
Efficient use of Python on the clusters

Ariel Lozano

CÉCI training

November 25, 2020

Outline

I Analyze our code with profiling tools:
I cpu: cProfile, line_profiler, kernprof
I memory: memory_profiler, mprof

I How to make a more efficient use of hardware internals?
I Numpy and Scipy ecosystem (mainly wrappers to C/Fortran compiled code)
I binding to compiled code: interfaces between python and compiled modules
I compiling: tools to compile python code
I parallelism: overview of modules to exploit multicores

Sieve of eratostenes

Algorithm to find all prime numbers up to any given limit.

Ex: Find all the prime numbers less than or equal to 25:
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Cross out every number displaced by 2 after 2 up to the limit:
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Move to next n non crossed, cross out each non crossed number displaced by n:
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
The remaining numbers non crossed in the list are all the primes below limit.
Trivial optimization: jump directly to n2 to start crossing out. Then, n must loop
only up to

√
limit.

Simple pure python implementation

def primes_upto(limit):
sieve = [False] * 2 + [True] * (limit - 1)
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
i = n**2
while i < limit+1:

sieve[i] = False
i += n

return [i for i, prime in enumerate(sieve) if prime]

primes = primes_upto(25)
print(primes)

$ python3 sieve01_print.py

[2, 3, 5, 7, 11, 13, 17, 19, 23]

Measuring running time

Computing primes up to 30M:
I linux time command

$ time python3 sieve01.py

real 0m10.419s
user 0m10.192s
sys 0m0.217s

I using timeit module to average several runs

$ python3 -m timeit -n 3 -r 3 -s "import sieve01" "sieve01.primes_upto(30000000)"

3 loops, best of 3: 10.2 sec per loop

CPU profiling: timing functions
cProfile: built-in profiling tool in the standard library. It hooks into the virtual
machine to measure the time taken to run every function that it sees.

$ python3 -m cProfile -s cumulative sieve01.py
5 function calls in 10.859 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 10.859 10.859 {built-in method builtins.exec}
1 0.087 0.087 10.859 10.859 sieve01.py:3(<module>)
1 9.447 9.447 10.772 10.772 sieve01.py:3(primes_upto)
1 1.325 1.325 1.325 1.325 sieve01.py:11(<listcomp>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

I For big codes use a visualization tool as snakeviz

$ python3 -m cProfile -o profile.stats sieve01.py
$ snakeviz profile.stats

https://jiffyclub.github.io/snakeviz

CPU profiling: line by line details of a function

line_profiler: profiling individual functions on a line-by-line basis, big overhead
introduced. We must add the @profile decorator on the function to be analyzed.

@profile
def primes_upto(limit):

sieve = [False] * 2 + [True] * (limit - 1)
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
i = n**2
while i < limit+1:

sieve[i] = False
i += n

return [i for i, prime in enumerate(sieve) if prime]

primes = primes_upto(30000000)

Then, we run the code with the kernprof tool provided by the package.

CPU profiling: line by line details of a function
$ kernprof -l -v sieve01_prof.py
Wrote profile results to sieve01_prof.py.lprof
Timer unit: 1e-06 s

Total time: 101.025 s
File: sieve01_prof.py
Function: primes_upto at line 2

Line # Hits Time Per Hit % Time Line Contents
==

2 @profile
3 def primes_upto(limit):
4 1 229258.0 229258.0 0.3 sieve = [False] * 2 + [True] * (limit - 1)
5 5477 2466.0 0.5 0.0 for n in range(2, int(limit**0.5 + 1)):
6 5476 2578.0 0.5 0.0 if sieve[n]:
7 723 855.0 1.2 0.0 i = n**2
8 70634832 28295172.0 0.4 32.4 while i < limit+1:
9 70634109 29280104.0 0.4 33.5 sieve[i] = False

10 70634109 26771040.0 0.4 30.7 i += n
11 1 2740062.0 2740062.0 3.1 return [i for i, prime in enumerate(sieve) if prime]

% Time is relative to lines on the function, not to total run time

Memory profiling: line by line details of a function

memory_profiler: module to measure memory usage on a line-by-line basis, runs
will be slower than line_profiler. Is also required the @profile decorator on the
function to analyze.

$ python3 -m memory_profiler sieve01_prof.py
Filename: sieve01_prof.py

Line # Mem usage Increment Line Contents
==

2 32.715 MiB 0.000 MiB @profile
3 def primes_upto(limit):
4 261.703 MiB 228.988 MiB sieve = [False] * 2 + [True] * (limit - 1)
5 261.703 MiB 0.000 MiB for n in range(2, int(limit**0.5 + 1)):
6 261.703 MiB 0.000 MiB if sieve[n]:
7 261.703 MiB 0.000 MiB i = n**2
8 261.703 MiB 0.000 MiB while i < limit+1:
9 261.703 MiB 0.000 MiB sieve[i] = False

10 261.703 MiB 0.000 MiB i += n
11 return [i for i, prime in enumerate(sieve) if prime]

Memory profiling: line by line details of a function

Why are 228 MB allocated on this line?

4 261.703 MiB 228.988 MiB sieve = [False] * 2 + [True] * (limit - 1)

I In a Python list each boolean variable has a size of 8 bytes. The standard for a
C long int in 64-bits.

I We are creating a list with 30 million elements.
I Doing the math: 30E6∗8 B

1024∗1024 = 228.881 MB
Remarks:
I Memory line by line analysis introduces an even bigger overhead, run can be

up to 100x slower
I We can miss information due to many memory operations taking place on a

single line

Memory profiling: analyzing the whole run vs time

I The memory_profiler package provides the mprof tool to analyze and
visualize the memory usage as a function of time

I It has a very minor impact on the running time
I Usage:

$ mprof run --python python3 mycode.py
$ mprof plot

Memory profiling: analyzing the whole run vs time
$ mprof run --python python3 sieve01.py
$ mprof plot

Memory profiling: analyzing the whole run vs time

We can add a @profile decorator and profile.timestamp() labels to introduce
details in the analysis

@profile
def primes_upto(limit):

with profile.timestamp("create_sieve_list"):
sieve = [False] * 2 + [True] * (limit - 1)

with profile.timestamp("cross_out_sieve"):
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
i = n**2
while i < limit+1:

sieve[i] = False
i += n

return [i for i, prime in enumerate(sieve) if prime]

primes = primes_upto(30000000)

Memory profiling: analyzing the whole run vs time
$ mprof run --python python3 sieve01_memprof.py
$ mprof plot

Memory profiling: analyzing the whole run vs time
Why the 500 MB peak during the sieve list creation?
I Experimenting with the mprof tool can be verified that:

sieve = [False] * 2 + [True] * (limit - 1)

I is actually equivalent to something like:

sieve1 = [False] * 2
sieve2 = [True] * (limit - 1)
sieve = sieve1 + sieve2
del sieve1
del sieve2

I is allocated temporarily an extra ≈ 30E6 boolean list !!
I We can try to replace with:

sieve = [True] * (limit + 1)
sieve[0] = False
sieve[1] = False

Memory profiling: analyzing the whole run vs time
$ mprof run --python python3 sieve02_memprof.py
$ mprof plot

Excercise to experiment: profile a python code

Python implementation of the 2D diffusion equation
I From Lemaitre3 or Dragon2 copy this folder to your home directory

cp -r /CECI/proj/training/python4hpc ~/

I Create the virtualenv and follow the Hands on: First part as explained on

~/python4hpc/excercises/README.md

https://scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/

Numpy library

I Provides a new kind of array datatype
I Contains methods for fast operations on entire arrays avoiding to define

(inneficient) explicit loops
I They are basically wrappers to compiled C/Fortran/C++ code
I Their methods runs almost as fast as C compiled code
I It is the foundation of many other higher-level numerical tools
I Compares to MATLAB in functionality

>>> import numpy as np
>>> a = np.array([[5, 1 ,3],

[1, 1 ,1],
[1, 2 ,1]])

>>> b = np.array([1, 2, 3])
>>> c = a.dot(b)
array([16, 6, 8])

Numpy library: sieve revisited

We replace the sieve list with a Numpy boolean array:

import numpy as np

def primes_upto(limit):
sieve = np.ones(limit + 1, dtype=np.bool)
sieve[0] = False
sieve[1] = False
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
i = n**2
while i < limit+1:

sieve[i] = False
i += n

return [i for i, prime in enumerate(sieve) if prime]

primes = primes_upto(30000000)

Numpy library: sieve revisited

I In a Numpy array each boolean has a size of 1 byte
I Math now: 30E6∗1 B

1024∗1024 = 28.61 MB

Numpy library: sieve revisited
I Timing did not improve with Numpy array and same loop
I Full Numpy solution using slice indexing to iterate:

import numpy as np

def primes_upto(limit):
sieve = np.ones(limit + 1, dtype=np.bool)
sieve[0] = False
sieve[1] = False
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
sieve[n**2::n] = 0

return np.nonzero(sieve)[0]

$ time python3 sieve04_np.py
real 0m0.552s
user 0m0.518s
sys 0m0.033s

22x gain in time!!

https://numpy.org/doc/stable/reference/arrays.indexing.html

Numpy library: sieve line by line profiling

$ kernprof -l -v sieve04_np_prof.py
Wrote profile results to sieve04_np_prof.py.lprof
Timer unit: 1e-06 s

Total time: 0.482723 s
File: sieve04_np_prof.py
Function: primes_upto at line 3

Line # Hits Time Per Hit % Time Line Contents
==

3 @profile
4 def primes_upto(limit):
5 1 8785 8785.0 1.8 sieve = np.ones(limit + 1, dtype=np.bool)
6 1 5 5.0 0.0 sieve[0] = False
7 1 0 0.0 0.0 sieve[1] = False
8 5477 2796 0.5 0.6 for n in range(2, int(limit**0.5 + 1)):
9 5476 3119 0.6 0.6 if sieve[n]:

10 723 420784 582.0 87.2 sieve[n**2::n] = 0
11 1 47234 47234.0 9.8 return np.nonzero(sieve)[0]

Numpy library: sieve line by line profiling
I line_profiler helps to understand the massive gain
I Pure python solution:

6 5476 2362 0.4 0.0 if sieve[n]:
7 723 680 0.9 0.0 i = n**2
8 70634832 28740579 0.4 28.4 while i < limit+1:
9 70634109 33142484 0.5 32.8 sieve[i] = False

10 70634109 26776815 0.4 26.5 i += n

I Full Numpy solution:

9 5476 3119 0.6 0.6 if sieve[n]:
10 723 420784 582.0 87.2 sieve[n**2::n] = 0

I The loops to cross out the sieve are fully performed by lower level
implementations in Numpy

I Time and memory usage is the same as best pure C or Fortran
implementations!

CPU and Memory profiling: summary

I Line-by-line profiling introduces a huge overhead, they must be used reducing
the problem size and for specific functions detected as bottlenecks

I The mprof tool is very dynamic, timestammping in a smart way can be used
both as a fast CPU and Memory profiler

I The cProfile dumps are great to detect bottlenecks on big projects, but a
visualization tool is almost mandatory. Explore the KCachegrind package,
usual workflow:

$ python -m cProfile -o prof.out sieve02.py
$ pyprof2calltree -i prof.out -k

https://kcachegrind.github.io/html/Home.html

Numpy library: SciPy ecosystem

Collection of open source software for scientific computing in Python
I Core packages:

I NumPy: the fundamental package for numerical computation
I SciPy library: collection of numerical algorithms and domain-specific toolboxes, including

signal processing, fourier transforms, clustering, optimization, statistics...
I Matplotlib: a mature plotting package, provides publication-quality 2D plotting as well as

basic 3D plotting

I Data and computation:
I pandas: providing high-performance, easy to use data structures (similar to R)
I SymPy: symbolic mathematics and computer algebra
I scikit-image: algorithms for image processing
I scikit-learn: algorithms and tools for machine learning
I h5py and PyTables: can both access data stored in the HDF5 format

Python Bindings

We saw that interfacing python with compiled code can provide huge performance
gains. There are two main approaches to achieve this:
I Compile python (or python-like) code
I Link python to use existing libraries written in other languages

Compile Python

I Just in time (JIT) compilers: compile and run a python code in real time
I Numba: jit compiler supporting numpy code
I Pypy: jit compiler for non-numpy code

I Ahead of time (AOT) compilers: creation of a compiled static library in your
machine

I Cython: the most popular, compile a python-like C code
I Pythran: automatic Python-to-C++ converter and compiler compatible with numpy

Compile Python: JIT
I Pypy: We can directly run the original sieve01.py with pypy

I Numba: We just need to decorate the function we wish to compile

from numba import jit

@jit
def primes_upto(limit):

sieve = [False] * 2 + [True] * (limit - 1)
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
i = n**2
while i < limit+1:

sieve[i] = False
i += n

return [i for i, prime in enumerate(sieve) if prime]

primes = primes_upto(30000000)

Compile Python: JIT remarks

I JIT compilers offers some nice speedups with very little manual intervention
I But the more we rely on a tool to automatically optimize we are rapidly

bounded on what can be improved
I Pypy is not compatible with numpy code
I Numba seems a quite promising tool and it’s numpy compatible
I You might be happy with what you obtain with very low effort, is up to your

problem and how many times you are going to run your code

Compile python: Cython
You must annotate your code using a new syntax in between python and C.
Example sieve primes_upto function

def primes_upto(int limit):
cdef int n, i
cdef int prime
sieve = [True]*limit
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
i = n**2
while i < limit:

sieve[i] = False
i += n

return [i for i, prime in enumerate(sieve) if prime]

After compiling, it can be imported in a pure python code

from sievelib import primes_upto

primes = primes_upto(30000000)

Compile python: Cython
It requires to create a sort of makefile, called typically setup.py, there is a working
example in example/compiling/cython

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

setup(
ext_modules = cythonize("sievelib.pyx")

)

To use the resulting module, built as a binary .so file, by a python script on the
same directory

$ python setup.py build_ext --inplace
$ time python sieve01.py

real 0m2.663s
user 0m2.552s
sys 0m0.080s

Compile python: Pythran
It requires annotations for the type information of the function to compile

#pythran export primes_upto(int)
def primes_upto(limit):

sieve = [True]*limit
for n in range(2, int(limit**0.5 + 1)):

if sieve[n]:
i = n**2
while i < limit:

sieve[i] = False
i += n

return [i for i, prime in enumerate(sieve) if prime]

To compile the .so file

$ pythran sievelib.py
$ time python3 sieve01.py

real 0m0.512s
user 0m0.460s
sys 0m0.051s

Compile python: OpenMP support

I Both Cython and Pythran provide the possibility to produce OpenMP code
I This allows to use under the hood more cores in a multicore machine
I In Cython this is enabled by using special operators (i.e. prange instead range)

and compiling with the -fopenmp flag
I In Pythran we annotate the python code to create a parallel region similar to

original OpenMP usage in C

Python bindings: C libraries

I Cython allows also to wrap C libraries to provide bindings for Python
I Check the example in compiling/fib-wrap-c to see how wrapping works for a

C function providing the nth Fibonacci number.

$ make
$ make test
$ python test.py
The 10th Fibonacci number is: 55

Python Bindings: f2py example

I To wrap Fortran code the f2py tool provides a more straighforward approach
to do so

subroutine foo(a)
integer a
print*, "Hello from Fortran!"
print*, "a=",a

end

$ f2py -c -m hello hello.f90

import hello

hello.foo(10)

$ python call_fhello.py
Hello from Fortran!
a= 10

Compiled Python

I cython: C-Extensions for Python
I optimising and static compiler
I can compile Python code and Cython language
I can compile Python with Numpy code
I can do bindings with C code

I Pypy: Just-in-time compiler
I sometimes less memory hungry than Cython
I not fully compliant with Python with Numpy code

I Numba: a compiler specialized for numpy code using the LLVM compiler
I Pythran: compiler for both numpy and non-numpy code. Takes advantage of

multi-cores and single instruction multiple data (SIMD) units
I All, except pypy requires to modify or decorate the original python code

Parallel processing

I multiprocessing module
I allows to use process- and thread-based parallel processing
I for multi-process can be non trivial to share memory among them

I joblib module
I desinged for scientific use in mind
I optimized for numpy arrays
I focused on embarrasingly parallel kind of problems

I mpi4py
I Python bindings to the MPI-1/2/3 interfaces
I if you know MPI on C/Fortran you already know mpi4py
I can make use equivalently of multiple cores on a single-machine or distributed
I each process has a separate address space, no possibility to share memory between

them
I we covered it in the MPI session

https://stackoverflow.com/questions/5549190/is-shared-readonly-data-copied-to-different-processes-for-multiprocessing/5550156#5550156
https://indico.cism.ucl.ac.be/event/70

Excercise to experiment: compile python code

I Follow the Hands on: Second part as explained on

~/python4hpc/excercises/README.md

Further references and training on the topic

I High Performance Python - 2nd Ed by By Micha Gorelick and Ian Ozsvald
I Python in HPC Tutorial: https://github.com/pyHPC/pyhpc-tutorial
I PRACE Sponsored Online Course: Python in High Performance Computing

http://shop.oreilly.com/product/0636920268505.do
https://github.com/pyHPC/pyhpc-tutorial
https://www.futurelearn.com/courses/python-in-hpc

	Main

