
 1

 Introduction to
Scientific Data Management

damien.francois@uclouvain.be
November 2020

http://www.ceci-hpc.be/training.html

 2

Goal of this session:

“Share tools, tips and tricks related to the
storage, transfer, and sharing

of scientific data”

http://www.cism.ucl.ac.be/training

 3

1. Data storage

Filesystems – Object stores – Databases

 4

Storage Technologies

http://www.slideshare.net/IMEXresearch/ss-ds-ready-for-enterprise-cloud

 5

Storage paradigms

Filesystem RDBMS

NoSQL

Objects store

 6

1.1 Filesystems

 7

(local) Filesystems

http://arstechnica.com/information-technology/2014/01/bitrot-and-atomic-cows-inside-next-gen-filesystems/

Generation 0: No system at all. There was just an arbitrary stream of data.
Think punchcards, data on audiocassette, Atari 2600 ROM carts.

Generation 1: Early random access. Here, there are multiple named files on
one device with no folders or other metadata. Think Apple][DOS (but not ProDOS!)
as one example.

Generation 2: Early organization (aka folders). When devices became capable of
holding hundreds of files, better organization became necessary. We're referring to
TRS-DOS, Apple //c ProDOS, MS-DOS FAT/FAT32, etc.

Generation 3: Metadata—ownership, permissions, etc. As the user count on machines grew higher, the ability to
restrict and control access became necessary. This includes AT&T UNIX, Netware, early NTFS, etc.

Generation 4: Journaling! This is the killer feature defining all current, modern filesystems—ext4, modern NTFS,
UFS2, XFS, you name it. Journaling keeps the filesystem from becoming inconsistent in the event of a crash,
making it much less likely that you'll lose data, or even an entire disk, when the power goes off or the kernel
crashes.

Generation 5: Copy on Write snapshots, Per-block checksumming, Volume management, Far-future scalability,
Asynchronous incremental replication, Online compression. Generation 5 filesystems are Btrfs and ZFS.

Typical usage: Operating system & Local scratch space

 8

Network filesystem

NAS: ex. NFS SAN: ex. GFS2

One source many consumers

Pictures from https://www.redhat.com/magazine/008jun05/features/gfs_nfs/

Typical usage: Home directories, Mass storage

 9

Parallel / distributed filesystem

ex: Lustre, GPFS, BeeGFS, GlusterFS
Many sources many consumers

Pictures from https://www.redhat.com/magazine/008jun05/features/gfs_nfs/

Typical usage: Global Scratch space

 10

Special filesystems – in memory

Typical usage: Temporary filesystems

 11

Filesystems on Lemaitre3

NFS
35TB

ZRAID2

BeeGFS
580TB
RAID6

XFS
220GB

XFS
2TB

DRBD

 12

Filesystems on Lemaitre3

Local mount point

Source:
- /dev/sd… → local disk
- /dev/mapper… → LVM
- <machine>:<path> → NFS
- other (e.g. beegfs_nodev) →specific filesystem

Volume

Inodes

 13

A word about inodes (simplified)

http://www.porcupine.org/forensics/forensic-discovery/chapter3.html

 14

What filesystem for what usage

File size

IO/s

Home

Global scratch

Local scratch

In-memory

Mass storage

Safe Half safe Unsafe Volatile

(tmpfs)

(XFS)

(NFS)

(BeeGFS)

(ZFS)

 15

File formats

 16

Text File Formats – JSON, YML, XML, INI

 17

Text File Formats – CSV

 18

Binary File Formats – CDF, HDF

https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf

 19

Binary File Formats – CDF, HDF

https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_rdwt.c

 20

Binary File Formats – CDF, HDF

 21

What file format for what usage

● Meta data

– Configuration file: INI, YAML
– Result with context information: JSON

● Data

– Small data (kBs): CSV
– Medium data (MBs): compressed CSV
– Large data (GBs): netCDF, HDF5, DXMF
– Huge data (TBs): Database, Object store

 (“loss of innocence”)

Use dedicated libraries to write and read them

 22

1.2 Object storage

 23

Object storage

● Object: data (e.g. file) + custom meta data

● Often built on erasure coding (“software RAID”)

● Scale out easily

● Useful for web applications but coming to scientific world

● Access with REST API (through HTTP)

 24

S3 Python example

https://pypi.org/project/boto/

 25

S3 Python example

https://pypi.org/project/boto/

 26

S3 Object tagging (meta data)

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html

 27

1.3 Databases

 28

RDBMS

Pictures from http://www.ibm.com/developerworks/library/x-matters8/

● Mostly needed for categorical data and alphanumerical
data (not suited for matrices, but good for end-results)

● Indexes make finding a data element is very fast
(and computing sums, maxima, etc.)

● Encodes relations between data (constraints, etc)

● Atomicity, Consistency, Isolation, and Durability

 29

Tables and SQL

create table Users (login varchar(255), first varchar(255), last varchar(255));

insert into Users values (“mark”, ‘Samuel”, “Clemens”);

select first,last from Users where login=’lion’;
select login, phone from Users join PhoneNb on Users.login=Phone.login;

 30

File-based RDBMS

● The features of a relational database without the need for
a complete setup

● Simply based on files

● Command line interface + API (Python, etc.)

● Still much more efficient than writing a million small files

 31

NoSQL

Pictures from http://www.tomsitpro.com/articles/rdbms-sql-cassandra-dba-developer,2-547-2.html

● Mostly needed for
unstructured, semi-
structured, and
polymorphic data

● Scaling out very easy

● Basic Availability, Soft-
state, Eventual
consistency

 32

File-based NoSQL

https://github.com/msiemens/tinydb

● The features of a relational database without the need for
a complete setup

● Simply based on files

● Command line interface + API (Python, etc.)

● Still much more efficient than writing a million small files

 33

When to use a database?

– when you have a large number of small files
– when you perform a lot of direct writes in a large file
– when you want to keep structure/relations between data
– when software crashes have a non-negligible

probability
– when files are updated by several processes

 34

Example: Danger of NFS

 35

Example: Danger of NFS

 36

When NOT to use a database?

– only sequential access
– simple matrices/vectors, etc.
– direct access on fixed-size records and no structure

 37

2.

Data transfer

 38

Network technologies

Laptop

Building switch

Datacenter switch

Cluster frontend

Compute node

100Mbps

10Gbps

1Gbps

100Gbps

 39

SCP

● Most direct way to copy data from/to UNIX/Linux machines

● Inefficient (sequential and synchronous)

● “outdated, inflexible and not readily fixed” (OpenSSH 8.0
release notes)

https://gravitational.com/blog/scp-familiar-simple-insecure-slow/

 40

SFTP

 41

RSYNC

 42

Update only what changed: rsync

rsync [OPTIONS]... SRC [SRC]... [USER@]HOST:DEST

● Always use: -az

● Other interesting arguments:

– -v and --progress
– --include or --exclude
– --delete and/or --remove-source-file
– --dry-run
– --size-only or –checksum

● Works well with GNU parallel

 43

Resuming transfers

● When nothing changed but the transfer was interrupted

– append: do not re-check partially transmitted files and
resume the transfer where it was abandoned assuming
first transfer attempt was with scp or with
rsync --inplace

 44

TAR | SSH

● From local to remote

$ tar zvzf - /path/to/data | ssh server "cat >
/srv/data_server1.tar.gz"

● From remote to local

$ ssh server tar czf - /path/to/data/ > ./data_server.tar.gz

● Avoid a lot of communication overhead linked to inodes

● Use the pv command to get a progress bar

 45

Parallel data transfer: bbcp

● Better use of the bandwidth than SCP

● Needs to be installed on both sides (easy to install)

● Needs friendly firewalls

https://github.com/Stormwind99/bbcp

 46

Parallel rsync

● Parsyncfp

https://github.com/hjmangalam/parsyncfp

 47

Parallel rsync

● GNU Parallel + rsync

Limit the depth of `find` can help speed things up

https://www.gnu.org/software/parallel/man.html#EXAMPLE:-Parallelizing-rsync

 48

3. Data sharing

with other users (Unix permissions, Encryption)

with external users (Owncloud, Dataverse)

 49

Data sharing

Data sharing with other users

 50

Sharing with the group

 51

Sharing and hiding

 52

Sharing and encrypting

 53

Data sharing

Data sharing with external users

 54

Data sharing with external users

● owncloud

CISM
login

 55

Dropbox-like

 56

External SFTP connectors

 57

Dropbox-like

 58

My home on Manneback

 59

Can create a share URL

 60

And distribute it

 61

Open data – FAIR data

 62

Open data – FAIR data

 63

Summary:

Storage: choose the right filesystem
and the right file format

Transfer: use the parallel tools when possible

Sharing: use all the potential of the UNIX
permissions and try Nextcloud and Dataverse

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

