Code Versioning

Olivier Mattelaer (CISM/CP3)

based on slides from
Damien Francois (CISM)
Juan Cabrera (NAMUR)
Jonathan Lambrechts (IMMC)
Scott Chalcon (git)



Road Map

historical perspective

* various method of code versioning
Basic of code versioning

* revision, tracking file, ...
Branch/Workflow

e Contlict, merging, ...

Online support

e github/gitlab and similar



What Is code versioning

e

RADIATION
DETECTION

AND

MEASUREMENT

GLENN F KNOLL

> Radiation Detection

and Measurement

THIRD EDITION

GLENN E. KNOLL GLENN F. KNOLL

‘Version ing.od pﬁ ‘Version ing E.ndpﬁ ‘Version ing with " Version ing final.od pﬁ ‘Version ing final B
) ) ) " corrections.odp ) ~ minor
) " corrections.odp



(Goal of code versioning

1. History of modification
2. leam Work
3. WorkFlow



(Goal of code versioning

1. History of modification

* Possibility to go back in time
* Undo mistake / debugging /...
* |nformation about the modification
* Who
* \When
 Why



(Goal of code versioning

2. Team Work

 Simultaneous work on a project

* No need to send email to say “I'm working on
that file” (dropbox organization)

* Asynchronous synchronisation
* Allow work Offline (opposite to overleat project)

e Need conflict resolution



(Goal of code versioning

2. Workflow

* Testing new idea (and easy way to throw them out)
* Multiple version of the code

e Stable (1.x.y)
 Debug (1.x.y+1)

 Next “feature” release (1.x+1.0)
* Next “huge” release (2.0.0)
* Need to pass modification from one version to next

e [ransfer of information between version



Open-Source Code

2017 2019

Bazaar: 1%

Bazaar (X

' - Cve %
Subversion: 25%
Subversion:
a0%

Mercurial: 1% —‘—

Gir 47%

Mescusiall 2% ) Git: 70%

https://www.openhub.net/repositories/compare



source control taxonomy

Repository content

Internal storage

DAG
storage

Slide from Scott Chalcon




source control taxonomy

Kl




Key Concept

1. History
1. History and commit
2. Three phases of git
1. Workspace
2. Index
3. Repository



1. Commit

* An history: Is a succession of snapshot of your
files at key time of their development

 Each snapshot is called COMMIT

e Commitis

e All the tiles at a given time

* A unigue name (SLHA1)

* MetaData (who created/when/info)

* Pointer to previous(es) commit




1. Commit

File 1 version 2

Remove file 2

File 2 Version 1
Edit file 1

File 1 version 1

File 2 version 1




1. Commit

of commit/history

B 1. Simplity representation




/WORKDIR git/index

Staging area




Git Three area

4 ) (" )

(" )




Git Three area

= mmm mmm e = m— m— —

Modifying file A
-> add a line

—-— e - e - e .

s amn BB ABEE AEEE AEEE UEEE AR AEEL AEEE G A AR B AR R AR G G L e e aamm b



- Action: :
' git add A :
. -> modify file moves to the index
. -> inside the box :
. -=> ready for a commit |

________________________




Into a new commit inside the :
Repository |

________________________




- Action:
- Edit file B
' git commit -a -m "second one”

________________________



-> automatic staging of edited
file and removed file

________________________



Demo #1

Initialisation
Git init
Git log

Git status

Git commit

Nice display: git log --oneline --graph



1. Commit

Head: place where the new commit will be attach

C] Head: latest committed version

;
|

Head~1

Head~2




Git dift

git diff --cached

git diff HEAD

~







Restore file

 Action:
: git checkout C3 - B
' > restore file B from version C3

LR U S —

N o o o e e e e o o e o o o o e D e T e e - m——



Git reset

Oops:

— e e s s s s o s o =

N o o o e e e e o o e o o o o e D e T e e - m——



| ocal project

Exercise #1



Starting with git

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

.config/git/ignore, .gitignore

# Backup files left behind by the Emacs and vim editor.

~

# Temporary files used by the vim editor.
F.swp
# compiled objects

*.pyc
*.0

# directory fileter example (case sensitive)
# ignore log dir
Logs/

$ qit init Q o
= working-d
Q working-dir > \ }wor e

Repository




= o= gingle user/project

Repository

$ vim test.c
$ vim test.h
$ git status
On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

test.c
test.h

nothing added to commit but untracked files present (use "git add" to track)




oy adding file (for next commit)

$ git add test.c
$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: test.c

Untracked files:
(use "git add <file>..." to include in what will be committed)

test.h




= oy Commit

$ git commit -m'Add test.c'
[master (root-commit) 46ef322] Add test.c
1 file changed, 0 insertions(+), O deletions(-)
create mode 100644 test.c
$ git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)

test.h

nothing added to commit but untracked files present (use "git add" to track)



= 2 checking modif

$ vim test.c

$ git diff

diff --git a/test.c b/test.c

index 0197793..0c7f097 100644
--- altest.c

+++ b/test.c

@Q@-14+14 Q@

int main()

{
Int a=5;
Int a=6;

.
}
$



Q *,_jworking-dir

Repository

Do it yourself

-

* nstall git
e configure the tools (name + email)
e create a local repository

 commit one file then modity it and re-commit

-Kcheck “diff”, “log”, “status” functionality

~

/




Workftlow



branch in git

(Branch IS pointer to a commit (represent an x
history)

* A branch can point at other commit, it can move!

A branch is a way to organize your work and
working histories

e Since commit know which commits they are

based on, branch represents a commit and what
came betore it

* abranch is cheap, you can have multiple branch
INn the same repository and switch your working dir
Kfrom one branch state to another j




branches

e default branch: master
 \WWhen doing a commit, the branch moves to the new commit

git commit

) — A

e creating a new branch: add a pointer (git checkout -b by)

* only selected branch affected by commit!

bX 0)4

git commit

et — e

]

[ }



pDranches

create a new branch git checkout -b bxx
switch to a branch  git checkout bx
delete a branch git branch -d bx

rename a branch git branch -m bx

Qove a branch git branch -f bx ry

~

-~

master : default created branch x

branch is cheap -> do it often

branch allow to have short/long term parallel
development j




merging
* The interest of branch is that you can merge them

* |nclude in one (branch) file the modification done
somewhere else

0)4

N
% - x &

(=)

git merge bx



merging

* merging two different modifications

0)4

N
3 @3 &

&)

git merge bx
git branch -d bx



merging

* merging two different modifications

N
3 @3 &

&)

git merge bx
git branch -d bx



by

git merge bx
git checkout bx
git merge by

merging

* merging two different modifications

®

]\{

-

-

J




git merge bx
git checkout bx
git merge by

merging

* merging two different modifications

]\{

-

-

J




merging can lead to conflict

[gittest]$ git merge hello
Auto-merging helloworld.py
CONFLICT (content): Merge conflict in helloworld.py

Automatic merge failed; fix conflicts and then commit the result.
[gittest]$ I




Conflict

Iant "Hello World"”

<<<<<<< HEAD

print "changed from master branct

print "print from branch to be merged""

Edit the file to the “correct” version

print "Hello World"
print "print from master branch”

print "and from branch to be merged""

Run



Conflict

K Multiple version of files are great x

* Not always easy to know how to merge them

\- Conflict will happen (same line modify by both usyr)

KConﬂict need to be resolved manually! x
« Boring task
 need to understand why a contlict is present!

Do not be afraid of conflict! Do not try to avoid them
at all cost!

e stay In sync as most as possible and keep line short

\_ J




Keep history clean: Rebase

* [nstead of merging, replays set of changes on
top of another branch

* Affects the “rebased” branch only

* Changes the history of commits

* Can be dangerous

* Very useful to remove history clutter
* Simple rule, use locally only



Working on the wrong prancn

@

M
@@

d
N




Working on the wrong prancn

@

________________

________________

M
A 4

Stash storage
git stash list

stash@{0} A

d
N




Working on the wrong prancn

________________

' git stash save “INFO”
@ ' git checkout |A

________________

Git stash list

stash@{0} A




Working on the wrong prancn

________________

' git stash save "INFO"
o ' git checkout IA

! git stash pop

________________

Git stash list




Keep history clean: Rebase

oe




Keep history clean: Rebase

________________

: Git checkout |A
: Git commit

________________




Keep history clean: Rebase

________________

! Git checkout IB
! Git commit

________________

| want to include BOTH
changes in master
branch




Keep history clean: Rebase

________________

! Git checkout M
' Git merge IA IB

________________

©

N

\”

\r
But merge are not clean
history

d
N




Keep history clean: Rebase

M
@@

p— — — — — — E— —— E—— —— E— —— E— E—— E— .

Git checkout [A

T

. Manual change of B
. Git commit

———————————————/

A

N

-
®

1 8

We can merge M (ff)
Remove IB and IA




Keep history clean: Rebase

A B B B B B B B B OB O BB OB OB W =

Git checkout [A

This is not easy to do
-> |et automate that
-> ‘rebase’

(=) &/

[
I
I
I
I
I
I
I
I
I
I
I
|

Git checkout M

Git merge |A
Git branch -D |1A |IB

— — — — m— — o — e o e e e e e =

Git commit |
I




Keep history clean: Rebase

________________

Git checkout [A
Git rebase |IB

. Git checkout M |

Git merge |A
Git branch -D |1A |IB

________________

(W) A

N




HiStory

Changing your history can create a lot of conflict with your collaborator!
Keep it simple, secure and local
Rebase has many additional features:

« Split and or merge (squash) commit

« Change commit message

e Delete some commit/ ...

Remember reflog in case of issue

Nice video about history moditication:
https://www.youtube.com/watch?v=EIRzTuYInOM



= Do it yourself

-

e create two branch on your repository
* make new commit on each branch
* merge (test case with and without contlict)

e redo the same but use the rebase method

\_

~

/




Team Work



GitHub/Gitlab

« > C ‘0 @ & GitHub, Inc. (US)

githuib

Pull requests Issues Marketplace Explore

X
Learn Git and GitHub without any code!
Using the Hello World guide, you'll create a repository, start a branch, write comments, and open a
pull request.
Read the guide Start a project
@) Our new Terms of Service and % Browse activity Discover repositories
Privacy Statement are in effect.
. ] dcolignon starred oliviermattelaer/Singularity-Tutorial 7 days ago
Repositories
oliviermattelaer/Singularity-Tutorial + Star

Materials for 3 hour hands-on workshop entitled "Creating and running

software containers with Singularity”

[] oliviermattelaer/singularity-recipe
. ° * 1 Updated Oct 31
¥ oliviermattelaer/ MGISR-1



Collaboration

glt fetch A g|t push
(http) (ssh)
v
Internet t
gn push glt fetch
(ssh) | (http)

(=)

()e)(e)




Collaboration

internet




Collaboration

Internet




Collaboration

git fetch
(git)

internet




Collaboration

git fetch
(git)

internet




CoHaboration

git fetch
(git)

Internet

git push
(ssh)

)




Collaboration

git fetch
(git)

Internet

git push
(ssh)

)




-

. Remote Branches
branch
My I\/Iac/hine The Server

t)rlgm/master] master [ master ]
/[_ !

D R ]

—

—
—
—

—

&

origin is just a name
for a “remote”

~

/




Remote Branches - fetch

My Machine The Server
C D
Some changes on
the server
N\ _

master

orlgln/master] l master I

)
—

) ) r—\Lz
S — — —/

< fetch




Remote Branches - fetch

My Machine The Server

[ origin/master ]

master




Remote Branches - fetch

My Machine The Server
Can
‘ merge!
[ origin/master ) @
\I/ r
master

git merge




Remote Branches - fetch

My Machine The Server

[origin/master] l master l

[ ] Now

master

i
\|/ merged
[ ] (fast |
vV
v this case)

[
[
forward in [
[




Remote Branches

* Reminder - Remote branches represent a
branch on a remote repository

* The branch origin/master for example is a
local pointer to the “master” on “origin”

* [t reflects what the local repository currently
knows about the state of “master” on “origin”



Send information: push

Will take local object which are required to make a remote
branch complete and send them

Will merge (fast-forward only) those local changes into the
remote branch

It fast-forward not possible:
e the push will fail

 need manual merge

e git fetch; git merge origin/master; git add .; git commit



Conflict

Pushed on the server refused

$ git push origin master
To ssh://hall/~/bcktestgit
| [rejected] master -> master (fetch first)
. failed to push some refs to 'ssh://hall/~/bcktestgit'

hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...") before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

1) iImport the change from the server

$ git pull

remote: Counting objects: 5, done.

remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.

From ssh://hall/~/bcktestgit
ad47735..7t132455 master -> origin/master
Auto-merging test.c
CONFLICT (content): Merge conflict in test.c
Automatic merge failed; fix conflicts and then commit the result.

Some change create conflict | Need manual resolution



Conflict

Open the file(s) with conflict and resolve them

$ cat test.c
<g<<<<<< HEAD
line you wanted to push

current version of the line on the server
>>>>>>> 7f32455dbebbea745bc94efdob3d5f473446d581
$ vim test.c

Commit your changes

$ git add .
$ git commit -m merge
[master 6b884f0] merge

Push on the server

$ qgit push origin master

Counting objects: 6, done.

Delta compression using up to 8 threads.
Compressing objects: 100% (5/5), done.

Writing objects: 100% (6/6), 676 bytes | O bytes/s, done.
Total 6 (delta 0), reused 0 (delta 0)
To ssh://hall/~/bcktestgit

7t32455..6b884f0 master -> master




Summary of operations

push

) 3 ) o~
: Repository Remote
workspace index .
store Repository
N 7 N 7 N A N -
/A clone
y \
\\l checkout
add ;>
commit E>
<j merge <j fetch
<j Pull (fetchtmerge)



d your ssh keys!

Pull requests Issues Marketplace Explore

Personal settings SSH keyS

Profile
This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.
Account
_ laptop
Emails . .
Fingerprint: 3a:e5:2b:68:2d:97:3a:b4:6d:74:47:25:01:84:09:44 Delete
L ; Added on Jun 29, 2018
Notifications SSH - o
Last used within the last 4 months — Read/write
Billing
SSH and GPG keys MBMGT
’ Fingerprint: 1a:0e:cb:fe:28:7a:fc:ca:8a:e3:06:9c:05:33:01:30 Delete
i Added on Sep 18, 2018
Security SSH f ,
Never used — Read/write
Sessions
Blocked users heck out our guide to generating SSH keys or troubleshoot common SSH Problems

Repositories

Organizations GPG keys m

Saved replies There are no GPG keys associated with your account.

Applications Learn how to generate a GPG key and add it to your account.



Add your project in git

Pull requests Issues Marketplace Explore

Signed in as
oliviermattelaer

Your profile
. L L I
Learn Git and GitHub without any code!
Using the Hello World guide, you'll create a repository, start a branch, write comments, ¢ ToUr stars
pull request. Your gists
Help
Read the guide Start a project Settings
Sign out
L o o
@) Our new Terms of Service and X EHOWSS activiny ISCOVer repositories
Privacy Statement are in effect.
o ] dcolignon starred oliviermattelaer/Singularity-Tutorial 7 days ago
oliviermattelaer/Singularity-Tutorial + Star

Materials for 3 hour hands-on workshop entitled "Creating and running
software containers with Singularity"

l] oliviermattelaer/singularity-recipe

w1 Updated Oct 31
U aAaliviiavesmaattalanc/AACICD 1

https://aithub.com/oliviermattelaer?tab=repositories



Add it In a git repo

Pull requests Issues Marketplace Explore

ProTip! Updating your profile with your name, location, and a profile picture helps # Edit profile RS
other GitHub users get to know you.

Overview Repositories 10 Stars 0 Followers 0 Following 0

Type: All ~» Language: All ~

oliviermattelaer Singularity-Tutorial

Forked from NIH-HPC/Singularity-Tutoria

Add a bio L . . . .
Materials for 3 hour hands-on workshop entitled "Creating and running software

containers with Singularity"”

Edit profile -
w1 Y11 Updated 8 days ago



Add It In a git repo

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name

$ oliviermattelaer v |/ ‘ gittuto] v

Great repository names are short and memorable. Need inspiration? How about legendary-octo-happiness.

Description (optional)

O l Public
Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing
repository.

Add .gitignore: None v Add a license: Nonev = (3

Create repository



Add It In a git repo

. oliviermattelaer / gittuto ®© Watch~ 0 wStar 0

<> Code Issues 0 Pull requests 0 Projects 0 WiKi Insights Settings

Quick setup — if you've done this kind of thing before
(¥ Setupin Desktop or HTTPS SSH https://github.com/oliviermattelaer/gittuto.git [

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

...or create a new repository on the command line

echo "# gittuto" >> README.md Fa
git init

git add README.md

git commit -m "“first commit"

git remote add origin https://github.com/oliviermattelaer/gittuto.git

git push -u origin master

...or push an existing repository from the command line

git remote add origin https://github.com/oliviermattelaer/gittuto.git Fa
git push —-u origin master



Adding Collaborator to GitHub

Pull requests Issues Marketplace Explore

oliviermattelaer / gittuto ®Owatch 0  %Star 0 0

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights @

Quick setup — if you've done this kind of thing before

(¥ Setupin Desktop or HTTPS SSH https://github.com/oliviermattelaer/gittuto.git 2

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

...0r create a new repository on the command line

echo "# gittuto" >> README.md Fa
git init

git add README.md

git commit -m "first commit"

git remote add origin https://github.com/oliviermattelaer/gittuto.git

git push —-u origin master

...or push an existing repository from the command line

s://github.com/oliviermattelaer/gittuto.git !

https://github.com/oliviermattelaer/gittuto/settings



Conclusion

e Versioning is crucial both for small/large project
* Avoid dropbox for paper / project

 make meaningful commit
* logical block
 meaningful message

* git more complicated pbut the standard



More information

 Why an index: http://gitolite.com/uses-of-index.html

e technical tutorial on git (details on storage

structure): https://www.youtube.com/watch?
v=xblVvrb2-tY

* https://git-scm.com/doc


https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY
https://www.youtube.com/watch?v=xbLVvrb2-fY

