line that is read is dropped if not
translated to one of the variables in the variable_list.

– Variable_list can include implied DO such as:
READ(5,1000)(A(I),I=1,10)

READ Statement – cont’d

● List-directed READ
– Syntax: READ*, variable_list
– Read enough variables from the standard input device

(usually a keyboard) to satisfy variable_list
● input items can be integer, real or character.
● characters must be enclosed in ‘ ‘.
● input items are separated by commas.
● input items must agree in type with variables in variable_list.
● as many records (lines) will be read as needed to fill variable_list

and any not used in the current line are dropped.
● each READ processes a new record (line).

– Ex: READ*,A,B,K – read line and look for floating point
values for A and B and an integer for K.

● Some compilers support:
– Syntax: READ(dev_num, *) variable_list
– Behaves just like above.

WRITE Statement

● Format controlled WRITE
– Syntax: WRITE(dev_no, format_label) variable_list
– Write variables in variable_list to output dev_no using

format specified in format statement with format_label
– Ex: WRITE(6,1000) A,B,KEY

 1000 FORMAT(F12.4,E14.5,I6)

– Device number 6 is commonly the printer but can also
be the screen (standard screen is 2)

– Each WRITE produces one or more output lines as
needed to write out variable_list using format statement.

– Variable_list can include implied DO such as:
WRITE(6,2000)(A(I),I=1,10)

Output:
|----+----o----+----o----+----o----+----|
 1234.5678 -0.12345E+02 12

NAMELIST
● It is possible to pre-define the structure of input and output

data using NAMELIST in order to make it easier to process
with READ and WRITE statements.
– Use NAMELIST to define the data structure
– Use READ or WRITE with reference to NAMELIST to handle the

data in the specified format
● This is not part of standard FORTRAN 77… but it is included

in FORTRAN 90.
● On input, the NAMELIST data for the previous slide must be

structured as follows:

&INPUT
 THICK=0.245,
 LENGTH=12.34,
 WIDTH=2.34,
 DENSITY=0.0034
/

● Functions & Subroutines (procedures in other languages)
are subprograms that allow modular coding
– Function: returns a single explicit function value for given

function arguments. It’s also a variable → must be declared !
– Subroutine: any values returned must be returned through the

arguments (no explicit subroutine value is returned)
– Functions and Subroutines are not recursive in FORTRAN 77

● In FORTRAN, subprograms use a separate namespace
for each subprogram so that variables are local to the
subprogram.
– variables are passed to subprogram through argument list and

returned in function value or through arguments
– Variables stored in COMMON may be shared between

namespaces (e.g., between calling program and subprogram)

Functions and Subroutines

FUNCTION Statement

● Defines start of Function subprogram
– Serves as a prototype for function call (defines structure)
– Subprogram must include at least one RETURN (can have

more) and be terminated by an END statement
● FUNCTION structure:

– Syntax: [type] FUNCTION fname(p1,p2, … pN)
– Defines function name, fname, and argument list, p1,p2, …

pN, and optionally, the function type if not defined implicitly.
– Ex:

– Note: function type is implicitly defined as REAL

REAL FUNCTION AVG3(A,B,C)
AVG3=(A+B+C)/3
RETURN
END

Use:
AV=WEIGHT*AVG3(A1,F2,B2)

SUBROUTINE Statement
● Defines start of Subroutine subprogram

– Serves as a prototype for subroutine call (defines structure)
– Subprogram must include at least one RETURN (can have more)

and be terminated by an END statement
● SUBROUTINE structure:

– Syntax: SUBROUTINE sname(p1,p2, … pN)
– Defines subroutine name, sname, and argument list, p1,p2, … pN.
– Ex:

– Subroutine is invoked using the CALL statement.
– Note: any returned values must be returned through argument

list.

SUBROUTINE AVG3S(A,B,C,AVERAGE)
AVERAGE=(A+B+C)/3
RETURN
END

Use:
CALL AVG3S(A1,F2,B2,AVR)
RESULT=WEIGHT*AVR

Arguments
● Arguments in subprogram are “dummy” arguments used in

place of the real arguments used in each particular
subprogram invocation. They are used in subprogram to
define the computations.

● Actual subprogram arguments are passed by reference
(address) if given as symbolic; they are passed by value if
given as literal.
– If passed by reference, the subprogram can then alter the actual

argument value since it can access it by reference (address).
– Arguments passed by value cannot be modified.

CALL AVG3S(A1,3.4,C1,QAV)

CALL AVG3S(A,C,B,4.1)

OK: 2nd argument is passed by
value; QAV contains result.

NO: no return value is available
since 4.1 is a value and not a
reference to a variable!

Arguments – cont’d
● Dummy arguments appearing in a Subprogram

declaration cannot be an individual array element
reference, e.g., A(2), or a literal, for obvious reasons!

● Arguments used in invocation (by calling program)
may be variables, subscripted variables, array
names, literals, expressions, or function names.

● Using symbolic arguments (variables or array names)
is the only way to return a value (result) from a
SUBROUTINE.

● It is considered BAD coding practice, but
FUNCTIONs can return values by changing the value
of arguments. This type of use should be strictly
avoided!

FUNCTION versus Array
● How does FORTRAN distinguish between a FUNCTION

and an array having the same name?
– REMAINDER(4,3) could be a 2D array or it could be a

reference to a function that returns the remainder of 4/3
– If the name, including arguments, matches an array

declaration, then it is taken to be an array.
– Otherwise, it is assumed to be a FUNCTION

● Be careful about implicit versus explicit Type declarations
with FUNCTIONs…

PROGRAM MAIN
INTEGER REMAINDER
...
KR=REMAINDER(4,3)
...
END

INTEGER FUNCTION REMAINDER(INUM,IDEN)
...
END

Arrays with Subprograms
● Arrays present special problems in subprograms…

– Must pass by reference to subprogram since there is no
way to list array values explicitly as literals.

– How do you tell subprogram how large the array is?
(Answer varies with FORTRAN version and vendor
(dialect)…

● When an array element, e.g., A(1), is used in a
subprogram invocation (in calling program), it is
passed as a reference (address), just like a simple
variable.

● When an array is used by name in a subprogram
invocation (in calling program), it is passed as a
reference to the entire array. In this case the array
must be appropriately dimensioned in the subroutine
(and this can be tricky…).

COMMON MODULE Statement

● The COMMON statement allows variables to
have a more extensive scope than otherwise.
– A variable declared in a Main Program can be made

accessible to subprograms (without appearing in
argument lists of a calling statement)

– This can be selective (don’t have to share all
everywhere)

– Placement: among type declarations, after IMPLICIT
or EXPLICIT, before DATA statements

– Can group into labeled COMMONs
● With Fortran 90, it’s better to use the MODULE

subprogram instead of the COMMON statement

● EQUIVALENCE statement
– Syntax: EQUIVALENCE (list_of_variables) [,…]
– Used to make two or more variables share the same storage in

memory. This used to be an important way to conserve memory
without having to use the same variable names everywhere. It
can also be used to access an array element using a scalar
variable name (or to represent a subarray with another name).

– Ex:

PROGRAM MAIN
DIMENSION A(5),B(5),C(10,10),D(10)
EQUIVALENCE (A(1),B(1)),(A(5),ALAST)
EQUIVALENCE (C(1,1),D(1))
...

PROGRAM MAIN
CHARACTER A*7,B*7,C(2)*5
EQUIVALENCE (A(6:7),B),(B(4:),C(2))
...

A

B

C(1) C(2)

A(6:7)

B(4:)

A and B are same

A(5) can be referred to
as ALAST

D refers to first column of C (because
arrays are stored columnwise)

Some Other Interesting Stmts

Reading & Writing to/from Internal Storage

● Older code may include statements that transfer data
between variables or arrays and internal (main
memory) storage. This is a fast but temporary
storage mechanism that was popular before the
widespread appearance of disks.

● One method is to use the ENCODE & DECODE pairs
– DECODE – translates data from character to internal form,
– ENCODE – translates data from internal to character form.

● Another method that is in some FORTRAN 77
dialects and is in FORTRAN 90 is to use Internal
READ/WRITE statements.

Internal WRITE Statement
● Internal WRITE does same as ENCODE

– Syntax: WRITE (dev_no, format_label
[,IOSTAT=i_var]
 [,ERR=label]) [var_list]

– Write variables in var_list to internal storage defined by
character variable used as dev_no where:

● dev_no = default character variable (not an array),
● format_label = points to FORMAT statement or * for list-directed,
● var_list = list of variables to be written to internal storage.

– Ex:
INTEGER*4 J,K
CHARACTER*50 CHAR50
DATA J,K/1,2/
...
WRITE(CHAR50,*)J,K

Results:
CHAR50=‘ 1 2’
Results:
CHAR50=‘ 1 2’

Variables Internal storage

Writes using list-
directed format

Variables to
be written

Padded with blanks

Internal READ Statement
● Internal READ does same as DECODE

– Syntax: READ (dev_no, format_label [,IOSTAT=i_var]
 [,ERR=label] [END=label]) [var_list]

– Read variables from internal storage specified by character
variable used as dev_no and output to var_list where:

● dev_no = default character variable (not an array),
● format_label = points to FORMAT statement or * for list-directed,
● var_list = list of variables to be written from internal storage.

– Ex:

INTEGER K
REAL A,B
CHARACTER*80 REC80
DATA REC80/’1.2, 2.3, -5’/
...
READ(REC80,*)A,B,K

Results:
A=1.2, B=2.3, K=-5
Results:
A=1.2, B=2.3, K=-5

Variables

Internal storage

Fill internal storage
with data

Variables to be
assigned values

List-directed input

Conclusions
● FORTRAN in all its standard versions and vendor-specific

dialects is a rich but confusing language.
● FORTRAN is still ideally suited for numerical

computations in engineering and science
– most new language features have been added in FORTRAN 95
– “High Performance FORTRAN” includes capabilities designed

for parallel processing.
● You have seen most of FORTRAN 77 but only a small

part of FORTRAN 90/95.
– Many new FORMAT and I/O statements and options
– Several new control statements
– New derived variable types (like structures)
– Recursive functions
– Pointers and dynamic variables
– etc

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Data Type Declarations
	Implicit vs Explicit Declarations
	FORTRAN Assignment Statements
	Numeric Expressions
	Character Expressions
	Relational Expressions
	Logical Expressions
	Arrays in FORTRAN
	Execution Control in FORTRAN
	Unconditional GO TO
	IF ELSE IF Statement
	Spaghetti Code
	Loop Statements
	New Loop Statements
	New Loop Statements - cont’d
	Comments on Loop Statements
	File-Directed Input and Output
	READ Statement
	READ Statement – cont’d
	WRITE Statement
	NAMELIST
	Functions and Subroutines
	FUNCTION Statement
	SUBROUTINE Statement
	Arguments
	Arguments – cont’d
	FUNCTION versus Array
	Arrays with Subprograms
	COMMON Statement
	Some Other Interesting Stmts
	Reading & Writing to/from Internal Storage
	Internal WRITE Statement
	Internal READ Statement
	Conclusions

