
Code Versioning
Olivier Mattelaer (CISM/CP3)

based on slides from
Damien Francois (CISM)
Juan Cabrera (NAMUR)

Jonathan Lambrechts (IMMC)
Scott Chalcon (git)

Road Map
• historical perspective

• various method of code versioning
• Basic of code versioning

• revision, tracking file, …
• Branch/Workflow

• Conflict, merging, …
• Online support

• github/gitlab and similar

What is code versioning

 3

Notions of code versioning

Versions have existed for almost as long as writing has existed

Goal of code versioning

1. History of modification

2. Team Work

3. WorkFlow

Goal of code versioning

1. History of modification

• Possibility to go back in time
• Undo mistake / debugging /…

• Information about the modification
• Who
• When
• Why

Goal of code versioning
2. Team Work

• Simultaneous work on a project
• No need to send email to say “I’m working on

that file” (dropbox organization)
• Asynchronous synchronisation

• Allow work Offline (opposite to overleaf project)
• Need conflict resolution

Goal of code versioning
2. Workflow

• Testing new idea (and easy way to throw them out)
• Multiple version of the code

• Stable (1.x.y)
• Debug (1.x.y+1)
• Next “feature” release (1.x+1.0)
• Next “huge” release (2.0.0)

• Need to pass modification from one version to next
• Transfer of information between version

Open-Source Code
2017 2019

https://www.openhub.net/repositories/compare

Slide from Scott Chalcon

V1 V2 Δ12V1

V1 V2 V1 V2

Repository content
Internal storage

Key Concept
1. History

1. History and commit

2. Three phases of git

1. Workspace

2. Index

3. Repository

• An history: Is a succession of snapshot of your
files at key time of their development
• Each snapshot is called COMMIT

• Commit is
• All the files at a given time
• A unique name (SLHA1)
• MetaData (who created/when/info)

1. Commit

C2

C1 • Pointer to previous(es) commit

1. Commit

C1
File 1 version 1

 File 2 version 1

C2
File 1 version2

File 2 Version 1

C3
File 1 version 2

Edit file 1

Remove file 2

1. Commit

C1

C3

C2

1. Simplify representation
of commit/history

Git Three area
Workspace Index Repository

./WORKDIR .git/index .git/

C1

C3

C2

Staging area

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

Modifying file A
-> add a line

Action:

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

git add A
-> modify file moves to the index
-> inside the box
-> ready for a commit

Action:

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

git commit -m "change color"
-> save the index current status
 Into a new commit inside the
 Repository

Action: A B

C4

Git Three area
Workspace Index Repository

C1

C3

C2

A A A

B B B

Edit file B
git commit -a -m "second one"

Action: A B

C4

Git Three area
Workspace Index Repository

C1

C3

C2

A A

AB B

git commit -am “change color2”
-> automatic staging of edited
 file and removed file

Action: A B

C4
B

A
C4

B

Demo #1
Initialisation

Git init
Git log

Git status
Git commit

Nice display: git log --oneline --graph

1. Commit

C1

C3

C2

Head: latest committed version

Head~1

Head~2

Head: place where the new commit will be attach

Git diff
Workspace Index Repository

C1

C3

C2

A A A

B B B

git diff git diff --cached

git diff A Vs A

git diff --cached A

Vs

Vs

A A

A C3

C3git diff HEAD

git diff HEAD

Git reset
Workspace Index Repository

C1

C3

Action:
 git reset HEAD A

C2

A A A

B B B

A

 git checkout -- A

A

Restore file
Workspace Index Repository

C1

C3

C2

A A

A BAction:
 git checkout C3 -- B
-> restore file B from version C3

C4
A B

BB

Git reset
Workspace Index Repository

C1

C3

Action:
 git reset --hard HEAD~1

C2

A A A

B B B

AA

C4

Oops:
 git reflog; git reset --hard XXX

Local project
Exercise #1

Starting with git

 14

Global configuration

Before the use of hg or git set configuration

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Edit ~/.hgrc file

[ui]

username = John Doe <johndoe@example.com>

Set global options for git

You can set other parameters as editor, merge tool ...

Use .gitignore or .hgignore files to

select files and folders you do not want to track

Ignore files
Backup files left behind by the Emacs and vim editor.

*~

Temporary files used by the vim editor.

.*.swp

compiled objects

*.pyc

*.o

directory fileter example (case sensitive)

ignore log dir

Logs/

 14

Global configuration

Before the use of hg or git set configuration

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Edit ~/.hgrc file

[ui]

username = John Doe <johndoe@example.com>

Set global options for git

You can set other parameters as editor, merge tool ...

Use .gitignore or .hgignore files to

select files and folders you do not want to track

Ignore files
Backup files left behind by the Emacs and vim editor.

*~

Temporary files used by the vim editor.

.*.swp

compiled objects

*.pyc

*.o

directory fileter example (case sensitive)

ignore log dir

Logs/

 15

Single project single user

$ hg init

$ git init

Repository

working-dir

working-dir

 15

Single project single user

$ hg init

$ git init

Repository

working-dir

working-dir

 15

Single project single user

$ hg init

$ git init

Repository

working-dir

working-dir

.config/git/ignore, .gitignore

single user/project

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

adding file (for next commit)

 17

Single project single user

$ hg add *
$ hg st
A test.c
A test.h

$ git add test.c
$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

new file: test.c

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.h

hg add is used to
start tracking files

git add is used to
stage files i.e. mark
them for next commit

Repository

working-dir

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

Commit

 18

Single project single user

$ hg commit test.c -m'Add test.c'
$ hg st
A test.h

$ git commit -m'Add test.c'
[master (root-commit) 46ef322] Add test.c
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 test.c
$ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

checking modif

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

 22

Single project single user

$ vim test.c
$ git diff
diff --git a/test.c b/test.c
index 0197793..0c7f097 100644
--- a/test.c
+++ b/test.c
@@ -1,4 +1,4 @@
 int main()
 {
- int a=5;
+ int a=6;
 }
$

Cancel with git revert
Go back to a specific version with git checkout...

Repository

working-dir

Do it yourself

• install git

• configure the tools (name + email)

• create a local repository

• commit one file then modify it and re-commit

• check “diff”, “log”, “status” functionality

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

Workflow

branch in git
• Branch is pointer to a commit (represent an

history)
• A branch can point at other commit, it can move!
• A branch is a way to organize your work and

working histories
• Since commit know which commits they are

based on, branch represents a commit and what
came before it

• a branch is cheap, you can have multiple branch
in the same repository and switch your working dir
from one branch state to another

branches
• default branch: master

• When doing a commit, the branch moves to the new commit

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx
git commit

• creating a new branch: add a pointer (git checkout -b by)

• only selected branch affected by commit!
Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx

by

git commit

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

bx

by

Branches

• When doing a “commit” the current “branch”

moves to point at the new commit

C3 C2 C1bx

On branch bx -> Commit of C4

C3 C2 C1bx C4

LO
C
A
L

branches
Branches

create a new branch git checkout -b bx

switch to a branch git checkout bx

delete a branch git branch -d bx

rename a branch git branch -m bx

move a branch git branch -f bx rev

LO
C
A
L

• master : default created branch

• branch is cheap -> do it often

• branch allow to have short/long term parallel
development

merging
• The interest of branch is that you can merge them

• Include in one (branch) file the modification done
somewhere else

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

bx

by

git merge bx

merging
• merging two different modifications

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

bx

by

git merge bx
git branch -d bx

merging
• merging two different modifications

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

by

git merge bx
git branch -d bx

merging
• merging two different modifications

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

bx

by

git merge bx
git checkout bx
git merge by

merging
• merging two different modifications

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

Merging

C3 C2 C1

bx

by

C4

while on by : git merge bx

C3 C2 C1

bx C4

by C5

C5

C6

LO
C
A
L

by

bx

git merge bx
git checkout bx
git merge by

merging can lead to conflict

Conflict

Edit the file to the “correct” version

Run
-> git commit

Conflict
• Multiple version of files are great

• Not always easy to know how to merge them
• Conflict will happen (same line modify by both user)

• Conflict need to be resolved manually!
• Boring task
• need to understand why a conflict is present!

• Do not be afraid of conflict! Do not try to avoid them
at all cost!

• stay in sync as most as possible and keep line short

Keep history clean: Rebase
Rebase

• Instead of merging, replays set of changes on

top of another branch

• AJects the “rebased” branch only

• Changes the history of commits

• Can be dangerous

• Very useful to remove history cluCer

• Simple rule, use locally only

LO
C
A
L

Working on the wrong branch

A

B
C1

M

IB

A

B
C2

IA

C1

A

B
C3

Δ B′

git stash save “INFO”

Working on the wrong branch

A

B
C1

M

IB

A

B
C2

IA

C1

A

B
C3

Δ

git stash save “INFO”

git stash list

stash@{0}

Stash storage

Working on the wrong branch

A

B
C1

M

IB

A

B
C2

IA

C1

A

B
C3

Git stash list

git checkout IA

Δstash@{0}

git stash save “INFO”

Working on the wrong branch

A

B
C1

M

IB

IA

C1

A

B
C3

Git stash list

git checkout IA
git stash pop

Δ

git stash save “INFO”

A

B
C2 B′

A

B

Keep history clean: Rebase

C1

M IA IB

A

B

Keep history clean: Rebase

C1

M IA IB

Git commit

A

B
C2

C1

Git checkout IA

A

B

Keep history clean: Rebase

C1

M IB

Git commit

A

B
C2

Git checkout IB

IA

C1

A

B
C3

I want to include BOTH
changes in master

branch

A

B

Keep history clean: Rebase

C1

M

IB
Git merge IA IB

A

B
C2

Git checkout M

IA

C1

A

B
C3 A

B
C4

But merge are not clean
history

A

B

Keep history clean: Rebase

C1

M

IB
Manual change of B

A

B
C2

Git checkout IA

IA

C1

A

B
C3

Git commit

A

B
C5

We can merge M (ff)
Remove IB and IA

Δ

A

B

Keep history clean: Rebase

C1

M

Manual change of B

A

B
C2

Git checkout IA

Git commit

A

B
C5

Git checkout M
Git merge IA
Git branch -D IA IB

This is not easy to do
-> let automate that

-> “rebase”

A

B

Keep history clean: Rebase

C1

M

Git rebase IB

A

B
C2

Git checkout IA

IA

IB

C1

A

B
C3

A

B
C5

Git checkout M
Git merge IAM

IA

Git branch -D IA IB
Δ

History
• Changing your history can create a lot of conflict with your collaborator!

• Keep it simple, secure and local

• Rebase has many additional features:

• Split and or merge (squash) commit

• Change commit message

• Delete some commit / …

• Remember reflog in case of issue

Nice video about history modification:
https://www.youtube.com/watch?v=ElRzTuYln0M

Do it yourself

• create two branch on your repository

• make new commit on each branch

• merge (test case with and without conflict)

• redo the same but use the rebase method

 16

Single project single user

$ vim test.c
$ vim test.h
$ hg status
? test.c
? test.h

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)

Repository

working-dir

Team Work

GitHub/Gitlab

Collaboration

Collaboration

Collaboration

Collaboration

Collaboration

Collaboration

Collaboration

Remote Branches

My Machine The Server

C1

master

C0

cloneC1

origin/master

C0

master

This is a remote

branch

origin is just a name

for a “remote”

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

C1

C0

master

C2
C1

origin/master

C0

masterC2

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

C1

C0

master

C2C1

origin/master

C0

masterC2

Can

merge!

LO
C
A
L

R
E
M
O
TE

git merge

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

C1

C0

master

C2

C1

origin/master

C0

master

C2
Now

merged

(fast

forward in

this case)

LO
C
A
L

R
E
M
O
TE

Remote Branches - fetch

My Machine The Server

Some changes on

the server

C1

C0

master

C2C1

origin/master

C0

master

fetch

LO
C
A
L

R
E
M
O
TE

Remote Branches

• Reminder - Remote branches represent a

branch on a remote repository

• The branch origin/master for example is a

local pointer to the “master” on “origin”

• It re�ects what the local repository currently

knows about the state of “master” on “origin”

• You cannot change them, but you can

“checkout” to get a “remote tracking branch”

LO
C
A
L

R
E
M
O
TE

Send information: push
• Will take local object which are required to make a remote

branch complete and send them

• Will merge (fast-forward only) those local changes into the
remote branch

• If fast-forward not possible:

• the push will fail

• need manual merge

• git fetch; git merge origin/master; git add .; git commit

Conflict

 31

Multiple users central server

● Conflict resolution

$ git push origin master
To ssh://hall/~/bcktestgit
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to 'ssh://hall/~/bcktestgit'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.
$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From ssh://hall/~/bcktestgit
 a547735..7f32455 master -> origin/master
Auto-merging test.c
CONFLICT (content): Merge conflict in test.c
Automatic merge failed; fix conflicts and then commit the result.

Pushed on the server refused

 31

Multiple users central server

● Conflict resolution

$ git push origin master
To ssh://hall/~/bcktestgit
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to 'ssh://hall/~/bcktestgit'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.
$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From ssh://hall/~/bcktestgit
 a547735..7f32455 master -> origin/master
Auto-merging test.c
CONFLICT (content): Merge conflict in test.c
Automatic merge failed; fix conflicts and then commit the result.

1) import the change from the server

Some change create conflict ! Need manual resolution

Conflict

 32

Multiple users central server

● Conflict resolution

$ cat test.c
<<<<<<< HEAD
line you wanted to push
=======
current version of the line on the server
>>>>>>> 7f32455dbe6bea745bc94efd6b3d5f473446d581
$ vim test.c
$ git add .
$ git commit -m merge
[master 6b884f0] merge
$ git push origin master
Counting objects: 6, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 676 bytes | 0 bytes/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To ssh://hall/~/bcktestgit
 7f32455..6b884f0 master -> master

Open the file(s) with conflict and resolve them

 32

Multiple users central server

● Conflict resolution

$ cat test.c
<<<<<<< HEAD
line you wanted to push
=======
current version of the line on the server
>>>>>>> 7f32455dbe6bea745bc94efd6b3d5f473446d581
$ vim test.c
$ git add .
$ git commit -m merge
[master 6b884f0] merge
$ git push origin master
Counting objects: 6, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 676 bytes | 0 bytes/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To ssh://hall/~/bcktestgit
 7f32455..6b884f0 master -> master

Commit your changes

Push on the server

 32

Multiple users central server

● Conflict resolution

$ cat test.c
<<<<<<< HEAD
line you wanted to push
=======
current version of the line on the server
>>>>>>> 7f32455dbe6bea745bc94efd6b3d5f473446d581
$ vim test.c
$ git add .
$ git commit -m merge
[master 6b884f0] merge
$ git push origin master
Counting objects: 6, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 676 bytes | 0 bytes/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To ssh://hall/~/bcktestgit
 7f32455..6b884f0 master -> master

workspace index
Repository

store

clone

Remote

Repository

checkout

add

push

commit

fetchmerge

Pull (fetch+merge)

Summary of opera=ons
LO

C
A
L

R
E
M
O
TE

Add your ssh keys!

Add your project in git

Add it in a git repo

Add it in a git repo

Add it in a git repo

Adding Collaborator to GitHub

Conclusion
• Versioning is crucial both for small/large project

• Avoid dropbox for paper / project

• make meaningful commit

• logical block

• meaningful message

• git more complicated but the standard

More information

• Why an index: http://gitolite.com/uses-of-index.html

• technical tutorial on git (details on storage
structure): https://www.youtube.com/watch?
v=xbLVvrb2-fY

• https://git-scm.com/doc

https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY

