
OpenMP
Shared-Memory Parallel Programming

Orian Louant
orian.louant@uliege.be

November 9, 2020

Motivations for Parallel Computing

1 970 1 975 1 980 1 985 1 990 1 995 2 000 2 005 2 010 2 015
100

101

102

103

104

105

106

107

Year

Number of Cores

Frequency (MHz)

Thousands of transistors

Single thread performance

2/122

Motivations for Parallel Computing

In the years 2000’s the CPU manufacturers have run out of room for boosting CPU
performance.
Instead of driving clock speeds and straight-line instruction throughput higher,
they turn to hyperthreading and multicore architectures.

The parallel programming model became necessary.

The MPI standard was introduced by the MPI Forum in May 1994 and updated in
June 1995.
The OpenMP standard was introduced in 1997 (Fortran) and 1998 (C/C++).

3/122

Distributed-Memory

Multiple nodes

Interconnected by a high-speed
network

Nodes consist of (a)
processor(s) and local memory

Communication is done via
message passing

4/122

Process

A process is an instance of an application

A process is executed by at least one thread

A process is a container describing the state of an
application: code, memory mapping, shared libraries,
...

In scientific computing, the dominant paradigm for process parallelism is the single
program multiple data model with MPI.

5/122

Shared-Memory

At least one multi-core CPU

All CPUs can access a single
memory address space

Systems memory may be
physically distributed, but
logically shared

6/122

Threads

A thread is an independent stream of instructions
that can be scheduled to run by the operating system.

Multiple threads can exist within one process, and
they share the memory

A thread only the owns the bare essential resources
to exist as an executable code: execution counter,
stack pointer, registers and thread-specific data

In scientific computing the dominant paradigm for thread parallelism is OpenMP

7/122

What is OpenMP?

OpenMP is a shared-memory application programming interface which by adding
directives to a sequential program describes how the work is shared among threads
and order accesses to shared data.

OpenMP hides the low-level details and allows the programmer to describe the parallel
code with high-level constructs.

8/122

Why use threads?

The operating system does not need to create a new memory map for a new thread. It
increases efficiency on multiprocessor systems.

Shared memory makes it trivial to share data among threads (with potential
drawbacks though).

9/122

Fork-Join

OpenMP use the fork-join model

The master thread continues after the fork
operation

The children threads begin operation separate
from the master thread

Parallel execution begins

10/122

Fork-Join

OpenMP use the fork join model

Children join after they finish

The master thread waits until all the children join

Join ends parallel execution. Sequential
execution of the master thread continues

11/122

Fork-Join

In practice, threads are not created or destroyed for every parallel region.

OpenMP implementations use a thread pool to avoid the cost of thread creation and
destruction at each fork and join.

After the join, the children thread go idle.

12/122

OpenMP is using directives

Directives are programming language constructs that specifies how a compiler should
process its input

An OpenMP program is the combination of

a base language (C, C++ or Fortran)

annotations with OpenMP directives

13/122

Anatomy of an OpenMP directive

OpenMP directive in C/C++

#pragma omp construct [clauses]

OpenMP directive in Fortran

!$omp construct [clauses]

Tells the compiler that it is a directive

14/122

Anatomy of an OpenMP directive

OpenMP directive in C/C++

#pragma omp construct [clauses]

OpenMP directive in Fortran

!$omp construct [clauses]

Indicates that it is as an OpenMP directive

14/122

Anatomy of an OpenMP directive

OpenMP directive in C/C++

#pragma omp construct [clauses]

OpenMP directive in Fortran

!$omp construct [clauses]

Give instruction on what to do

14/122

Anatomy of an OpenMP directive

OpenMP directive in C/C++

#pragma omp construct [clauses]

OpenMP directive in Fortran

!$omp construct [clauses]

Additional options (optional)

14/122

What the directives do

An OpenMP construct can specify

the creation of a parallel region

how to parallelize loops

whether the variables in the parallel region are private or shared

how/if the threads are synchronized

how the work is divided between threads

15/122

The Advantages of Using directive

Does not modify the serial implementation

You can still compile and run the program as a serial code.

Can be added incrementally allowing a gradual parallelization

Easier to maintain

16/122

Hard work is hidden

Directives hide the actual parallelization work from the programmer

The compiler replaces the directives by the appropriate calls to the OpenMP runtime
and library

17/122

Going Parallel

The Parallel Construct

Parallel construct in C/C++

#pragma omp parallel [clauses]
structured-block

Parallel construct in Fortran

!$omp parallel [clauses]
structured-block

!$omp end parallel

Creates a parallel region by spawning a team of threads

19/122

The Parallel Construct

Parallel construct in C/C++

#pragma omp parallel [clauses]
structured-block

Parallel construct in Fortran

!$omp parallel [clauses]
structured-block

!$omp end parallel

Optional clause

19/122

The Parallel Construct

Parallel construct in C/C++

#pragma omp parallel [clauses]
structured-block

Parallel construct in Fortran

!$omp parallel [clauses]
structured-block

!$omp end parallel

Block of code

19/122

OpenMP Hello World

#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[]) {

#pragma omp parallel
{
printf("Hello, I'm thread %d of %d.\n",

omp_get_thread_num(),
omp_get_num_threads());

}

return 0;
}

program main
use omp_lib

!$omp parallel
print 100, omp_get_thread_num(), &

& omp_get_num_threads()
100 format('Hello, I am thread ', i0, ' of ', i0)

!$omp end parallel
end program

Include omp.h or use the omp_lib module to get access to the OpenMP
runtime library
Use the omp_get_thread_num to get the ID of the thread in the team and
omp_get_num_threads functions to get the number of threads in the team

20/122

Compiling the OpenMP Hello World

To compile an OpenMP program, you need to pass a specific flag to the compiler

GCC: gcc -fopenmp

Clang: clang -fopenmp

Intel: icc -qopenmp

This flag instructs the compiler to consider OpenMP directives

21/122

Compiling the OpenMP Hello World

Compilers with OpenMP are available for all CÉCI clusters.
For example, the following modules are available:

$ module load <module_name>

Lemaitre3 GCC/8.3.0 intel/2019b

Hercules2 GCC/7.1.0-2.28 intel/2016b

Dragon2 GCC/8.2.0-2.31.1 intel/2018b

Vega GCC/9.3.0 intel/2019b

22/122

Executing the OpenMP Hello World

$ gcc -fopenmp -o example omp_helloworld.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 1 of 4.
Hello, I'm thread 2 of 4.
Hello, I'm thread 3 of 4.
Hello, I'm thread 0 of 4.

23/122

Executing the OpenMP Hello World

The OMP_NUM_THREADS environment variable allows you to specify the number
of threads

$ export OMP_NUM_THREADS=4
$./example

$ OMP_NUM_THREADS=4 ./example

4 threads for the
duration of the session

4 threads for this
execution of the program

24/122

Submitting an OpenMP Job

When submitting your OpenMP job to one of the CÉCI clusters set cpus-per-task to
specify the number of threads.

#!/bin/bash
Basic submission script for an openmp job
#SBATCH --time=01:00:00
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=1024

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

module load GCCcore

./your_omp_app
25/122

Making Things Go Parallel

Creating a parallel region does not means that that the work will be shared among the
threads. For example, if we consider this piece of code:

int max_threads = omp_get_max_threads();
int* iterations = malloc(sizeof(int)*max_threads);

for(int i = 0; i < max_threads; ++i)
iterations[i] = 0;

#pragma omp parallel
{
int tid = omp_get_thread_num();

for(int i = 0; i < 1000; ++i)
iterations[tid]++;

}

for(int i = 0; i < max_threads; ++i)
printf("Number of iteration for thread %d: %d\n",

i, iterations[i]);

max_threads = omp_get_max_threads()
allocate(iterations(0:max_threads-1))

iterations = 0
!$omp parallel private(tid)
tid = omp_get_thread_num()

do i = 1,1000
iterations(tid) = iterations(tid) + 1

end do
!$omp end parallel

do i = 0, max_threads-1
print 100, i, iterations(i)

100 format('Number of iteration for thread ', i0, &
& ': ', i0)

end do

26/122

Making Things Go Parallel

$ gcc -fopenmp -o example omp_iterations.c
$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 1000
Number of iteration for thread 1: 1000
Number of iteration for thread 2: 1000
Number of iteration for thread 3: 1000

27/122

Parallel ̸=Worksharing

In the last example there is no worksharing. This means that all the threads execute
all the iterations of the loop.

The parallel construct means that

a team of threads is created, i.e. there is a fork

the code is executed redundantly by each thread

the threads in the team join at the end of the region

28/122

Distributing iterations

One of the options for sharing the work between the threads is to define lower and
higher bounds of the loop depending on the thread ID.

int max_threads = omp_get_max_threads();
int* iterations = malloc(sizeof(int)*max_threads);

for(int i = 0; i < max_threads; ++i)
iterations[i] = 0;

#pragma omp parallel
{
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();

int low = n * tid / nthreads;
int high = n * (tid + 1) / nthreads;

for(int i = low; i < high; ++i)
iterations[tid]++;

}

for(int i = 0; i < max_threads; ++i)
printf("Number of iteration for thread %d: %d\n",

i, iterations[i]);

max_threads = omp_get_max_threads()
allocate(iterations(0:max_threads-1))

iterations = 0

!$omp parallel private(tid)
tid = omp_get_thread_num()
nthreads = omp_get_num_threads()

low = n * tid / nthreads + 1
high = n * (tid + 1) / nthreads

do i = low, high
iterations(tid) = iterations(tid) + 1

end do
!$omp end parallel

do i = 0, max_threads-1
print 100, i, iterations(i)

100 format('Number of iteration for thread ', i0, &
& ': ', i0)

end do

29/122

Distributing iterations

$ gcc -fopenmp -o example omp_iterations.c
$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 250
Number of iteration for thread 1: 250
Number of iteration for thread 2: 250
Number of iteration for thread 3: 250

30/122

Distributing iterations with a directive

Instead of computing the bounds, we can use the for (or do) construct.

int max_threads = omp_get_max_threads();
int* iterations = malloc(sizeof(int)*max_threads);

for(int i = 0; i < max_threads; ++i)
iterations[i] = 0;

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < n; ++i)
iterations[tid]++;

}

for(int i = 0; i < max_threads; ++i)
printf("Number of iteration for thread %d: %d\n",

i, iterations[i]);

max_threads = omp_get_max_threads()
allocate(iterations(0:max_threads-1))

iterations = 0

!$omp parallel private(tid)
!$omp do
do i = 1, n
iterations(tid) = iterations(tid) + 1

end do
!$omp end do

!$omp end parallel

do i = 0, max_threads-1
print 100, i, iterations(i)

100 format('Number of iteration for thread ', i0, &
& ': ', i0)

end do

31/122

Distributing iterations with a directive

$ gcc -fopenmp -o example omp_for_iters.c
$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 250
Number of iteration for thread 1: 250
Number of iteration for thread 2: 250
Number of iteration for thread 3: 250

32/122

The Canonical for-loop

The for-loop needs to be in canonical form to be used with the for directive

#pragma omp for
for ([inttype] var = start; var < end; ++var

<= var++
> var += incr
>= var = var + incr

var--, ...)

var, can not be modified in the loop body. It must be an integer (signed or
unsigned), a pointer or random access iterator type

start, end and incr must be loop invariant expressions, the number of
iterations must be computable when the loop begins

33/122

Parallel Region Binding

In order for the iterations of a loop to be shared among the threads by a for /do , the
construct needs a parallel region to bind to. If we take the previous example and
remove the parallel region:

int max_threads = omp_get_max_threads();
int* iterations = malloc(sizeof(int)*max_threads);

for(int i = 0; i < max_threads; ++i)
iterations[i] = 0;

#pragma omp for
for(int i = 0; i < n; ++i)
iterations[tid]++;

for(int i = 0; i < max_threads; ++i)
printf("Number of iteration for thread %d: %d\n",

i, iterations[i]);

max_threads = omp_get_max_threads()
allocate(iterations(0:max_threads-1))

iterations = 0

!$omp do
do i = 1, n
iterations(tid) = iterations(tid) + 1

end do
!$omp end do

do i = 0, max_threads-1
print 100, i, iterations(i)

100 format('Number of iteration for thread ', i0, &
& ': ', i0)

end do

34/122

Parallel Region Binding

$ OMP_NUM_THREADS=4 ./example
Number of iteration for thread 0: 1000
Number of iteration for thread 1: 0
Number of iteration for thread 2: 0
Number of iteration for thread 3: 0

As there was no parallel region to bind to, the for /do construct binds to the master
thread.

35/122

Combined Directive

The following code snippet,

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < n; ++i)
do_something()

}

!$omp parallel
!$omp do
do i = 1,n
call do_something()

end do
!$omp end do

!$omp end parallel

may also be written as combined parallel and for directives

#pragma omp parallel for
for(int i = 0; i < n; ++i)
do_something();

!$omp parallel do
do i = 1,n
call do_something()

end do
!$omp end parallel do

36/122

Orphaning

Directives are active in the dynamic scope of a parallel region, not just its lexical
scope. This allows for orphaned directives.

Orphaning is a situation when directives related to a parallel region are outside
the lexical extent of the parallel region.

Typical situation is calling a function containing a worksharing directive from a
parallel region.

37/122

Orphaning Example
// [...]

void ax(int n, double alpha, double* x) {
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();

printf("Executing ax by thread %d of %d threads.\n", tid,
nthreads);

int niters = 0;

#pragma omp for
for (int i = 0; i < n; ++i) {
x[i] = alpha * x[i];
niters++;

}

printf("Thread with id %d did %d iterations.\n", tid,
niters);

}

int main (int argc, char *argv[]) {
// [...]

#pragma omp parallel
{
ax(n, 3.0, x);

}

ax(n, 5.0, y);

// [...]

! [...]

!$omp parallel
call ax(n, 3.0d0, x)

!$omp end parallel

call ax(n, 5.0d0, y)

! [...]

contains
subroutine ax(n, alpha, x)
! [...]

print 100, tid, nthreads
100 format('Executing ax by thread ', i0,
& ' of ', i0, ' threads.')

!$omp do
do i = 1,n
x(i) = alpha * x(i)
niters = niters + 1

end do
!$omp end do

print 200, tid, niters
200 format('Thread with id ', i0, &
& ' did ', i0, ' iterations.')

! [...]
38/122

Orphaning Example

$ gcc -fopenmp -o example omp_orphaned.c
$ OMP_NUM_THREADS=4 ./example
Executing ax by thread 0 of 4 threads.
Executing ax by thread 2 of 4 threads.
Executing ax by thread 1 of 4 threads.
Executing ax by thread 3 of 4 threads.
Thread with id 0 did 250 iterations.
Thread with id 1 did 250 iterations.
Thread with id 2 did 250 iterations.
Thread with id 3 did 250 iterations.
Executing ax by thread 0 of 1 threads.
Thread with id 0 did 1000 iterations.

39/122

Nested Parallelism

This code snippet is not a valid OpenMP code: work-sharing region may not be closely
nested inside of an other work-sharing region

#pragma omp parallel for
for (int i = 0; i < n; ++i)
#pragma omp for
for (int j = 0; j < n; ++j)
do_something();

}

!$omp parallel do
do i = 1,n
!$omp do
do j = 1,n
call do_something()

end do
!$omp end do

end do
!$omp end parallel do

However, inclosing this nested work-sharing contruct inside a nested parallel region is
valid.

#pragma omp parallel for
for (int i = 0; i < n; ++i)
#pragma omp parallel for
for (int j = 0; j < n; ++j)
do_something();

}

!$omp parallel do
do i = 1,n
!$omp parallel do
do j = 1,n
call do_something()

end do
!$omp end parallel do

end do
!$omp end parallel do

40/122

Nested Parallelism

OpenMP parallel regions can be nested inside each other but it is disabled by default,
meaning that

If nested parallelism is disabled, then the new team created by a thread
encountering a parallel construct inside a parallel region consists only of the
encountering thread. This is the default.

If nested parallelism is enabled, then the new team may consist of more than
one thread (OMP_NESTED=TRUE).

The maximum level of nested parallelism can be set by the
OMP_MAX_ACTIVE_LEVELS environment variable.

41/122

Nested Parallelism

void report_num_threads(int level) {
#pragma omp single
printf("Level %d - number of threads: %d\n",

level, omp_get_num_threads());
}

#pragma omp parallel num_threads(2)
{
report_num_threads(1);
#pragma omp parallel num_threads(2)
{
report_num_threads(2);
#pragma omp parallel num_threads(2)
{
report_num_threads(3);

}
}

}

!$omp parallel num_threads(2)
call report_num_threads(1)
!$omp parallel num_threads(2)
call report_num_threads(2)
!$omp parallel num_threads(2)
call report_num_threads(3)

!$omp end parallel
!$omp end parallel

!$omp end parallel

contains
subroutine report_num_threads(level)
integer, intent(in) :: level

integer :: nthreads

nthreads = omp_get_num_threads()

!$omp single
print 100, level, nthreads

100 format('Level ', i0, ': the number of threads
in the team is ', i0)

!$omp end single
end subroutine

42/122

Nested Parallelism : Disabled

$ gcc -fopenmp -o example omp_nested.c
$ OMP_NUM_THREADS=4 ./example
Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 1
Level 3: number of threads in the team - 1
Level 2: number of threads in the team - 1
Level 3: number of threads in the team - 1

43/122

Nested Parallelism: Enabled

$ gcc -fopenmp -o example example omp_nested.c
$ OMP_NUM_THREADS=4 OMP_NESTED=TRUE \
./example

Level 1: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 2: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2
Level 3: number of threads in the team - 2

44/122

Closely Nested Loops

Even if, nested parallelism is possible, try to avoid it: nesting parallel regions can
easily create too many threads and oversubscribe the system.

Most of the time, parallelizing the outer loop is enough. Then, you have to be careful to
have the inner loop to access consecutive elements in memory in order to maximize
cache use.

45/122

Loop collapsing

In some cases, you can collaspe the loops into one in order to increase the run trip of
the loop.

#pragma omp parallel for collapse(2)
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = do_something();

}
}

!$omp parallel do collapse(2)
do j = 1,3
do i = 1,n
a(i, j) = do_something()

end do
end do

!$omp end parallel do

This is particularly useful when one of the loops is not of sufficient length to have
efficient parallelization.

46/122

Loop collapsing

The collapse clause, collapse the iterations of the n-associated loops to which the
clause applies into one larger iteration space. This clause can only apply on tightly
nested loops, meaning that there is no code between the loops.

#pragma omp for collapse(n)
nested-for-loops

!$omp do collapse(n)
nested-do-loops

47/122

Data Sharing in a Parallel World

Hello Again

Let’s go back to the hello world code:

#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[]) {
int nthreads, tid;

#pragma omp parallel
{
tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n", tid, nthreads);
}

return 0;
}

program main
use omp_lib

implicit none

integer :: nthreads, tid

!$omp parallel
tid = omp_get_thread_num()
nthreads = omp_get_num_threads()

print 100, tid, nthreads
100 format('Hello, I am thread ', i0,' of ', i0, '.')
!$omp end parallel

end program

49/122

Hello Again

Most of the time, the program output is what is expected but, ...

$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 2 of 4.
Hello, I'm thread 2 of 4.
Hello, I'm thread 2 of 4.
Hello, I'm thread 3 of 4.

... occasionally, we have imposters pretending to be thread 2.

50/122

What’s wrong?

All variables declared outside of the scope of an OpenMP parallel construct is
shared by all threads by default.

int nthreads, tid;
#pragma omp parallel
{
tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n",
tid, nthreads);

}

declaration outside of
the OpenMP construct, theses
variables are shared by all threads

51/122

What’s wrong?

All variables declared outside of the scope of an OpenMP parallel construct is
shared by all threads by default.

int nthreads, tid;
#pragma omp parallel
{
tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n",
tid, nthreads);

}

all threads write to the same location

51/122

What’s wrong?

All variables declared outside of the scope of an OpenMP parallel construct is
shared by all threads by default.

int nthreads, tid;
#pragma omp parallel
{
tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n",
tid, nthreads);

}

the same here, but, as the value
is the same for all threads, it’s
less likely to go wrong

51/122

What’s wrong?

All variables declared outside of the scope of an OpenMP parallel construct is
shared by all threads by default.

int nthreads, tid;
#pragma omp parallel
{
tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n",
tid, nthreads);

}

when the values are used
here, another thread may
have modified them

51/122

What’s wrong?

All variables declared outside of the scope of an OpenMP parallel construct is
shared by all threads by default.

int nthreads, tid;
#pragma omp parallel
{
tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n",
tid, nthreads);

}

We created a data race
51/122

Data Race

A data race is when one or more threads concurrently access a location in memory or a
variable, at least one of which is a write.

As an example, we will consider this simple construct

int x = 0;
#pragma omp parallel
{
x = x + 1;

}

52/122

Data Race

Thread 1 fetch x from
memory and store its
value in a register

53/122

Data Race

Thread 1 add one to
the value stored in the
register

Thread 2 fetch x from
memory and store its
value in a register

53/122

Data Race

Thread 1 store the
result of the addition
back in the shared
memory

Thread 2 adds one to
the value stored in the
register

53/122

Data Race

Thread 2 stores the
result of the addition
back in the shared
memory

53/122

Data Race

Because of the potential data races in shared-memory parallel programs, extra care is
needed as this is not always easy to spot

with floating-point data, it may be difficult to distinguish from a numerical side
effect

changing the number of threads can cause the problem to seemingly (dis)appear

may depend on the load on the system

may only show up using many threads

54/122

Data Race

In the previous example, we executed x+1 twice and get 1 as a result (while 2 was
expected)

We need a way to prevent data race from happening: only share data that are not
modified by other threads.

55/122

Hello Again (Data Race Free)

The solution to avoid a data race is to declare the nthreads and tid variables as
private to the threads.

#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[]) {
int nthreads, tid;

#pragma omp parallel private(nthreads, tid)
{
tid = omp_get_thread_num();
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d.\n", tid, nthreads);
}

return 0;
}

program main
use omp_lib

implicit none

integer :: nthreads, tid

!$omp parallel private(nthreads, tid)
tid = omp_get_thread_num()
nthreads = omp_get_num_threads()

print 100, tid, nthreads
100 format('Hello, I am thread ', i0,' of ', i0, '.')
!$omp end parallel

end program

56/122

Data-Sharing Attributes

private(list)

The parallel construct can take one or more data-sharing clause. The first one is
private, which instruct that each thread should have its own instance of the listed
variables. The initial value when we enter the parallel region is undefined.

57/122

Data-Sharing Attributes

firstprivate(list)

If the value of the variable before entering the parallel region matters, we can use
firstprivate which is the same as private but, the variable should be
initialized with its value before the parallel construct.

57/122

Data-Sharing Attributes

shared(list)

The third option is to declare a variable as shared which indicates that the variables
listed should be shared among all threads. This is the default.

57/122

Data-Sharing Attributes

default(shared | none)

You can change the default data-sharing attribute with the default clause. Setting
the value to none will force you to specify the data-sharing attribute for all your .

57/122

Data-Sharing Attributes Example

int x = 1, y = 2;
int z = 3, a = 4;
#pragma omp parallel private(x) firstprivate(y) shared(z)
{
x = x + z;
y = y + z;
a = a + 1;

printf("Thread %d: x = %d, y = %d, z = %d\n",
tid, x, y, z);

}

printf("Final: x = %d, y = %d, z = %d, a = %d\n",
x, y, z, a);

integer :: x = 1, y = 2
integer :: z = 3, a = 4
!$omp parallel private(x) firstprivate(y) shared(z)
x = x + z
y = y + z
a = a + 1

print 100, tid, x, y, z
100 format('Thread ', i0, ': x = ', i0, &
& ', y = ', i0, ', z = ', i0)

!$omp end parallel

print 200, x, y, z, a
200 format('Final: x = ', i0, ', y = ', i0, &
& ', z = ', i0, ', a = ', i0)

58/122

Data-Sharing Attributes Example

$ OMP_NUM_THREADS=4 ./example
Thread 0: x = 3, y = 5, z = 3
Thread 1: x = 32674, y = 5, z = 3
Thread 3: x = 32674, y = 5, z = 3
Thread 2: x = 32674, y = 5, z = 3
Final: x = 1, y = 2, z = 3, a = 7

59/122

Data-Sharing Attributes Example

$ OMP_NUM_THREADS=4 ./example
Thread 0: x = 4, y = 5, z = 3
Thread 1: x = 32674, y = 5, z = 3
Thread 3: x = 32674, y = 5, z = 3
Thread 2: x = 32674, y = 5, z = 3
Final: x = 1, y = 2, z = 3, a = 7

The value of x is wrong because using the private clause the value of the variable
is undefined when entering the parallel construct.

59/122

Data-Sharing Attributes Example

$ OMP_NUM_THREADS=4 ./example
Thread 0: x = 4, y = 5, z = 3
Thread 1: x = 32674, y = 5, z = 3
Thread 3: x = 32674, y = 5, z = 3
Thread 2: x = 32674, y = 5, z = 3
Final: x = 1, y = 2, z = 3, a = 7

The value of y, on the other hand, is correct as the firstprivate clause sets
the initial value in the parallel construct to be the value before entering the
construct.

59/122

Data-Sharing Attributes Example

$ OMP_NUM_THREADS=4 ./example
Thread 0: x = 4, y = 5, z = 3
Thread 1: x = 32674, y = 5, z = 3
Thread 3: x = 32674, y = 5, z = 3
Thread 2: x = 32674, y = 5, z = 3
Final: x = 1, y = 2, z = 3, a = 7

After the parallel region, the values of the private variables are the same as
before the region.

59/122

Data-Sharing Attributes Example

$ OMP_NUM_THREADS=4 ./example
Thread 0: x = 4, y = 5, z = 3
Thread 1: x = 32674, y = 5, z = 3
Thread 3: x = 32674, y = 5, z = 3
Thread 2: x = 32674, y = 5, z = 3
Final: x = 1, y = 2, z = 3, a = 7

The value of z never changes. This variable is shared but never modified.

59/122

Data-Sharing Attributes Example

$ OMP_NUM_THREADS=4 ./example
Thread 0: x = 4, y = 5, z = 3
Thread 1: x = 32674, y = 5, z = 3
Thread 3: x = 32674, y = 5, z = 3
Thread 2: x = 32674, y = 5, z = 3
Final: x = 1, y = 2, z = 3, a = 7

We did not specify any data-sharing attribute for a. Thus, this variable has the default
attribute and is shared. We see that there is a data race problem as we expected the
final value to be 8 with 4 threads.

59/122

Data-Sharing Attribute Rules

Variables with automatic storage duration that are declared in a scope inside the
construct are private.

#pragma omp parallel
{
int a = 3; // private

}

60/122

Data-Sharing Attribute Rules

Variables with static storage duration that are declared in a scope inside the construct
are shared.

#pragma omp parallel
{
static int a; // shared

}

60/122

Data-Sharing Attribute Rules

The loop iteration variable(s) in the associated for-loop(s) of a for construct is (are)
private.

int i;
#pragma omp parallel
{
#pragma omp for
for(i = 0; i < n; ++i) // i is private
{
// ...

}
}

60/122

Data-Sharing Attribute Rules

Objects with dynamic storage duration are shared (allocated by malloc).

int* a = (int*)malloc(n * sizeof(int));

#pragma omp parallel
{
// the array a can not be privatized
// all threads can read and write the
// whole array
a[0] = 3;

}

60/122

Good Practices

Set the default data attribute to none with default(none).

You will get a compiler error if you do not explicitly specify the data attribute of
your variables
It forces you to think about the data attribute of your variables

61/122

Loop Carried Data Dependency

The fact that dynamically allocated objects cannot be private implies that particular
care must be taken when handling arrays.

#pragma omp parallel
{
#pragma omp for
for(int i = 0; i < (n-1); ++i)
a[i] = a[i+1]+ b[i];

}

!$omp parallel
!$omp do
do i = 1,n-1
a(i) = a(i+1) + b(i)

end do
!$omp end do

!$omp end parallel

62/122

Loop Carried Data Dependency

A loop carried data dependency occurs when a value written in one loop iteration is read
or written by another iteration.

Thread 1 Thread 2

a[0] = a[1] + b[0] a[4] = a[5] + b[4]

a[1] = a[2] + b[1] a[5] = a[2] + b[5]

a[2] = a[3] + b[2] a[6] = a[3] + b[6]

a[3] = a[4] + b[3] a[7] = a[4] + b[7]

63/122

Synchronization

Synchronization

Synchronization ensures that two or more threads do not simultaneously execute
some part of the program.

Synchronization may be needed for various reasons:

makes sure that a particular operation is only executed once
to avoid conflicts when accessing shared data
ensure the order in which tasks are executed

65/122

Barrier

A barrier directive is a synchronization point at which the threads in a parallel
region will wait until all other threads in that section reach the same point.

When a first thread reaches the barrier, it waits
When a second thread reaches the barrier, it does the same thing and so on
When the last thread reaches the barrier, all the threads resume execution

66/122

Barrier

Most common usage of a barrier is to make sure that the value set by a thread is
correctly defined before reading it from another thread.

#pragma omp parallel private(tid, neighb)
{
tid = omp_get_thread_num();
neighb = tid - 1;

if (tid == 0)
neighb = omp_get_num_threads() - 1;

a[tid] = a[tid] * 3.5;

#pragma omp barrier

b[tid] = a[neighb] + c;
}

!$omp parallel private(tid, neighb, nthreads)
tid = omp_get_thread_num()

nthreads = omp_get_num_threads()
neighb = tid - 1

if (tid .eq. 0) neighb = nthreads - 1

a(tid) = a(tid) * 3.5

!$omp barrier

b(tid) = a(neighb) + c
!$omp end parallel

67/122

Implicit Barrier

Some constructs in OpenMP have an implicit barrier. This is the case for the parallel
and for /do constructs.

#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < n; ++i) {

// ...

}

// ...

}

Implicit barrier, wait for all the threads to finish their iterations

Implicit barrier, wait for all the threads to join

68/122

Master Directive

A master construct specifies a block of code that should be executed only by the
master thread of the team.

#pragma omp master
structured-block

!$omp master
structured-block

!$omp end master

69/122

Hello World, Master Edition

Let’s revisit the hello world program but, this time, only the master thread print the
number of threads in the team.

#pragma omp parallel
{
printf("Hello, I'm thread %d\n",

omp_get_thread_num());

#pragma omp master
{
printf("There is %d threads in the team\

n",
omp_get_num_threads());

}
}

!$omp parallel
print 100, omp_get_thread_num()

100 format('Hello, I am thread ', i0)

!$omp master
print 200, omp_get_num_threads()

200 format('There is ', i0, &
& ' threads in the team')

!$omp end master
!$omp end parallel

70/122

Hello World, Master Edition

$ gcc -fopenmp -o example omp_helloworld_master.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 3
Hello, I'm thread 0
There is 4 threads in the team
Hello, I'm thread 2
Hello, I'm thread 1

71/122

Single Directive

A single directive is executed by only one of the threads in the team (not
necessarily the master thread). There is an implicit barrier at the end.

#pragma omp single
structured-block

!$omp single
structured-block

!$omp end single

72/122

Hello World, Single Edition

Let’s revisit the hello world program using the single construct. This time we illustrate
the most common usage of the single construct, that is, assign a value to a shared
variable.

#pragma omp parallel private(tid)
{
tid = omp_get_thread_num();

#pragma omp single
{
nthreads = omp_get_num_threads();

printf("Hello, I'm thread %d of %d"
" in the single construct.\n",
tid, nthreads);

}

printf("Hello, I'm thread %d of %d.\n", tid, nthreads);
}

!$omp parallel private(tid)
!$omp single
nthreads = omp_get_num_threads()

print 100, tid, nthreads
100 format('Hello, I am thread ', i0, ' of ', i0, &
& ' in the single construct.')

!$omp end single

tid = omp_get_thread_num()

print 200, tid, nthreads
200 format('Hello, I am thread ', i0, ' of ', i0, '.')

!$omp end parallel

73/122

Hello World, Single Edition

$ gcc -fopenmp -o example omp_helloworld_single.c
$ OMP_NUM_THREADS=4 ./example
Hello, I'm thread 3 of 4 in the single construct.
Hello, I'm thread 3 of 4.
Hello, I'm thread 2 of 4.
Hello, I'm thread 0 of 4.
Hello, I'm thread 1 of 4.

74/122

Critical Section

A critical section restricts execution of the associated structured block to one
thread at a time.

#pragma omp critical
structured-block

!$omp critical
structured-block

!$omp end critical

75/122

Critical Section

Critical section is mostly used to update shared variables avoiding a data race.

#pragma omp parallel private(tid, local_sum)
{
tid = omp_get_thread_num();
local_sum = 0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum += a[i];

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

printf("Sum after parallel region: %d.\n", sum);

!$omp parallel private(tid, local_sum)
tid = omp_get_thread_num()
local_sum = 0

!$omp do
do i = 1,n
local_sum = local_sum + a(i)

end do
!$omp end do

!$omp critical
global_sum = global_sum + local_sum

print 100, tid, local_sum, global_sum
100 format('Thread ', i0, ': local sum = ', i0, &
& ', sum = ', i0, '.')

!$omp end critical
!$omp end parallel

print*, 'Sum after parallel region:', global_sum

76/122

Critical Section

Critical section is mostly used to update shared variables avoiding a data race.

#pragma omp parallel shared(sum) private(tid, local_sum)
{
tid = omp_get_thread_num();
local_sum = 0;

#pragma omp for
for (int i = 0; i < n; ++i)

local_sum += a[i];

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

printf("Sum after parallel region: %d.\n", sum);

Critical section to update the global sum. Without the critical section,
there is a potential data race here

77/122

Critical Section

$ gcc -fopenmp -o example omp_critical.c
$ OMP_NUM_THREADS=4 ./example
Thread 0: local sum = 300, sum = 300.
Thread 3: local sum = 2175, sum = 2475.
Thread 1: local sum = 925, sum = 3400.
Thread 2: local sum = 1550, sum = 4950.
Sum after parallel region: 4950.

78/122

Named Critical Section

#pragma omp critical (name)
structured-block

Optional name clause

A thread waits at the beginning of a critical section until no other thread is
executing a critical section with the same name
All unnamed critical directives map to the same name
Critical section names are global to the program

79/122

Named Critical Section

#pragma omp critical (sum)
{
sum += local_sum;
printf("Thread %d: local sum = %d,"

" sum = %d.\n",
tid, local_sum, sum);

}

#pragma omp critical (max)
{
max = MAX(max, local_max);
printf("Thread %d: local max = %d,"

" max = %d.\n",
tid, local_max, max);

}

!$omp critical (sum)
global_sum = global_sum + local_sum;
print 100, tid, 'sum', local_sum, &

& 'sum', global_sum
!$omp end critical (sum)

!$omp critical (max)
global_max = max(global_max, local_max)
print 100, tid, 'max', local_max, &

& 'max', global_max
!$omp end critical (max)

80/122

Named Critical Section

#pragma omp critical (sum)
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

#pragma omp critical (max)
{
max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",

tid, local_max, max);
}

First critical section for the global sum

81/122

Named Critical Section

#pragma omp critical (sum)
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

#pragma omp critical (max)
{
max = MAX(max, local_max);
printf("Thread %d: local max = %d, max = %d.\n",

tid, local_max, max);
}

First critical section for the global sum

Second critical section for the global maximum.
A thread can be in the first section while an other
is in the second one

81/122

Named Critical Section

$ gcc -fopenmp -o example omp_critical_named.c
$ OMP_NUM_THREADS=4 ./example
Thread 3: local sum = 2175, sum = 2175.
Thread 3: local max = 99, max = 99.
Thread 1: local sum = 925, sum = 3100.
Thread 1: local max = 49, max = 99.
Thread 2: local sum = 1550, sum = 4650.
Thread 0: local sum = 300, sum = 4950.
Thread 2: local max = 74, max = 99.
Thread 0: local max = 24, max = 99.
Sum after parallel region: 4950.
Max after parallel region: 99.

82/122

The nowait Clause

//...

#pragma omp for
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

// ...

There is an implicit barrier here

83/122

The nowait Clause

//...

#pragma omp for
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

// ...

There is no need to wait for the other threads to finish
the iterations to execute the critical section

83/122

The nowait Clause

//...

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

local_sum += a[i];
}

#pragma omp critical
{
sum += local_sum;
printf("Thread %d: local sum = %d, sum = %d.\n",

tid, local_sum, sum);
}

}

// ...

We add a nowait clause to the directive

The implicit barrier at the end of the loop is lifted

83/122

The nowait Clause

The nowait clause applied to a for construct remove the implicit barrier at the end
of the construct.

#pragma omp for nowait
structured-block

!$omp do
structured-block

!$omp end do nowait

The nowait clause can also be applied to a single directive.

#pragma omp single nowait
structured-block

!$omp do
structured-block

!$omp end single nowait

84/122

The nowait Clause

The nowait clause can also be convenient when the work in two different loops are
independent from each other.

#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < n; ++i) {
d[i] = a[i] + b[i];

}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {
e[i] = a[i] + c[i];

}
}

!$omp parallel
{
!$omp do
do i = 1,n
d(i) = a(i) + b(i)

end do
!$omp end do nowait

!$omp do
do i = 1,n
e(i) = a(i) + c(i)

end do
!$omp end do nowait

!$omp end parallel

85/122

The nowait Clause

The nowait clause can also be convenient when the work in two different loops are
independent from each other.

#pragma omp parallel
{
#pragma omp for nowait
for (int i = 0; i < n; ++i) {

d[i] = a[i] + b[i];
}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

e[i] = a[i] + c[i];
}

}

No barrier at the end of the loop

The threads start the iterations of this loop as
soon as they finish their work in the first loop

86/122

The nowait Clause

The nowait clause can also be convenient when the work in two different loops are
independent from each other.

#pragma omp parallel
{
#pragma omp for nowait
for (int i = 0; i < n; ++i) {

d[i] = a[i] + b[i];
}

#pragma omp for nowait
for (int i = 0; i < n; ++i) {

e[i] = a[i] + c[i];
}

} Implicit barrier at the end of the parallel region
86/122

Reduction

The reduction clause avoid data races when summing or combining values. This
clause can be applied to the parallel and for constructs

reduction(op:list)

op is an operator:
Arithmetic reductions: + ∗ − max min

Logical operator reductions: & && | ||

87/122

Reduction

The sum and maximum example using critical region can be rewritten with
reduction clauses instead

#pragma omp parallel for reduction(+:sum) \
reduction(max:max)

for (int i = 0; i < n; ++i) {
sum += a[i];
max = MAX(max, a[i]);

}

printf("Sum after parallel region: %d.\n",
sum);

printf("Max after parallel region: %d.\n",
max);

!$omp parallel for reduction(+:sum) &
!$omp& reduction(max:imax)
do i = 1,n
sum += sum + a(i)
imax = max(imax, a(i))

end do
!$omp end parallel for

print*, 'Sum after parallel region: ', sum
print*, 'Max after parallel region: ', imax

88/122

Atomic operation

An atomic operation is an operation that will always be executed without any other
thread being able to read or change state that is read or changed during the operation.

#pragma omp atomic [atomic-clause]
expression-statement

89/122

Atomic operation

#pragma omp atomic atomic-clause
expression-statement

The value of atomic-clause can be one of the following: read, write,
update and capture. If no atomic-clause is specified, the default value
is update.

90/122

Atomic operation: Read and Write

The read clause allows for the atomic read of x.

#pragma omp atomic read
v = x;

The write clause allows for the atomic write of x. Here, expr is an expression
with scalar type, i.e. the result of the expression is a scalar.

#pragma omp atomic write
x = expr;

91/122

Atomic operation: Update

The update clause allows for the atomic update of x.

#pragma omp atomic update
expression-statement

Expression statement

x++; x--; ++x; --x;

x op= expr; x = x op expr; x = expr op x;

92/122

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while
also capturing the original or final value of the location designated by x.

#pragma omp atomic update
expression-statement

Expression statement

v = x++; v = x--; v = ++x; v = --x;

v = x op= expr; v = x = x op expr;

v = x = expr op x;

93/122

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while
also capturing the original or final value of the location designated by x.

#pragma omp atomic update
structured-block

Structured block (part. 1)

{ v = x; x op= expr; } { x op= expr; v = x; }

{ v = x; x = x op expr; } { v = x; x = expr op x; }

{ x = x op expr; v = x; } { x = expr op x; v = x; }

94/122

Atomic operation: Capture

The capture clause allows for atomic update of the location designated by x while
also capturing the original or final value of the location designated by x.

#pragma omp atomic update
structured-block

Structured block (part. 2)

{ v = x; x++; } { v = x; ++x; } { ++x; v = x; }

{ x++; v = x; } { v = x; x--; } { v = x; --x; }

{ --x; v = x; } { x--; v = x; }

94/122

Atomic example

The previous example of the summation of the elements of an array using a
critical construct can be rewritten using an atomic update.

#pragma omp for
for (int i = 0; i < n; ++i) {
local_sum += a[i];

}

#pragma omp atomic
sum += local_sum;

!$omp do
do i = 1,n
local_sum += local_sum + a(i)

end do
!$omp end do

!$omp atomic
sum = sum + local_sum

!$omp end atomic

95/122

Atomic example

for (i = 0; i < 10000; ++i) {
index[i] = i % 1000;
y[i] = 0.0;

}

for (i = 0; i < 1000; ++i)
x[i] = 0.0;

#pragma omp parallel for
for (i = 0; i < 10000; ++i) {
#pragma omp atomic update
x[index[i]] += 1.0 * i;

y[i] += 2.0 * i;
}

do i = 1,10000
inds(i) = mod(i, 1000)
y(i) = 0.0

end do

do i = 1,1000
x(i) = 0.0

end do

!$omp parallel do
do i = 1,10000
!$omp atomic update
x(inds(i)) = x(inds(i)) + 1.0 * i

y(i) = y(i) + 2.0 * i
end do

!$omp end parallel do

96/122

Atomic example

for (i = 0; i < 10000; ++i) {
index[i] = i % 1000;
y[i] = 0.0;

}

for (i = 0; i < 1000; ++i)
x[i] = 0.0;

#pragma omp parallel for
for (i = 0; i < 10000; ++i) {
#pragma omp atomic update
x[index[i]] += 1.0 * i;

y[i] += 2.0 * i;
}

The advantage of using atomic in this example is that
it allows updates of two different elements of x
in parallel. If a critical construct were used,
all updates to elements of x would be executed serially

97/122

Atomic vs. Critical

Safely increasing the value of count in parallel can be done either by using an
atomic or a critical directive

#pragma omp atomic
count++;

#pragma omp critical
count++;

An atomic operation has much lower
overhead but the set of possible
operations is restricted
It can take advantage of hardware
support for atomic operations

A critical section can surround any
arbitrary block of code
There is a significant overhead
when a thread enters and exits the
critical section

98/122

Atomic vs. Reduction

Don’t use atomic operation this way:

#pragma omp parallel for
for (int i = 0; i < n; ++i) {
#pragma omp atomic
sum += a[i];

}

!$omp parallel do
do i = 1,n
!$omp atomic
sum = sum + a(i)

end do
!$omp end parallel do

It is better to use a reduction clause:

#pragma omp parallel for reduction(+sum)
for (int i = 0; i < n; ++i) {
sum += a[i];

}

!$omp parallel do reduction(+sum)
do i = 1,n
sum = sum + a(i)

end do
!$omp end parallel do

99/122

Performance Considerations

Avoid or minimize the use of barrier and critical sections.

Use the nowait clause where possible to eliminate unnecessary barriers

Favour the use of master instead of single

100/122

Loop Scheduling

Loop Scheduling

Loop scheduling, specify how iterations of a loop are divided into contiguous
non-empty subsets (chunks), and how these chunks are distributed to the threads.
Changing the loop scheduling is possible to use the schedule clause.

#pragma omp for schedule(kind, chunk)
for-loop

!$omp do schedule(kind, chunk)
do-loop

!$omp end do

Where the value of kind can be static , dynamic , guided or runtime . The
default scheduling is static . The optional chunk may have different behaviour
depending on the scheduling.

102/122

Static Loop Scheduling

With static loop scheduling, iterations are divided into chunks and the chunks are
assigned to the threads. Each chunk contains the same number of iterations, except
for the chunk that contains the last iteration, which may have fewer iterations.

#pragma omp for schedule(static)
for-loop

!$omp do schedule(static)
do-loop

!$omp end do

103/122

Dynamic Loop Scheduling

With dynamic loop scheduling, the iterations are distributed to threads in chunks.
Each thread executes a chunk of iterations, then requests another chunk, until no
chunks remain to be distributed.

#pragma omp for schedule(dynamic)
for-loop

!$omp do schedule(dynamic)
do-loop

!$omp end do

104/122

Guided Loop Scheduling

The guided loop scheduling is similar to the dynamic scheduling except that the
size of each chunk is proportional to the number of unassigned iterations, decreasing
to one.

#pragma omp for schedule(guided)
for-loop

!$omp do schedule(guided)
do-loop

!$omp end do

105/122

Why Using the Scheduling Clause?

The default scheduling, static with a chunk equals to
niter/nthreads is not ideal for all workload.

It may be the case that iterations of high index represent more work. In that
case, some of the threads will finish early and have nothing to do. We have a
load imbalance.

Changing the scheduling may help balance the amount of work between the
threads.

106/122

Example: Number of Prime Numbers

int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
{
#pragma omp for reduction(+:sum)
for (int i = 2; i <= n; i++) {
prime = 1;

for (int j = 2; j < i; j++) {
if (i % j == 0) {
prime = 0;
break;

}
}

sum += prime;
}

}

Trip count of this loop may be very low or
very high depending if the number is prime
or not

107/122

Example: Number of Prime Numbers

int prime, sum = 0;
#pragma omp parallel shared(n) private(prime)
{
#pragma omp for reduction(+:sum)
for (int i = 2; i <= n; i++) {
prime = 1;

for (int j = 2; j < i; j++) {
if (i % j == 0) {
prime = 0;
break;

}
}

sum += prime;
}

}

If the number is not a prime number, we have an early exit

107/122

Example: Number of Prime Numbers

$ gcc -fopenmp -o example omp_schedule_prime.c
$ OMP_NUM_THREADS=4 ./example

Default Static Dynamic Guided
N Pi(N) Time Time Time Time

1024 172 0.000182 0.000120 0.000104 0.000121
2048 309 0.000561 0.000359 0.000425 0.000393
4096 564 0.001987 0.001309 0.001216 0.001239
8192 1028 0.007116 0.004474 0.004375 0.005114
16384 1900 0.029730 0.015594 0.015902 0.015161
32768 3512 0.099248 0.058475 0.056940 0.057160
65536 6542 0.358250 0.218291 0.244626 0.254815
131072 12251 1.416871 0.848736 0.788619 0.819390
262144 23000 5.207946 3.193940 3.062080 3.064527
524288 43390 20.565462 12.638959 12.086839 12.102800

108/122

Example: Triangular Loop

#pragma omp parallel shared(a, n)
{
#pragma omp for
for (int i = 0; i < n; ++i) {
a[i] = 0.0;

for (int j = 0; j < i; ++j) {
a[i] += cos(-3.1 * sin(2.3 * cos ((double) j))) ;

}
}

}

109/122

Example: Triangular Loop

$ gcc -fopenmp -o example omp_schedule_triangular.c
$ OMP_NUM_THREADS=4 ./example

Default Static Dynamic Guided
N Time Time Time Time

1024 0.025865 0.016811 0.018739 0.018241
2048 0.100062 0.070023 0.082587 0.091206
4096 0.383107 0.238520 0.232556 0.226914
8192 1.515341 0.905186 0.895541 0.880046
16384 6.064787 3.540685 3.526388 3.590453
32768 24.041088 15.465762 14.088137 14.539937
65536 97.495829 59.291353 59.403173 60.252156

110/122

OpenMP and Cache

Your Typical Compute Node

112/122

OpenMP and cc-NUMA

You also have two option for the placement of your threads. The first is put the threads
far apart, i.e. on different sockets.

may improve the aggregated memory bandwidth available to your application
may improve the combined cache size available to your application
may decrease performance of synchronization constructs

The second option is to put the threads close together, i.e. on two adjacent cores.
may improve performance of synchronization constructs
may decrease the available memory bandwidth and cache size

113/122

OpenMP and cc-NUMA

For the placement, you can use the OMP_PROC_BIND environment variable with the
values:

close : successively through the available places
spread : which spreads the threads over the places

The second option is the OMP_PLACES environment variable with the values:
core : places correspond to the cores
socket : places correspond to the sockets

114/122

OpenMP and cc-NUMA

double* A = (double*)malloc(N * sizeof(double));

#pragma omp parallel for
for (int i = 0; i < N; i++) {
A[i] = 0.0;

}

For a serial serial code: all array elements are allocated in the memory of the
NUMA node containing the core executing the thread
For a parallel code on an OS with a first touch policy the array elements are
allocated in the memory of the NUMA node containing the core executing the
thread initializing

115/122

False Sharing in Action

Another thing you need to consider if you want to get the best out of OpenMP is false
sharing. To discuss this we will start with these piece of code:

double local_sum[omp_get_max_threads()];
double sum = 0.0;

#pragma omp parallel shared(sum)
{
int tid = omp_get_thread_num();
local_sum[tid] = 0.0;

#pragma omp omp for
for (int i = 0; i < n; ++i)

local_sum[tid] += 0.5 * x[i] + y[i];

#pragma omp atomic
sum += local_sum[tid];

} 116/122

False Sharing in Action

Let’s measure the time spend in the parallel region (using the omp_get_wtime()
function).

Threads Time (s)

1 0.535418

2 0.421140

4 0.554419

8 0.597622

The speedup from 1 thread to 2 theads is bad

When going to 4 and 8 threads the time spend in the
parallel region is worst than with 1 thread

117/122

False Sharing

False sharing is when threads impact the performance of each other while modifying
independent variables sharing the same cache line

If one core writes, the cache line
holding the memory line is
invalidated on other cores.

Even though another core is not
using that data, the second core will
need to reload the line before it can
access its own data again.

118/122

False Sharing: Solution

Solution: introduce a padding.

double local_sum[LINESIZE*omp_get_max_threads()];
double sum = 0.0;

#pragma omp parallel shared(sum)
{
int tid = omp_get_thread_num();
local_sum[LINESIZE*tid] = 0.0;

#pragma omp omp for
for (int i = 0; i < n; ++i)

local_sum[LINESIZE*tid] += 0.5 * x[i] + y[i];

#pragma omp atomic
sum += local_sum[LINESIZE*tid];

}

119/122

False Sharing: Solution

Timing for different paddings on a CPU with a cache line size of 64 bytes.

Threads Time (s) Time (s) Time (s)

padding = 4 padding = 8 padding = 16

1 0.535418 0.535418 0.535418

2 0.601417 0.270089 0.270843

4 0.441149 0.152651 0.149363

120/122

False sharing

When threads access global or dynamically allocated shared data structures
there is a potential sources of false sharing

False sharing may be difficult to spot. For example, when theads access
completely different global variables that happen to be relatively close together
in memory.

Use thread-local copies of data when possible. The thread-local copy can be read
and modified frequently and only when complete, be copied back to the global
data structure

121/122

Questions?

Don’t forget to fill in the Quality Survey!

	Introduction
	Going Parallel
	Data Sharing in a Parallel World
	Synchronization
	Loop Scheduling
	OpenMP and Cache
	Questions? [1em]Don't forget to fill in the Quality Survey!

