
 1

Preparing, submitting
and managing jobs with Slurm

damien.francois@uclouvain.be
October 2020

Until now:

- access the cluster
- copy data to/from the cluster
- create parallel software
- compile code and use optimized libraries
- actually run software on the cluster

tl;dr:

- submit a job to the scheduler

What is a job?

Job scheduler/Resource manager :

Piece of software which:

● manages and allocates resources;
● manages and schedules jobs;

● and sets up the environment

 for parallel and distributed computing.

Two computers
are available for 10h

Your job runs now,
then yours. You wait.

Resources:

CPU cores Memory

 Disk space

 Network

 Accelerators

 Software

 Licenses

Resources:

Resources:

Slurm

Free and open-source

Mature (exists since ~2003)

Very active community

Many success stories

Widely used

 Also an intergalactic soft drink

Futurama (TV Series, creators David X. Cohen, Matt Groening)
Fry and the Slurm Factory (1999)

20th Century Fox Television

You will learn how to:

Create a job
Monitor the jobs

Control your own job
Get job accounting info

with

1. Make up your mind

● resources you need;
● operations you need to perform.

e.g. 1 core, 2GB RAM
for 1 hour

e.g. launch 'myprog'

Job parameters

Job steps

2. Write a submission script

It is a shell
script (Bash)

Regular Bash
comment

Bash sees
these as
comments

Slurm takes
them as

parameters

Job step
creation

Regular Bash
commands

2. Write a submission script

It is a shell
script (Bash)

Regular Bash
comment

Bash sees
these as
comments

Slurm takes
them as

parameters

Job step
creation

Regular Bash
commands

No Bash variables
allowed here!

Constraints and resources

You want You ask

To choose a specific feature (e.g. a processor
type or a network type)

--constraint

To use a specific resources (e.g. a GPU) --gres

To access a specific licensed software --licence

To chose a partition --partition

To use a specific QOS --qos

To choose the CPU distribution on nodes --nodes
--ntasks-per-nodes
--cpus-per-tasks

Other useful parameters

You want You ask

To set a job name --job-name=MyJobName

To attach a comment to the job --comment=”Some comment”

To get emails --mail-type= BEGIN|END|FAILED|ALL|TIME_LIMIT_90
--mail-user=my@mail.com

To set the name of the ouptut file --output=result-%j.txt
--error=error-%j.txt

To get an idea of when it would start --test-only

To specify an ordering of your jobs --dependency=after(ok|notok|any):jobids
--dependency=singleton

3. Submit the script

Slurm gives
me the JobID

I submit with
'sbatch'

One more
job parameter

Submit your first job!

1. Connect to a cluster

2. Open a text editor and write the script for a
job that will run the “hostname” command

3. Submit the job

4. Look for files created in your directory

4. Monitor your job

● squeue
● sprio
● sstat

● sview

4. Monitor your job

● squeue
● sprio
● sstat

● sview

Submit your second job!

1. Connect to a cluster

2. Open a text editor and write the script for a
job that will run the “sleep 3000” command and
request a 5 minutes run time .

3. Submit the job (on a debug partition)

4. Look for files created in your directory

4. Monitor your job

● squeue
● sprio
● sstat

● sview

4. Monitor your job

● squeue
● sprio
● sstat

● sview

A word about priority

https://slurm.schedmd.com/priority_multifactor.html

dfr@hmem00:~ $ sprio -w
 JOBID PRIORITY AGE FAIRSHARE
 Weights 500000000 1000000000

Slurm reserves resources for the top
priority job of each partition

Check the priority settings

1. Connect to a cluster

2. Run “sprio -w”

3. Run “scontrol show config | grep ^Priority”

4. Look for the meaning of the items with “man
slurm.conf” (Searching is done with “/”)

A word about backfill

The rule: a job with a lower priority can
start before a job with a higher priority
if it does not delay that job's start time.

resources

time

100

80

70

A job is a number of cpus times duration

job's priorityjob

A word about backfill

The rule: a job with a lower priority can
start before a job with a higher priority
if it does not delay that job's start time.

resources

time

90
100

80

70

10

Two more jobs to schedule

job's priorityjob

A word about backfill

The rule: a job with a lower priority can
start before a job with a higher priority
if it does not delay that job's start time.

resources

time

90

100

80

70

This job must wait until job with priority 70 is finished because it needs its resources

job's priorityjob

10

A word about backfill

The rule: a job with a lower priority can
start before a job with a higher priority
if it does not delay that job's start time.

resources

time

90

100

80

70

10

Low priority job has short max run time and less requirements ; it starts before larger priority job

job's priorityjob

5. Control your job

● scancel
● scontrol

● sview

5. Control your job

● scancel
● scontrol

● sview

5. Control your job

● scancel
● scontrol

● sview

5. Control your job

● scancel
● scontrol

● sview

5. Control your job

● scancel
● scontrol

● sview

http://www.schedmd.com/slurmdocs/slurm_ug_2011/sview-users-guide.pdf

6. Job accounting

● sacct
● sreport
● sshare

6. Job accounting

● sacct
● sreport
● sshare

Look at your jobs

1. Connect to a cluster

2. run the “sacct” command to see your job
history

6. Job accounting

● sacct
● sreport
● sshare

6. Job accounting

● sacct
● sreport
● sshare

6. Job accounting

● sacct
● sreport
● sshare

6. Job accounting

● sacct
● sreport
● sshare

The rules of fairshare

● Fairshare directly influences job priority
● A share is allocated to you: 1/#users
● If your actual usage is above that share, your

fairshare value is decreased towards 0.
● If your actual usage is below that share, your

fairshare value is increased towards 1.
● The actual usage taken into account decreases

over time; usage two months ago has less impact
on the fairshare than usage two days ago.

A word about fairshare

A word about fairshare

● Assume 3 users, 3-cores cluster
● Red uses 1 core for a certain period of time
● Blue uses 2 cores for half that period
● Red uses 2 cores afterwards

#nodes

time

A word about fairshare

● Assume 3 users, 3-cores cluster
● Red uses 1 core for a certain period of time
● Blue uses 2 cores for half that period
● Red uses 2 cores afterwards

#nodes

time

A word about fairshare

● Assume 3 users, 3-cores cluster
● Red uses 1 core for a certain period of time
● Blue uses 2 cores for half that period
● Red uses 2 cores afterwards

A word about fairshare

● Assume 3 users, 3-cores cluster
● Red uses 1 core for a certain period of time
● Blue uses 2 cores for half that period
● Red uses 2 cores afterwards

Getting cluster info

● sinfo

Get the cluster info

1. Connect to a cluster

2. run the “sinfo” command

3. run the “sinfo -Nl” command

4. run the “sinfo --clusters all” command

5. run the “sacct --federation” command

Interactive work

● salloc

salloc –-ntasks=4 --nodes=2

Interactive work

● salloc

salloc –-ntasks=4 --nodes=2

Interactive work

● srun

srun --pty bash

Summary

● Explore the environment
● Get node features (sinfo --node --long)
● Get node usage (sinfo --summarize)

● Submit a job:
● Define the resources you need
● Determine what the job should do
● Submit the job script (sbatch)
● View the job status (squeue)
● Get accounting information (sacct)

job script

How to choose the number of CPUs,
memory, and time?

CPU cores Memory

 Disk space

 Network

 Accelerators

 Software

 Licenses

Let
● t be the requested time,
● m the requested memory,
● n the requested number of CPUs, and
● ε the risk for your job to be killed due to limit trespassing

The problem is:

subject to:

with ----------- the job waiting time in the queue

--------------- the job running time

--------------- the job memory usage

A word about backfill

The rule: a job with a lower priority can
start before a job with a higher priority
if it does not delay that job's start time.

resources

time

90

100

80

70

This job is flexible thanks to --nodes=16-24 and --time-min set to 60% of --time for instance

job's priorityjob

10

Practical approach

● Run a sized-down problem on your laptop
and observe memory usage and time
needed for several values of the number of
CPUs for the first few iterations (top).

● Extrapolate for larger values of CPUs

Pragmatic approach
● Use guesstimates for the first job
● Then analyze the accounting information
● Extrapolate for next jobs

Best approach

Use profiling tools...

You will learn how to:

Create a parallel job
Request distributed resources

with

You will learn how to:

Create a parallel job
Request distributed resources

 1. MPI programs
 2. Multithreaded programs
 3. Master/slave
 4. Embarrassingly parallel
 5. Heterogeneous jobs
 6. Accelerators

6 typical use cases:

Use case 1: Message passing

You want You ask

N CPUs, to launch N MPI processes --ntasks=N

You use srun ./myprog (Intel MPI and OpenMPI >= 1.5)

mpirun ./myprog (OpenMP<1.5 & mvapich)

#! /bin/bash
#
#SBATCH --ntasks=8

module load OpenMPI

srun ./myprog

You have a program myprog
that uses an MPI library

e.g. OpenMPI, Intel MPI, MVAPICH, etc.

s
u
b
m
i
t
.
s
h

You want You ask

N CPUs --ntasks=N

N CPUs spread across distinct nodes --ntasks=N --nodes=N
or
--ntasks=N --ntasks-per-node=1

N CPUs spread across distinct nodes and nobody
else around

--ntasks=N --nodes=N --exclusive

N CPUs spread across N/2 nodes --ntasks=N --ntasks-per-node=2

N CPUs on the same node --ntasks=N --ntasks-per-node=N
or
--ntasks=N --nodes=1

Use case 1: Message passing

Use case 2: Multithreading

You want You ask

N CPUs to launch N processes or threads on
the same node

--cpus-per-task=N

You use OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export OMP_NUM_THREADS
MKL_NUM_THREADS=$SLURM_CPUS_PER_TASK
export MKL_NUM_THREADS
etc.
srun ./myprog

You have a program myprog
that spawns several threads/processes

e.g. OpenMP, PThreads, TBB, parallel libraries like OpenBLAS, Python multiprocessing, etc.

#! /bin/bash
#
#SBATCH --cpus-per-task=8

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun ./myprogs
u
b
m
i
t
.
s
h

Use case 2: Multithreading

You want You ask

All the CPUs on the node --exclusive
--mem=0

You use

You have a program myprog
that spawns several threads/processes

e.g. OpenMP, PThreads, TBB, parallel libraries like OpenBLAS, Python multiprocessing, etc.

#! /bin/bash
#
#SBATCH --exclusive
#SBATCH --mem=0

srun ./myprog

s
u
b
m
i
t
.
s
h

Use case 3: Master/Slave

You want You ask

N CPUs to launch N processes or threads on
the same node

--ntasks=N
--ntasks-per-node=N

You use
file multi.conf
srun --multi-prog multi.conf

You have a program master
that coordinates several slave programs

e.g. Matlab with Multicore,

#! /bin/bash
#
#SBATCH --ntasks=8

srun --multi-prog multi.conf

s
u
b
m
i
t
.
s
h

multi.conf for --multi-prog
0: ./master
1-7: ./slave

m
u
l
t
i
.
c
o
n
f

Use case 4: Embarrassingly parallel

You want You ask

N CPUs to launch N completely independent
jobs

--array=1-N

You use $SLURM_TASK_ARRAY_ID
srun ./myprog

You have a program myprog
of which several instances must run

e.g. to process distinct parameters values, distinct files, etc.

#! /bin/bash
#
#SBATCH --array=1-8

srun ./myprog $SLURM_TASK_ARRAY_ID

s
u
b
m
i
t
.
s
h

Use case 4: Embarrassingly parallel

You want You ask

N CPUs to launch N completely independent
jobs

--array=1-N

You use $SLURM_TASK_ARRAY_ID
srun ./myprog

You have a program myprog
of which several instances must run

#! /bin/bash
#
#SBATCH –array=0-7 # assuming 8 files

FILES=(/path/to/data/*)

srun ./myprog ${FILES[$SLURM_TASK_ARRAY_ID]}s
u
b
m
i
t
.
s
h

e.g. to process distinct parameters values, distinct files, etc.

Use case 5: Heterogeneous jobs

You have non-homogeneous requests

#! /bin/bash

#SBATCH --cpus-per-task=1 --mem-per-cpu=1g
--ntasks=4
#SBATCH packjob
#SBATCH --cpus-per-task=4 --mem-per-cpu=16g
--ntasks=1

echo Step 1
srun -l --pack-group=1 hostname
sleep 3

echo Step 2
srun -l bash -c "hostname;ulimit -m" :\
 bash -c "hostname;ulimit -m"
sleep 3

scancel $SLURM_JOB_ID+1

echo Step 3
srun -l bash -c "hostname;ulimit -m"

s
u
b
m
i
t
.
s
h

(e.g. 1cpu 4GB + 10cpu 1G, or 10 nodes + 1 GPU)

Use case 5: Heterogeneous jobs

You have non-homogeneous requests
$ cat res
Step 1
P1 0: lm3-w005.cluster
Step 2
4: lm3-w005.cluster
4: 67108864
1: lm3-w013.cluster
1: 4194304
2: lm3-w013.cluster
2: 4194304
3: lm3-w013.cluster
3: 4194304
0: lm3-w013.cluster
0: 4194304
Step 3
P0 1: lm3-w013.cluster
P0 1: 4194304
P0 3: lm3-w013.cluster
P0 2: lm3-w013.cluster
P0 2: 4194304
P0 0: lm3-w013.cluster
P0 3: 4194304
P0 0: 4194304

s
u
b
m
i
t
.
s
h

Use case 6: Accelerators (GPUs)

You want to use GPUs

#! /bin/bash

#SBATCH --cpus-per-task=8
#SBATCH --mem-per-cpu=1g
#SBATCH --gres=gpu:1

module load CUDA # or cuda on some clusters
nvidia-smi

s
u
b
m
i
t
.
s
h

You want You ask

N GPUs --gpus=N (Slurm 19.05 and newer)
--gres=gpu:N (older Slurm versions)

1 specific GPU (e.g. TeslaV100) --gpus=TeslaV100:1 (Slurm 19.05 and newer)
--gres=gpu:TeslaV100:1 (older Slurm versions)

Hybrid jobs

with for instance MPI and OpenMP
#! /bin/bash
#
#SBATCH --ntasks=8
#SBATCH --ncpus-per-task=4

module load OpenMPI
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun ./myprog

s
u
b
m
i
t
.
s
h

or even a job array of hybrid jobs...
#! /bin/bash
#
#SBATCH --array=1-10
#SBATCH --ntasks=8
#SBATCH --ncpus-per-task=4

module load OpenMPI
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun ./myprog $SLURM_TASK_ARRAY_IDs
u
b
m
i
t
.
s
h

Scripting submissions
Only if few jobs and complex arguments

otherwise use job arrays

Step 1: use command line options to sbatch rather
than submission script. For instance,

becomes

#! /bin/bash
#
#SBATCH --ncpus-per-task=4

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun ./myprog

s
u
b
m
i
t
.
s
h

$ export OMP_NUM_THREADS=4
$ sbatch --ntasks=8 --ncpus-per-task=4 --wrap “srun ./myprog”

Scripting submissions
Only if few jobs and complex arguments

otherwise use job arrays

Step 2: use tips from session 'Parallel Computing'

e.g. you have several files data_red.csv, data_blue.csv,
data_green.csv and myprog takes the file in argument

$ ls data*csv | xargs -n1 -I{} sbatch ... --wrap “./myprog {}”

will be equivalent to

$ sbatch ... --wrap “./myprog data_red.csv”

$ sbatch ... --wrap “./myprog data_blue.csv”

$ sbatch ... --wrap “./myprog data_green.csv”

Scripting submissions
Only if few jobs and complex arguments

otherwise use job arrays

use tips from session 'Parallel Computing'

e.g. you have myprog parameter one ranging from 1 to 3 and parameter
two ranging from A to C

$ parallel sbatch ... --wrap \”./myprog {1} {2}\” ::: {1..3} ::: {A..C}

will be equivalent to

$ sbatch ... --wrap ”./myprog 1 A”
$ sbatch ... --wrap ”./myprog 1 B”
$ sbatch ... --wrap ”./myprog 1 C”
$ sbatch ... --wrap ”./myprog 2 A”
$ sbatch ... --wrap ”./myprog 2 B”
...

Packing jobs
when each step lasts less than ~30 mins

to avoid spending as much time handling jobs as running them

#! /bin/bash
#
#SBATCH --ntasks=8

for i in {1..1000}
do
 srun -n1 --exclusive ./myprog $i &
done
wait

s
u
b
m
i
t
.
s
h

e.g. your program myprog lasts one minute but need
to be run with argument from 1 to 1000

Packing jobs
when each step lasts less than ~30 mins

to avoid spending as much time handling jobs as running them

You can also use xargs or parallel inside your
submission script:

#! /bin/bash
#
#SBATCH --ntasks=8

parallel -P 8 srun -n1 --exclusive ./myprog ::: {1..1000}

s
u
b
m
i
t
.
s
h

Packing jobs
when each step lasts less than ~30 mins

to avoid spending as much time handling jobs as running them

You can also use xargs or parallel inside your
submission script:

#! /bin/bash
#
#SBATCH --ntasks=8

ls data* | xargs -n1 -P 8 srun -n1 --exclusive ./myprog

s
u
b
m
i
t
.
s
h

Checkpointing
when your jobs are toooooo loooooong

compared with the cluster maximum walltimes

Summary

● Choose number of processes: --ntasks
● Choose number of threads: --cpu-per-task

● Launch processes with srun or mpirun
● Set multithreading with OMP_NUM_THREADS

● You can use $SLURM_PROC_ID
 $SLURM_TASK_ID
 $SLURM_TASK_ARRAY_ID

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	page0
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

