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Goal of this session:

“Share tools, tips and tricks related to the 
storage, transfer, and sharing 

of scientific data”

http://www.cism.ucl.ac.be/training
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1. Data storage

Filesystems – Object stores – Databases
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Storage Technologies

http://www.slideshare.net/IMEXresearch/ss-ds-ready-for-enterprise-cloud
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Storage paradigms 

Filesystem RDBMS

NoSQL

Objects store
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1.1 Filesystems
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(local) Filesystems

http://arstechnica.com/information-technology/2014/01/bitrot-and-atomic-cows-inside-next-gen-filesystems/

Generation 0: No system at all. There was just an arbitrary stream of data. 
Think punchcards, data on audiocassette, Atari 2600 ROM carts.

Generation 1: Early random access. Here, there are multiple named files on 
one device with no folders or other metadata. Think Apple ][ DOS (but not ProDOS!) 
as one example.

Generation 2: Early organization (aka folders). When devices became capable of 
holding hundreds of files, better organization became necessary. We're referring to 
TRS-DOS, Apple //c ProDOS, MS-DOS FAT/FAT32, etc.

Generation 3: Metadata—ownership, permissions, etc. As the user count on machines grew higher, the ability to 
restrict and control access became necessary. This includes AT&T UNIX, Netware, early NTFS, etc.

Generation 4: Journaling! This is the killer feature defining all current, modern filesystems—ext4, modern NTFS, 
UFS2, XFS, you name it. Journaling keeps the filesystem from becoming inconsistent in the event of a crash, 
making it much less likely that you'll lose data, or even an entire disk, when the power goes off or the kernel 
crashes.

Generation 5: Copy on Write snapshots, Per-block checksumming, Volume management, Far-future scalability, 
Asynchronous incremental replication, Online compression. Generation 5 filesystems are Btrfs and ZFS. 

Typical usage: Operating system & Local scratch space
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Network filesystem

NAS: ex. NFS SAN: ex. GFS2

One source many consumers

Pictures from https://www.redhat.com/magazine/008jun05/features/gfs_nfs/

Typical usage: Home directories, Mass storage
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Parallel / distributed filesystem

ex: Lustre, GPFS, BeeGFS, GlusterFS
Many sources many consumers

Pictures from https://www.redhat.com/magazine/008jun05/features/gfs_nfs/

Typical usage: Global Scratch space
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Special filesystems – in memory

Typical usage: Temporary filesystems
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Filesystems on Lemaitre3

NFS
35TB

ZRAID2

BeeGFS
580TB
RAID6

XFS
220GB

XFS
2TB

DRBD
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Filesystems on Lemaitre3

Local mount point

Source:
- /dev/sd…  → local disk
- /dev/mapper… → LVM
- <machine>:<path> → NFS
- other (e.g. beegfs_nodev) →specific filesystem 

Volume

Inodes
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A word about inodes (simplified)

http://www.porcupine.org/forensics/forensic-discovery/chapter3.html
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What filesystem for what usage

File size

IO/s

Home

Global scratch

Local scratch

In-memory

Mass storage

Safe     Half safe     Unsafe       Volatile

(tmpfs)

(XFS)

(NFS)

(BeeGFS)

(ZFS)
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File formats
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Text File Formats – JSON, YML, XML, INI
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Text File Formats – CSV
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Binary File Formats – CDF, HDF

https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf
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Binary File Formats – CDF, HDF

https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/examples/h5_rdwt.c
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Binary File Formats – CDF, HDF
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What file format for what usage

● Meta data

– Configuration file: INI, YAML
– Result with context information: JSON

● Data

– Small data (kBs): CSV
– Medium data (MBs): compressed CSV 
– Large data (GBs): netCDF, HDF5, DXMF
– Huge data (TBs): Database, Object store 

                    (“loss of innocence”)

Use dedicated libraries to write and read them 
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1.2 Object storage
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Object storage

● Object: data (e.g. file) + custom meta data

● Often built on erasure coding (“software RAID”)

● Scale out easily

● Useful for web applications but coming to scientific world

● Access with REST API (through HTTP)



  24

S3 Python example

https://pypi.org/project/boto/
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S3 Python example

https://pypi.org/project/boto/
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S3 Object tagging (meta data)

https://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html
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1.3 Databases
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RDBMS

Pictures from http://www.ibm.com/developerworks/library/x-matters8/

● Mostly needed for categorical data and alphanumerical 
data (not suited for matrices, but good for end-results)

● Indexes make finding a data element is very fast
(and computing sums, maxima, etc.)

● Encodes relations between data (constraints, etc)

● Atomicity, Consistency, Isolation, and Durability
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Tables and SQL

create table Users (login varchar(255), first varchar(255), last varchar(255)); 

insert into Users values (“mark”, ‘Samuel”, “Clemens”);

select first,last from Users where login=’lion’;
select login, phone from Users join PhoneNb on Users.login=Phone.login;
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File-based RDBMS

● The features of a relational database without the need for 
a complete setup

● Simply based on files

● Command line interface + API (Python, etc.)

● Still much more efficient than writing a million small files
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NoSQL

Pictures from http://www.tomsitpro.com/articles/rdbms-sql-cassandra-dba-developer,2-547-2.html

● Mostly needed for 
unstructured, semi-
structured, and 
polymorphic data

● Scaling out very easy

● Basic Availability, Soft-
state, Eventual 
consistency
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File-based NoSQL

https://github.com/msiemens/tinydb

● The features of a relational database without the need for 
a complete setup

● Simply based on files

● Command line interface + API (Python, etc.)

● Still much more efficient than writing a million small files



  33

When to use a database?

– when you have a large number of small files
– when you perform a lot of direct writes in a large file
– when you want to keep structure/relations between data
– when software crashes have a non-negligible 

probability
– when files are updated by several processes
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Example: Danger of NFS
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Example: Danger of NFS
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When NOT to use a database?

– only sequential access
– simple matrices/vectors, etc.
– direct access on fixed-size records and no structure
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2.

Data transfer
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Network technologies

Laptop

Building switch

Datacenter switch

Cluster frontend

Compute node

100Mbps

10Gbps

1Gbps

100Gbps
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SCP

● Most direct way to copy data from/to UNIX/Linux machines

● Inefficient (sequential and synchronous)

● “outdated, inflexible and not readily fixed” (OpenSSH 8.0 
release notes)

https://gravitational.com/blog/scp-familiar-simple-insecure-slow/
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SFTP
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RSYNC
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Update only what changed: rsync

rsync [OPTIONS]... SRC [SRC]... [USER@]HOST:DEST

● Always use:  -az

● Other interesting arguments:

– -v and --progress
– --include or --exclude
– --delete and/or --remove-source-file 
– --dry-run
– --size-only or –checksum

● Works well with GNU parallel
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Resuming transfers

● When nothing changed but the transfer was interrupted

– append: do not re-check partially transmitted files and 
resume the transfer where it was abandoned assuming 
first transfer attempt was with scp or with 
rsync --inplace
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TAR | SSH

● From local to remote

$ tar zvzf - /path/to/data | ssh server "cat >   
/srv/data_server1.tar.gz"

● From remote to local

$ ssh server tar czf - /path/to/data/ > ./data_server.tar.gz

● Avoid a lot of communication overhead linked to inodes

● Use the pv command to get a progress bar
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Parallel data transfer: bbcp

● Better use of the bandwidth than SCP

● Needs to be installed on both sides (easy to install)

● Needs friendly firewalls

https://github.com/Stormwind99/bbcp
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Parallel rsync

● Parsyncfp

https://github.com/hjmangalam/parsyncfp
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Parallel rsync

● GNU Parallel + rsync

Limit the depth of `find` can help speed things up

https://www.gnu.org/software/parallel/man.html#EXAMPLE:-Parallelizing-rsync
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3. Data sharing

with other users (Unix permissions, Encryption)

with external users (Owncloud, Dataverse)
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Data sharing 

Data sharing with other users
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Sharing with the group
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Sharing and hiding
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Sharing and encrypting
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Data sharing 

Data sharing with external users
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Data sharing with external users

● owncloud

CISM 
login
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Dropbox-like
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External SFTP connectors
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Dropbox-like
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My home on Manneback
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Can create a share URL
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And distribute it
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Open data – FAIR data
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Open data – FAIR data
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Summary:

Storage: choose the right filesystem 
and the right file format

Transfer: use the parallel tools when possible

Sharing: use all the potential of the UNIX 
permissions and try Nextcloud and Dataverse
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