
Introduction to PythonIntroduction to Python

I’m good at Fortran/C, why do I need Python ?I’m good at Fortran/C, why do I need Python ?

Goal of this session:Goal of this session:

Help you decide if you want to use python for (some of) your projectsHelp you decide if you want to use python for (some of) your projects

What is PythonWhat is Python

Python is object-oriented (not covered today)
Python is Interpreted (executed line by line)

High portability
Usually lower performance than compiled languages

Python is High(er)-level (than C or Fortran)
Lots of high-level modules and func�ons

Python is dynamically-typed and strong-typed
no need to explicitly define the type of a variable
variable types are not automa�cally changed (and should not)

Why Python ?Why Python ?

Easy to learn
Python code is usually easy to read, syntax tends to be short and
simple
The Python interpreter lets you try and play
Help is included in the interpreter
Huge community

Straight to the point
Many tasks can be delegated to modules, so that you only focus on the
algorithmics

Fast
A lot of Python modules are wri�en in C, so the heavy li�ing is fast
Python itself can be made faster in many ways (there’s a session on
that)

Hugely popular

Syntax basics

Run your �rst programRun your �rst program

For this tutorial you can use :

1. Go to
2. Enter your CISM creden�als or ask for a temporary account in the chat
3. Click 'New' -> 'Python 3'
4. Enter print("Hello, World !")
5. Press Shift + Enter
6. Voilà !

You can also work on your laptop directly if you have Python installed

Jupyter (h�ps://jupyter.org)

h�ps://jupyterhub.cism.ucl.ac.be (h�ps://jupyterhub.cism.ucl.ac.be)

https://jupyter.org/
https://jupyterhub.cism.ucl.ac.be/

Putting it in a �lePutting it in a �le

you can use your favourite text editor and enter this:

then save it as name_i_like.py . make it executable with:

and run it with:

#!/usr/bin/env python #tell the system which interpreter to use
print("hello world")

chmod u+x name_i_like.py

./name_i_like.py

Python syntax 101Python syntax 101

Assignment:

Note the absence of type specifica�on (dynamic typing)

And you can do:

help(str): shows the help
dir(word): lists available methods
word: displays the content of the variable

number = 35
floating = 1.3e2
word = 'something'
other_word = "anything"
sentence = 'sentence with " in it'

HelpHelp

Ge�ng the help on strings:

In []: help(str)

ListsLists

Python list : ordered set of heterogeneous objects

Assignment:

Access:

Slicing:

Note: slicing works like : it does not include the right boundary. The example
above only includes elements 1 and 2.

my_list = [1, 3, "a", [2, 3]]

element = my_list[2] (starts at 0)
last_element = my_list[-1]

short_list = my_list[1:3]

[a, b[

DictionariesDictionaries

Python dict: ordered heterogeneous list of (key -> value) pairs with very fast access

Assignment:

Access:

Missing key raises an excep�on:

my_dict = { 1:"test", "2":4, 4:[1,2] }

my_var = my_dict["2"]

In [2]: my_dict = { 1:"test", "2":4, 4:[1,2] }
my_dict["4"]

KeyError Traceback (most recent call last)
<ipython-input-2-134682133941> in <module>
 1 my_dict = { 1:"test", "2":4, 4:[1,2] }
----> 2 my_dict["4"]

KeyError: '4'

Flow control and blocksFlow control and blocks

An if block:

Notes:

Control flow statements are followed by colons
Block limits are defined by indenta�on (4 spaces by conven�on)
Condi�onals can use the and, or and not keywords

test = 0
if test > 0:
 print("it is bigger than zero")
else:
 print("it is zero or lower")

The for loopThe for loop

The most common loop in python:

In [3]: animals = ["dog", "python", "cat"]
for animal in animals:
 if len(animal) > 3:
 print (animal, ": that's a long animal !")
 else:
 print(animal)

Notes:

the syntax is for <variable> in <iterable thing>:

dog
python : that's a long animal !
cat

For loops, continuedFor loops, continued

What if i need the index ?

In [4]: animals = ["dog","cat","T-rex"]
for index, animal in enumerate(animals):
 print("animal {} is {}".format(index,animal))

What about dic�onaries ?

In [5]: my_dict = {"first": "Monday", "second": "Tuesday", "third": "Wednesday"}
for key, value in my_dict.items():
 print("the {} day is {}".format(key,value))

(More on string forma�ng very soon)

animal 0 is dog
animal 1 is cat
animal 2 is T-rex

the first day is Monday
the second day is Tuesday
the third day is Wednesday

Other �ow control statementsOther �ow control statements

While:

In [6]: a, b = 0, 1
while b < 100:
 print(b, end=" ")
 a, b = b, a+b # multiple assignment, more on that later

Break and con�nue (exactly as in C):

break gets out of the closest enclosing block
continue skips to the next step of the loop

1 1 2 3 5 8 13 21 34 55 89

FunctionsFunctions

In [7]: def my_function(arg_1, arg_2=0, arg_3=0):
 print ("arg1:", arg_1, ", arg_2:", arg_2, ", arg_3:", arg_3)
 return str(arg_1)+"_"+str(arg_2)+"_"+str(arg_3)

my_output = my_function("a string",arg_3=7)
print("my_output:",my_output)

Notes:

func�on keyword is def
arguments are passed by reference
arguments can have default values
when called, arguments can be given by posi�on or name

arg1: a string , arg_2: 0 , arg_3: 7
my_output: a string_0_7

String formatting basicsString formatting basics

Basic concatena�on:

In [8]: my_string = "Hello, " + "World"
print(my_string)

Join from a list:

In [9]: my_list = ["cat","dog","python"]
my_string = " + ".join(my_list)
print(my_string)

Stripping and Spli�ng:

In [10]: my_sentence = " cats like mice \n ".strip()
my_sentence = my_sentence.split() #it is now a list !
print(my_sentence)

Hello, World

cat + dog + python

['cats', 'like', 'mice']

Strings, continuedStrings, continued

Templa�ng:

In [11]: my_string = "the {} is {}"
out = my_string.format("cat", "happy")
print(out)

Be�er templa�ng:

In [12]: my_string = "the {animal} is {status}, really {status}"
out = my_string.format(animal="cat", status="happy")
print(out)

The python way, with dicts:

the cat is happy

the cat is happy, really happy

In [13]: my_dict = {"animal":"cat", "status":"happy"}
out = my_string.format(**my_dict) #dict argument unpacking
print(out)

the cat is happy, really happy

f-stringsf-strings

Since Python 3.6:

In [14]: animal = "cat"
status = "happy"
print(f"the {animal} is {status}, so {status}")

You can use Python code inside the {} :

In [15]: print(f"the {animal} is {status*3}, so {status.upper()}")

the cat is happy, so happy

the cat is happyhappyhappy, so HAPPY

Strings, �nal notesStrings, �nal notes

You can specify addi�onal op�ons (alignment, number format)

In [16]: print("this is a {:^30} string in a 30 spaces block".format('centered'))
print("this is a {:>30} string in a 30 spaces block".format('right aligned'))
print("this is a {:<30} string in a 30 spaces block".format('left aligned'))

In [17]: print("this number is printed normally: {}".format(3.141592653589))
print("this number is limited to 2 decimal places: {:.2f}".format(3.1415926535
89))
print("this number is forced to 6 characters: {:06.2f}".format(3.141592653589
))

The legacy syntax for string forma�ng is

You'll probably see it a lot if you read older codes

"this way of formatting %s is %i years old" % ("strings", 100)

this is a centered string in a 30 spaces block
this is a right aligned string in a 30 spaces block
this is a left aligned string in a 30 spaces block

this number is printed normally: 3.141592653589
this number is limited to 2 decimal places: 3.14
this number is forced to 6 characters: 003.14

Now you know Python !

Ready for some more ?

make your life better: iPythonmake your life better: iPython

iPython is a shell interface to help you use python interac�vely instead of the Python
interpreter.

It offers:

tab comple�on
history (as in bash)
advanced help
magic func�ons (for instance %�meit for benchmarking)
calling system commands from the shell

and many other things. These are also included in Jupyter.

UnpackingUnpacking

Bundle func�on arguments into lists or dic�onaries:

It allows to create func�ons with unknown number of arguments:

my_list = ["dog","cat"]
my_fun(*my_list) # equivalent to 'my_fun("dog", "cat")'

my_dict = {"animal":"dog", "toy":"bone"}
my_fun(**my_dict) # equivalent to my_fun(animal="dog", toy="bone")

In [18]: def my_fun(*args, **kwargs):
 print("args:", args)
 print("kwargs:", kwargs)

my_fun("pos_arg1", 34, named_arg="named")

Here args is an unmutable list (tuple) and kwargs is a dic�onary.

args: ('pos_arg1', 34)
kwargs: {'named_arg': 'named'}

List comprehensionsList comprehensions

Building lists:

In [19]: [x*x for x in range(10)]

Mapping and filtering:

In [20]: beasts = ["cat","dog","Python"]
[beast.upper() for beast in beasts if len(beast) < 4]

Merging with zip :

In [21]: toys = ["ball","frisbee","dead animal"]
my_string ="the {} plays with a {}"
[my_string.format(a,b) for a,b in zip(beasts, toys)]

Out[19]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Out[20]: ['CAT', 'DOG']

Out[21]: ['the cat plays with a ball',
 'the dog plays with a frisbee',
 'the Python plays with a dead animal']

List comprehensionsList comprehensions

Using an else clause:

In [22]: [x*x if x%3 else x for x in range(10)]

Dict comprehensions work too:

In [23]: {x: x**2-1 for x in range(10)}

Out[22]: [0, 1, 4, 3, 16, 25, 6, 49, 64, 9]

Out[23]: {0: -1, 1: 0, 2: 3, 3: 8, 4: 15, 5: 24, 6: 35, 7: 48, 8: 63, 9: 80}

ExerciseExercise ::

Given the following list:

Write a list comprehension that "reshapes" it as :

can you find a shorter solu�on to get:

*

list_of_lists = [[1,2,3,4,5], ["a","b","c","d","e"], range(5)]

list_of_lists = [[1,0,"a"], [2,1,"b"],...]

list_of_lists = [[1,"a",0], [2,"b",1],...]

In [24]: lol = [[1,2,3,4,5], ["a","b","c","d","e"], range(5)]

SolutionSolution

In [25]: list_of_lists = [[1,2,3,4,5], ["a","b","c","d","e"], range(5)]

In [26]: lol_1 = [[i[0], i[2], i[1]] for i in zip(*list_of_lists)]
print(lol_1)

In [27]: lol_2 = list(zip(*list_of_lists))
print(lol_2)

[[1, 0, 'a'], [2, 1, 'b'], [3, 2, 'c'], [4, 3, 'd'], [5, 4, 'e']]

[(1, 'a', 0), (2, 'b', 1), (3, 'c', 2), (4, 'd', 3), (5, 'e', 4)]

Reading �les (basics)Reading �les (basics)

open a text file for reading:

f is a file descriptor

Reading one line at a �me:

readling the whole file to a list of lines:

f = open("myfile.txt")

line = f.readline()

lines = f.readlines()

Dealing with �les : the proper wayDealing with �les : the proper way

Python offers a nicer way to read a file line by line:

In [28]: with open("houses.csv") as f:
 for line in f:
 print(line.strip())

Explana�on:

the with keyword starts a context manager: it deals with opening the file and
executes the block only if it succeeds, then closes the file.
file descriptors are iterable (line by line)

"uid","house"
4,"kitch world"
0,"dog house"
1,"hope of getting rid of you"
5,"upside down"
2,"grass"
3,"Cretaceous"

My favourite python tricksMy favourite python tricks

You probably don't need regular expressions:

In [29]: my_string = "The cat plays with a ball"
if "cat" in my_string:
 print("found")

this works on lists too:

In [30]: my_list = [1,1,2,3,5,8,13,21]
if 8 in my_list:
 print("found")

and on dic�onary keys (very fast):

In [31]: my_dict = {"cat":"ball", "dog":"bone"}
if "python" in my_dict:
 print("found")

found

found

Favourites 2Favourites 2

Everything is True or False:

In [32]: my_list = []
if my_list:
 print("Not empty")

my_string = ""
if my_string:
 print("Not empty")

In general, empty iterables are False, non-empty are True

The useful and very readable ternary operator:

In [33]: test = 10
my_var = "dog" if test > 15 else "cat"
print(my_var)

cat

Favourites 3Favourites 3

Not sure if a key exists in a dic�onary ? use get

In [34]: my_dict = {"cat":"ball", "dog":"bone"}
print(my_dict.get("python","default toy"))

Mul�ple assignment works as expected:

In [35]: a = "python"
b = "dog"
a, b = b, "cat"
print(a, b)

You can use it to make func�ons that return mul�ple values:

default toy

dog cat

In [36]: def my_function():
 return "cat", "dog"
var_a, var_b = my_function()
print(var_a, var_b)

cat dog

Favourites 4: on listsFavourites 4: on lists

Sort and reverse lists:

In [37]: animals = ["dog","cat","python"]
for animal in reversed(animals):
 print(animal, end=" ")
print("\n---")
for animal in sorted(animals):
 print(animal, end=" ")

note: sorted takes an op�onal "key" argument to tell it how to sort.

quick checks on lists:

In [38]: list = ["cat", "dog", 0, 6]
print(any(list)) # if at least one element is "True"
print(all(list)) # if all elements are "True"

python cat dog

cat dog python

True
False

Python variables explainedPython variables explained

All Python variables are references a.k.a labels to objects.

When you do:

then a and b are both references for the same in-memory object (the [1,2,3] list).
So if you do:

a = [1, 2, 3]
b = a

In [39]: a = [1, 2, 3]
b = a
a[1] = 5
print(b)

then you have changed the object labelled by both a and b !

[1, 5, 3]

Python variablesPython variables

Be cau�ous though: assignment (using =) creates a new label and replaces any
exis�ng label with that name:

In [40]: a = [1, 2]
b = a
a = [3, 4]
print("a =", a, "and b =", b)

This does not make b = [3, 4] , as the b label is s�ll a�ached to [1, 2] . It only
creates a new label a a�ached to [3, 4] .

a = [3, 4] and b = [1, 2]

Python variables: pitfallsPython variables: pitfalls

The combina�on of this and the local scope of variables in func�ons can lead to
unintui�ve behaviours:

In [41]: def my_func(my_list):
 my_list[0] = 3

my_list = [0, 1, 2]
my_func(my_list)
print(my_list)

modifies the input parameter as expected. However:

In [42]: def my_func(my_list):
 my_list = my_list + [3]

my_func(my_list)
print(my_list)

this assignment defines a local my_list variable which overrides the reference in the

[3, 1, 2]

[3, 1, 2]

scope of the func�on: it has no effect on the my_list argument.

Modules and Packages

ModulesModules

Modules allow you to use external code (think "libraries")

use a module:

or just part of it:

just don't import everything blindly:

import csv
help(csv.reader)

from csv import reader
help(reader)

from csv import * # this is dangerous, can you guess why ?

Module example : csvModule example : csv

csv is a core module: it is distributed by default with Python

In [43]: import csv
with open('my_file.csv') as csvfile:
 reader = csv.DictReader(csvfile)
 for row in reader:
 print("row:", row)
 print("the {animal} plays with a {toy}".format(**row))

DictReader is an object from the csv package
reader is an iterator built by DictReader
reader gives dic�onaries, for instance {"animal":"dog",
"toy":"bone"} and affects them to the row reference
keys names are taken from the first line of the csv file

row: {'animal': 'dog', 'toy': 'bone'}
the dog plays with a bone
row: {'animal': 'cat', 'toy': 'ball'}
the cat plays with a ball

writing csv �leswriting csv �les

Wri�ng is similar:

In [44]: import csv
with open('my_file_2.csv', 'w') as csvfile: # open in write mode
 writer = csv.DictWriter(csvfile, fieldnames=['animal', 'toy'])
 writer.writeheader()
 writer.writerow({'animal': 'cat', 'toy': 'laptop'})
 writer.writerow({'animal': 'dog', 'toy': 'cat'})

In [45]: ! cat my_file_2.csv # linux command to show content of file
! rm my_file_2.csv

Installing modulesInstalling modules

The standard package manager is pip:

Search for a package:

Install a package:

Upgrade to latest version:

Remove a package:

pip search BeautifulSoup ← famous html parser

pip install BeautifulSoup # use "--user" to install in home

pip install --upgrade BeautifulSoup

pip uninstall BeautifulSoup

Working in a protected environmentWorking in a protected environment

Some�mes you need specific versions of modules, and these modules have
dependencies, and these dependencies conflict with system-wide packages, etc.

In these cases you should use the virtualenv package:

You can then use pip to install anything you need in this virtualenv and do your work.
Finally:

closes the virtualenv session. Packages you have installed in it are not visible anymore.

pip install virtualenv # install the package, only once
virtualenv my_virtualenv
source my_virtualenv/bin/activate

deactivate

Excep�ons

Exceptions handlingExceptions handling

Basics: try and except

In [46]: my_var = "default animal"
my_dict = {}
try:
 my_var = my_dict["animal"]
except KeyError as err:
 print("a key error was raised for key : {}".format(err))
 print("the key 'animal' is not present")

Note: there's a far be�er solu�on for this specific problem

a key error was raised for key : 'animal'
the key 'animal' is not present

Ask forgiveness, not permissionAsk forgiveness, not permission

Python styling recommends to avoid "if" and use excep�on handling instead.

Here is an (exaggerated) ugly and dangerous example:

In [47]: import os
if (os.path.isfile("file_1.txt")):
 f1 = open("file_1.txt")
 if(os.path.isfile("file_2.txt")):
 f2 = open("file_2.txt")

(We'll discuss the "os" module later)

Ask forgiveness, not permission (II)Ask forgiveness, not permission (II)

The Python way of dealing with this would be:

In [48]: try:
 f1 = open("my_file.csv")
 f2 = open("my_file2.csv")
except IOError as io:
 print("Input file error : {}".format(io))
else:
 pass # do some stuff with f1 and f2

The code is more flat/readable
Errors are well-separated and handled together
Errors are reported properly

Input file error : [Errno 2] No such file or directory: 'my_file2.csv'

Coding for the future

Commenting your codeCommenting your code

The basic comment is simply

But if you think it's useful, you should make it public like this:

this is a comment

In [49]: def my_function():
 """
 This is the help for my_function:
 it does stuff
 """
 pass

this way I can do:

In [50]: help(my_function)

Help on function my_function in module __main__:

my_function()
 This is the help for my_function:
 it does stuff

Including self-testsIncluding self-tests

the simplest way to include checks is the doctest package: let's say you have:

In [51]: def plusone(x):
 """ add 1 to input parameter """
 return x+1

in "my_file.py". You just need to write a "my_file_test.txt" file with:

and then you can do:

It will run the lines in the test.txt file and check the outputs.

>>> from my_file import plusone

>>> plusone(4)

5

python -m doctest test.txt # use -v for detailed output

Proper loggingProper logging

Your program will have different levels of verbosity depending if you are in test, beta or
produc�on phase. In order to avoid commen�ng and uncommen�ng "print" lines, use
logging:

You can also redirect the output to a file with:

import logging
logging.basicConfig(level=logging.WARNING)
logging.warning('something unexpected happened')
logging.info('this is not shown because the level is WARNING')

logging.basicConfig(filename='example.log')

Importing scripts for debuggingImporting scripts for debugging

You know you can import any file as a module. This allows to debug in the interpreter
by using:

to access func�ons and objects. But if you do this the main code itself will run !

You can avoid that by pu�ng the code to be executed only when the script is run (not
imported) inside a block like this:

That way the "print" will not be called when you import my_file.

import my_file

def my_function():
 ...

if __name__ == '__main__': # that's two underscores
 print(my_function()) # put main code here

Write good codeWrite good code

Have a look at PEP8 too to make your code pre�y and readable:

Read the Zen of Python:

h�ps://www.python.org/dev/peps/pep-0008
(h�ps://www.python.org/dev/peps/pep-0008)

https://www.python.org/dev/peps/pep-0008

Modules you need

Interacting with the OS and �lesystem:Interacting with the OS and �lesystem:

sys:
provides access to arguments (argc, argv), useful sys.exit()

os:
access to environment variables
navigate folder structure
create and remove folders
access file proper�es

glob:
allows you to use the wildcards * and ? to get file lists

argparse:
easily build command-line arguments systems
provide script usage and help to user

Enhanced versions of good thingsEnhanced versions of good things

itertools: advanced itera�on tools
cycle: repeat sequence ad nauseam
chain: join lists or other iterators
compress: select elements from one list using another as filter
…

collec�ons: smart collec�ons
defaultDict: dic�onary with default value for missing keys (powerful!)
orderedDict: you know what it does
Counter: count occurrences of elements in lists
...

re: regular expressions
because honestly "in" is not always enough

UtilitiesUtilities

copy:
some�mes you don't want to reference the same object with a and b

�me:
manage �me and date objects
deal with �mezones and date/�me formats
includes �me.sleep()

pickle:
allows to save any python object as a string and import it later

json:
read and write in the most standard data format on the web

urllib:
access urls, retrieve files

Python 2(.7) vs python 3(.8)Python 2(.7) vs python 3(.8)

Python 3+ is now recommended but many codes are based on python 2.7, so here are
the main differences (2 vs 3):

print "cat" vs print("cat")
1 / 2 = 0 vs 1 / 2 = 0.5
range is a list vs range is a generator
all strings are unicode in python 3

There's a lot more, but that's what you will need the most

ExerciseExercise

you will find 3 csv files in /home/cp3/jdf/training (/home/ucl/cp3/jdefaver/training on
HMEM):

1. List files
2. read each file using the csv module
3. as you read, build a dic�onary of dic�onaries using the id as a key, in the form:

1. write one line per id with the format:

{
 0: { 'animal':'dog', 'toy':'bone', 'house':'dog house' },
 1: { 'animal':'cat', ... },
 ...
}

"the <> plays with a <> and lives in the <>"

In []:

Exercise: going deeperExercise: going deeper

Pick any exercise below:

write the result in a csv file
what if one csv file was on a website ?
write output to screen as a table with headers
allow to switch to a html table using arguments
allow for missing ids in one of the files
How could you make your script shorter / faster ?

In []:

