Efficient use of Python on the clusters

Ariel Lozano

CÉCI training

November 25, 2020

KOD KOD KEX KEX E 1090

Outline

\blacktriangleright Analyze our code with profiling tools:

- ▶ cpu: cProfile, line_profiler. kernprof
- ▶ memory: memory_profiler, mprof
- \blacktriangleright How to make a more efficient use of hardware internals?
	- ▶ Numpy and Scipy ecosystem (mainly wrappers to C/Fortran compiled code)
	- \triangleright binding to compiled code: interfaces between python and compiled modules

KORKARYKERKE POLO

- \triangleright compiling: tools to compile python code
- \blacktriangleright parallelism: overview of modules to exploit multicores

Sieve of eratostenes

Algorithm to find all prime numbers up to any given limit.

Ex: Find all the prime numbers less than or equal to 25:

 \triangleright 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Cross out every number displaced by 2 after 2 up to the limit:

 \triangleright 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Move to next *n* non crossed, cross out each non crossed number displaced by *n*:

- \triangleright 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
- \triangleright 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

The remaining numbers non crossed in the list are all the primes below *limit*. Trivial optimization: jump directly to *n* 2 to start crossing out. Then, *n* must loop only up to [√] *limit*.

Simple pure python implementation

```
def primes_upto(limit):
    sieve = [False] \times 2 + [True] \times (limit - 1)for n in range(2, int(limit**0.5 + 1):
        if sieve[n]:
            i = n \star x2
            while i < limit+1:
                 sieve[i] = Falsei \neq nreturn [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(25)
print(primes)
```

```
$ python3 sieve01_print.py
```

```
[2, 3, 5, 7, 11, 13, 17, 19, 23]
```
Measuring running time

Computing primes up to 30M:

 \blacktriangleright linux time command

\$ time python3 sieve01.py real 0m10.419s user 0m10.192s sys 0m0.217s

 \blacktriangleright using timeit module to average several runs

```
$ python3 -m timeit -n 3 -r 3 -s "import sieve01" "sieve01.primes_upto(30000000)"
```
KORKA SERKER EL VOLO

3 loops, best of 3: 10.2 sec per loop

CPU profiling: timing functions

cProfile: built-in profiling tool in the standard library. It hooks into the virtual machine to measure the time taken to run every function that it sees.

```
$ python3 -m cProfile -s cumulative sieve01.py
       5 function calls in 10.859 seconds
 Ordered by: cumulative time
 ncalls tottime percall cumtime percall filename:lineno(function)
      1 0.000 0.000 10.859 10.859 {built-in method builtins.exec}
          1 0.087 0.087 10.859 10.859 sieve01.py:3(<module>)
        1 9.447 9.447 10.772 10.772 sieve01.py:3(primes_upto)
      1 1.325 1.325 1.325 1.325 sieve01.py:11(<listcomp>)
      1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
```
\blacktriangleright For big codes use a visualization tool as [snakeviz](https://jiffyclub.github.io/snakeviz)

```
$ python3 -m cProfile -o profile.stats sieve01.py
$ snakeviz profile.stats
```
CPU profiling: line by line details of a function

line_profiler: profiling individual functions on a line-by-line basis, **big overhead** introduced. We must add the @profile decorator on the function to be analyzed.

```
@profile
def primes_upto(limit):
    sieve = [False] \times 2 + [True] \times (limit - 1)for n in range(2, int(\text{limit} \times 0.5 + 1)):
        if sieve[n]:
             i = n \times 2while i < limit+1:
                 sieve[i] = Falsei + = nreturn [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(30000000)
```
Then, we run the code with the kernprof tool provided by the package.

KORK ERKERY ADAMS

CPU profiling: line by line details of a function

```
$ kernprof -l -v sieve01_prof.py
Wrote profile results to sieve01_prof.py.lprof
Timer unit: 1e-06 s
Total time: 101.025 \text{ s}File: sieve01_prof.py
Function: primes_upto at line 2
Line # Hits Time Per Hit % Time Line Contents
==============================================================
   2 and 2 @profile
    3 defencions of the primes upto(limit):
   4 1 229258.0 229258.0 0.3 sieve = [False] * 2 + [True] * (limit - 1)
    5 5477 2466.0 0.5 0.0 for n in range(2, int(limit**0.5 + 1)):
   6 5476 2578.0 0.5 0.0 if sieve[n]:
   7 723 855.0 1.2 0.0 i = n**2
   8 70634832 28295172.0 0.4 32.4 while i < limit+1:
    9 70634109 29280104.0 0.4 33.5 sieve[i] = False
   10 70634109 26771040.0 0.4 30.7 i += n
   11 1 2740062.0 2740062.0 3.1 return [i for i, prime in enumerate(sieve) if prime]
```
KORKARYKERKE POLO

% Time is relative to lines on the function, not to total run time

Memory profiling: line by line details of a function

memory_profiler: module to measure memory usage on a line-by-line basis, runs will be slower than line_profiler. Is also required the @profile decorator on the function to analyze.

```
$ python3 -m memory_profiler sieve01_prof.py
Filename: sieve01_prof.py
Line # Mem usage Increment Line Contents
                        ================================================
    2 32.715 MiB 0.000 MiB @profile
    3 def primes_upto(limit):
    4 261.703 MiB 228.988 MiB sieve = [False] * 2 + [True] * (limit - 1)
    5 261.703 MiB 0.000 MiB for n in range(2, int(limit**0.5 + 1)):
    6 261.703 MiB 0.000 MiB if sieve[n]:
    7 261.703 MiB 0.000 MiB i = n**2
    8 261.703 MiB 0.000 MiB while i < limit+1:
    9 261.703 MiB 0.000 MiB sieve[i] = False
   10 261.703 MiB 0.000 MiB i += n
   11 return [i for i, prime in enumerate(sieve) if prime]
```
Memory profiling: line by line details of a function

Why are 228 MB allocated on this line?

4 261.703 MiB 228.988 MiB sieve = [False] $*$ 2 + [True] $*$ (limit - 1)

- In a Python list each boolean variable has a size of 8 bytes. The standard for a C long int in 64-bits.
- \triangleright We are creating a list with 30 million elements.
- **►** Doing the math: $\frac{30E6*8}{1024*1024} = 228.881 \text{ MB}$

Remarks:

- \triangleright Memory line by line analysis introduces an even bigger overhead, run can be up to 100x slower
- \triangleright We can miss information due to many memory operations taking place on a single line

 \blacktriangleright The memory profiler package provides the mprof tool to analyze and visualize the memory usage as a function of time

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright It has a very minor impact on the running time

\blacktriangleright Usage:

```
$ mprof run --python python3 mycode.py
$ mprof plot
```
\$ mprof run --python python3 sieve01.py

\$ mprof plot

python sieve01.py

We can add a @profile decorator and profile.timestamp() labels to introduce details in the analysis

KORK ERKERY ADAMS

```
@profile
def primes_upto(limit):
    with profile.timestamp("create_sieve_list"):
        sieve = [False] * 2 + [True] * (limit - 1)with profile.timestamp("cross_out_sieve"):
        for n in range(2, int(limit**0.5 + 1):
            if sieve[n]:
                i = n**2
                while i < limit+1:
                    sieve[i] = Falsei += nreturn [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(30000000)
```
\$ mprof run --python python3 sieve01_memprof.py

\$ mprof plot

python sieve01 memprof.py

Memory profiling: analyzing the whole run vs time Why the 500 MB peak during the sieve list creation?

Experimenting with the mprof tool can be verified that:

```
sieve = [False] \times 2 + [True] \times (limit - 1)
```
 \blacktriangleright is actually equivalent to something like:

```
size1 = [False] * 2\text{size}2 = [\text{True}] * (\text{limit} - 1)size = size1 + size2del sieve1
del sieve2
```
is allocated temporarily an extra \approx 30*E*6 boolean list!!

KORKA SERKER EL VOLO

 \triangleright We can try to replace with:

```
sieve = [True] * (limit + 1)sieve[0] = False
sieve[1] = False
```
\$ mprof run --python python3 sieve02_memprof.py

\$ mprof plot

python sieve02 memprof py

Excercise to experiment: profile a python code

Python implementation of the [2D diffusion equation](https://scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/)

 \triangleright From Lemaitre3 or Dragon2 copy this folder to your home directory

cp -r /CECI/proj/training/python4hpc ~/

I. Create the virtualenv and follow the **Hands on: First part** as explained on

KORKA SERKER EL VOLO

~/python4hpc/excercises/README.md

Numpy library

- \blacktriangleright Provides a new kind of array datatype
- \triangleright Contains methods for fast operations on entire arrays avoiding to define (inneficient) explicit loops
- \blacktriangleright They are basically wrappers to compiled C/Fortran/C++ code
- \blacktriangleright Their methods runs almost as fast as C compiled code
- \blacktriangleright It is the foundation of many other higher-level numerical tools
- \triangleright Compares to MATLAB in functionality

```
>>> import numpy as np
>>> a = np.array([[ 5, 1 ,3],
                  [ 1, 1 ,1],
                  [ 1, 2 ,1]])
>>> b = np.array([1, 2, 3])
\gg c = a.dot(b)
array([16, 6, 8])
```
KORK ERKERY ADAMS

Numpy library: sieve revisited

We replace the sieve list with a Numpy boolean array:

```
import numpy as np
def primes_upto(limit):
    sieve = np.ones(limit + 1, dtype=np.bool)
    sieve[0] = False
    sieve[1] = False
    for n in range(2, int(\text{limit} \times 0.5 + 1)):
        if sieve[n]:
            i = n \times 2while i < limit+1:
                 sieve[i] = False
                 i += nreturn [i for i, prime in enumerate(sieve) if prime]
```
KORKARKKERK EL VOQO

```
primes = primes_upto(30000000)
```
Numpy library: sieve revisited

python sieve03 np memprof.py

- \blacktriangleright In a Numpy array each boolean has a size of 1 byte
- **►** Math now: $\frac{30E6*1B}{1024*1024} = 28.61 MB$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Numpy library: sieve revisited

- \blacktriangleright Timing did not improve with Numpy array and same loop
- \blacktriangleright Full Numpy solution using [slice indexing](https://numpy.org/doc/stable/reference/arrays.indexing.html) to iterate:

```
import numpy as np
def primes_upto(limit):
    sieve = np.ones(limit + 1, dtype=np.bool)
    sieve[0] = False
    sieve[1] = False
    for n in range(2, int(limit**0.5 + 1):
       if sieve[n]:
            sieve[n**2::n] = 0
    return np.nonzero(sieve)[0]
```
\$ time python3 sieve04_np.py real 0 m 0.552 s user 0m0.518s sys 0m0.033s

22x gain in time!!

KORKARKKERK EL VOQO

Numpy library: sieve line by line profiling

```
$ kernprof -l -v sieve04_np_prof.py
Wrote profile results to sieve04 np prof.py.lprof
Timer unit: 1e-06 s
Total time: 0.482723 cFile: sieve04 np_prof.py
Function: primes_upto at line 3
Line # Hits Time Per Hit % Time Line Contents
==============================================================
   3 @profile
   4 def primes_upto(limit):
   5 1 8785 8785.0 1.8 sieve = np.ones(limit + 1, dtype=np.bool)
   6 1 5 5.0 0.0 sieve[0] = False
   7 1 0 0.0 0.0 sieve[1] = False
   8 5477 2796 0.5 0.6 for n in range(2, int(limit**0.5 + 1)):
   9 5476 3119 0.6 0.6 if sieve[n]:
  10 723 420784 582.0 87.2 sieve[n**2::n] = 0
  11 1 47234 47234.0 9.8 return np.nonzero(sieve)[0]
```
Numpy library: sieve line by line profiling

- \blacktriangleright line_profiler helps to understand the massive gain
- \blacktriangleright Pure python solution:

\blacktriangleright Full Numpy solution:

- \blacktriangleright The loops to cross out the sieve are fully performed by lower level implementations in Numpy
- \triangleright Time and memory usage is the same as best pure C or Fortran implementations!

CPU and Memory profiling: summary

- \triangleright Line-by-line profiling introduces a huge overhead, they must be used reducing the problem size and for specific functions detected as bottlenecks
- ► The mprof tool is very dynamic, *timestammping* in a smart way can be used both as a fast CPU and Memory profiler
- \blacktriangleright The cProfile dumps are great to detect bottlenecks on big projects, but a visualization tool is almost mandatory. Explore the [KCachegrind](https://kcachegrind.github.io/html/Home.html) package, usual workflow:

KORKA SERKER EL VOLO

```
$ python -m cProfile -o prof.out sieve02.py
$ pyprof2calltree -i prof.out -k
```
Numpy library: SciPy ecosystem

Collection of open source software for scientific computing in Python

\blacktriangleright Core packages:

- \blacktriangleright NumPy: the fundamental package for numerical computation
- \triangleright SciPy library: collection of numerical algorithms and domain-specific toolboxes, including signal processing, fourier transforms, clustering, optimization, statistics...
- \triangleright Matplotlib: a mature plotting package, provides publication-quality 2D plotting as well as basic 3D plotting

KOLKAR KELKEL E VAN

\triangleright Data and computation:

- **Dependas:** providing high-performance, easy to use data structures (similar to R)
- \triangleright SymPy: symbolic mathematics and computer algebra
- \triangleright scikit-image: algorithms for image processing
- \triangleright scikit-learn: algorithms and tools for machine learning
- \blacktriangleright h5py and PyTables: can both access data stored in the HDF5 format

Python Bindings

We saw that interfacing python with compiled code can provide huge performance gains. There are two main approaches to achieve this:

KORKARYKERKE POLO

- \triangleright Compile python (or python-like) code
- \blacktriangleright Link python to use existing libraries written in other languages

Compile Python

- In Just in time (JIT) compilers: compile and run a python code in real time
	- \blacktriangleright Numba: jit compiler supporting numpy code
	- \blacktriangleright Pypy: jit compiler for non-numpy code
- \triangleright Ahead of time (AOT) compilers: creation of a compiled static library in your machine
	- \triangleright Cython: the most popular, compile a python-like C code
	- \triangleright Pythran: automatic Python-to-C++ converter and compiler compatible with numpy

KORKARYKERKE POLO

Compile Python: JIT

- \triangleright Pypy: We can directly run the original sieve 01. py with pypy
- \triangleright Numba: We just need to decorate the function we wish to compile

```
from numba import jit
@jit
def primes_upto(limit):
    sieve = [False] \times 2 + [True] \times (limit - 1)for n in range(2, int(\text{limit} \times 0.5 + 1)):
        if sieve[n]:
            i = n**2
            while i < limit+1:
                 sieve[i] = Falsei \neq nreturn [i for i, prime in enumerate(sieve) if prime]
primes = primes_upto(30000000)
```
Compile Python: JIT remarks

- \blacktriangleright JIT compilers offers some nice speedups with very little manual intervention
- \triangleright But the more we rely on a tool to automatically optimize we are rapidly bounded on what can be improved
- \blacktriangleright Pypy is not compatible with numpy code
- I Numba seems a quite promising tool and it's numpy compatible
- \triangleright You might be happy with what you obtain with very low effort, is up to your problem and how many times you are going to run your code

KORKARYKERKE POLO

Compile python: Cython

You must annotate your code using a new syntax in between python and C. Example sieve primes_upto function

KORKA SERKER EL VOLO

```
def primes_upto(int limit):
    cdef int n, i
    cdef int prime
    sieve = [True]*limit
    for n in range(2, int(limit**0.5 + 1):
       if sieve[n]:
           i = n \star x2
            while i < limit:
                sieve[i] = Falsei += nreturn [i for i, prime in enumerate(sieve) if prime]
```
After compiling, it can be imported in a pure python code

from sievelib import primes_upto

```
primes = primes_upto(30000000)
```

```
Compile python: Cython
```
It requires to create a sort of makefile, called typically setup.py, there is a working example in example/compiling/cython

```
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
setup(
   ext modules = cythonize("sievelib.pyx")
)
```
To use the resulting module, built as a binary .so file, by a python script on the same directory

```
$ python setup.py build_ext --inplace
$ time python sieve01.py
real 0m2.663s
user 0m^2 552s
sys 0m0.080s
```
Compile python: Pythran

It requires annotations for the type information of the function to compile

KORKARA SAKSA SAGA

```
#pythran export primes_upto(int)
def primes_upto(limit):
    sieve = [True]*limit
    for n in range(2, int(limit**0.5 + 1):
       if sieve[n]:
            i = n \times 2while i < limit:
                sieve[i] = False
                i + = nreturn [i for i, prime in enumerate(sieve) if prime]
```
To compile the .so file

\$ pythran sievelib.py \$ time python3 sieve01.py real 0m0.512s

user 0m0.460s

sys 0m0.051s

Compile python: OpenMP support

- \triangleright Both Cython and Pythran provide the possibility to produce OpenMP code
- I This allows to use under the hood more cores in a multicore machine
- In Cython this is enabled by using special operators (i.e. prange instead range) and compiling with the -fopenmp flag
- In Pythran we annotate the python code to create a parallel region similar to original OpenMP usage in C

Python bindings: C libraries

- \triangleright Cython allows also to wrap C libraries to provide bindings for Python
- \triangleright Check the example in compiling/fib-wrap-c to see how wrapping works for a C function providing the *nth* Fibonacci number.

KORKA SERKER EL VOLO

\$ make \$ make test \$ python test.py The 10th Fibonacci number is: 55

Python Bindings: f2py example

 \triangleright To wrap Fortran code the f2py tool provides a more straighforward approach to do so

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Compiled Python

- \triangleright cython: C-Extensions for Python
	- \triangleright optimising and static compiler
	- \triangleright can compile Python code and Cython language
	- \triangleright can compile Python with Numpy code
	- \triangleright can do bindings with C code
- \blacktriangleright Pypy: Just-in-time compiler
	- \triangleright sometimes less memory hungry than Cython
	- \triangleright not fully compliant with Python with Numpy code
- \triangleright Numba: a compiler specialized for numpy code using the LLVM compiler
- \triangleright Pythran: compiler for both numpy and non-numpy code. Takes advantage of multi-cores and single instruction multiple data (SIMD) units
- \blacktriangleright All, except pypy requires to modify or decorate the original python code

Parallel processing

- \blacktriangleright multiprocessing module
	- \blacktriangleright allows to use process- and thread-based parallel processing
	- \triangleright for multi-process can be non trivial to [share memory among them](https://stackoverflow.com/questions/5549190/is-shared-readonly-data-copied-to-different-processes-for-multiprocessing/5550156#5550156)
- \blacktriangleright joblib module
	- \blacktriangleright desinged for scientific use in mind
	- \triangleright optimized for numpy arrays
	- \triangleright focused on embarrasingly parallel kind of problems
- \blacktriangleright mpi4py
	- \blacktriangleright Python bindings to the MPI-1/2/3 interfaces
	- ▶ if *you know* MPI on C/Fortran *you already know* mpi4py
	- \triangleright can make use equivalently of multiple cores on a single-machine or distributed
	- each process has a separate address space, no possibility to share memory between them

KOLKAR KELKEL E VAN

 \triangleright we covered it in the [MPI session](https://indico.cism.ucl.ac.be/event/70)

Excercise to experiment: compile python code

Follow the Hands on: Second part as explained on

~/python4hpc/excercises/README.md

Further references and training on the topic

- ► [High Performance Python 2nd Ed](http://shop.oreilly.com/product/0636920268505.do) by By Micha Gorelick and Ian Ozsvald
- ▶ Python in HPC Tutorial: <https://github.com/pyHPC/pyhpc-tutorial>
- \triangleright PRACE Sponsored Online Course: [Python in High Performance Computing](https://www.futurelearn.com/courses/python-in-hpc)