
Olivier Mattelaer

CP3/CISM

  

What is
checkpointing ?

 Slides from Damien Francois

Checkpointing



  

What is
checkpointing ?



  

$ ./count
 
 
 
 
 
 
 



  

$ ./count
1
  

 
 
 



  

$ ./count
1
2
  
 
 
 
 



  

$ ./count
1
2
3 
 
 
 
 



  

$ ./count
1
2
3^C
$ 
 
 
 



  

$ ./count
1
2
3^C
$ ./count
 
 
 



  

$ ./count
1
2
3^C
$ ./count
1
 
 



  

$ ./count
1
2
3^C
$ ./count
1
 
 

Without checkpointing:



  

$ ./count
1
2
3^C
$ ./count
1
 
 

$ ./count
1
2
3^C
$ ./count
4
 
  

Without checkpointing: With checkpointing:



  

$ ./count
1
2
3^C
$ ./count
1
2 
 

$ ./count
1
2
3^C
$ ./count
4
5
  

Without checkpointing: With checkpointing:



  

$ ./count
1
2
3^C
$ ./count
1
2 
3 

$ ./count
1
2
3^C
$ ./count
4
5 
6 

Without checkpointing: With checkpointing:



  

$ ./count
1
2
3^C
$ ./count
1
2 
3 

$ ./count
1
2
3^C
$ ./count
4
5 
6 

Without checkpointing: With checkpointing:

Checkpointing:

'saving' a computation 
so that it can be resumed later

(rather than started again)



  

Today's agenda:

1. General concepts and scientifc soft.

2. Working with Signals

3. Slurm recipes

4. DMTCP



  

Why do we need
checkpointing ?



  

Imagine a text editor without 'checkpointing' ...



  

The idea:

Save the program state 

every time a checkpoint is encountered 

and restart from there upon (un)planned stop

rather than bootstrap again from scratch

Values in variables
Open fles
...

Position in the code
Signal or event
...

starting loops at iteration 0
creating tmp fles
...



  

1. Fit in time constraints

 2. Debugging, monitoring

 3. Cope with hardware failures

 4. Job preemption

Goals of checkpointing in HPC:



  

1. Fit in time constraints

Goals of checkpointing in HPC:

All clusters limit maximum 'wall' time of jobs 

 to allow high job turnover

 to ensure fair time sharing of the cluster

  -------------(and reduce waiting times...)



  

2. Debugging, monitoring

Goals of checkpointing in HPC:

Checkpointing means saving the state on disk

 -> You can view the state while the job is running

 -> You can restart at the checkpoint before a bug occurred



  

Goals of checkpointing in HPC:

3. Cope with hardware failures



  

4. Job preemption

Goals of checkpointing in HPC:

Not used at CÉCI, preemption is the ability for

 a high-priority job to re-queue a low-priority job



  

1 Many scientifc software save state
after N iteration. 

Checkpointing with scientific software 
Do they support checkpointing?



  

Working with 
checkpoint-restart-able software

Many scientifc software have built-in checkpointing capabilities

(although it might not be called that way)

Check the documentation

Evaluate the options : tradeoff between 

I/O overhead

portabilityease of use



  

Working with 
checkpoint-restart-able software

http://www.gaussian.com/g_blog/faq2.htm



  

Working with 
checkpoint-restart-able software

https://www.cp2k.org/restarting



Need to implement it yourself?

  

Working with 
checkpoint-restart-able software

Many scientifc software have built-in checkpointing capabilities

(although it might not be called that way)

Check the documentation

Evaluate the options : tradeoff between 

I/O overhead

portabilityease of use

  

The key questions ... 

Transparency for
developer

Portability to
other systems

Size of state to
save

Checkpointing
overhead

Transparency for
developer

Portability to
other systems

Size of state to
save

Checkpointing
overhead

Do I need to
write a lot of
additional

code ?

Can I stop on
one system and

restart on
another ?

How many GB
of disk does it

require ?

How many
FLOPs lost to

ensure
checkpointing ?



Demo #1 
count.py 

Save state at each iteration



  

2 Using UNIX signals to reduce
overhead : do not save the state at
each iteration -- wait for the signal.



  

UNIX processes can receive 'signals' 
from the user, the OS, or another process



  

UNIX processes can receive 'signals' 
from the user, the OS, or another process

^C

^Z

^D

fg, bg

kill -9

kill    



  

UNIX processes can receive 'signals' 
from the user, the OS, or another process

e.g.



  

UNIX processes can receive 'signals' 
with an associated default action



Demo #2 
count-signal.py 

Catch control-C to save state



  

3 Use Slurm signaling abilities to
manage checkpoint-able software in
Slurm scripts on the clusters.



  

scancel is used to send signals to jobs

scancel -s SIGINT JOBID 



  

--signal to have Slurm send signals automatically
before the end of the allocation

--signal=B:SIGINT send signal to the bash script 
--signal=SIGINT send signal to the srun command 



  

Note the --open-mode=append

Note that we need the srun here



Demo #3 
submit-signal.sh 

python: Catch control-C to save state 
Slurm send control-C between 1 and 2 minutes 

submit-signal2.sh 
python: Catch control-C to save state 

Slurm send control-C between 1 and 2 minutes 
Automatic re-queuing



  

Note the --open-mode=appendAdding requeuing automatically 

Catch the signal (USR1)  
-> send ^C to python script (save state) 
-> re-queue the job

Important here!

Send signal to bash with USR1



Demo #4 
slurm-signal-requeue.sh 

Slurm send USR1 between 1 and 2 minutes 
Bash catch the message send Ctrl-c to python 

python: Catch control-C to save state 
Automatic resubmission



  

Or chain the jobs...



  

4 Making non restartable software
restartable with DMTCP



  



  

● Distributed Multi-Threaded CheckPointing
● Works with Linux Kernel 2.6.9 and later
● Supports sequential and multi-threaded computations across

single/multiple hosts
● Entirely in user space (no kernel modules or root privilege)
● Transparent (no recompiling, no re-linking)
● Written at Northeastern U. and MIT and under active development for 5+

years
● LGPL'd and freely available
● No remote I/O
● Supports threads, mutexes/semaphoes, forks, shared memory, exec, and

many more

Advertised Features

What types of programs can DMTCP checkpoint?
It checkpoints most binary programs on most Linux distributions. Some examples on which users have
verified that DMTCP works are: Matlab, R, Java, Python, Perl, Ruby, PHP, Ocaml, GCL (GNU Common
Lisp), emacs, vi/cscope, Open MPI, MPICH-2, OpenMP, and Cilk. See Supported Applications for further
details. Our goal is to support DMTCP for all vanilla programs. If DMTCP does not work correctly on
your program, then this is a bug in DMTCP. We would be appreciative if you can then 
file a bug report with DMTCP.

From their FAQ: 

“

”



  

Imagine a non-checkpointable program



  

Run with dmtcp_launch 
(runs monitoring daemon if necessary)



  

Restart with dmtcp_restart_script.sh



Cp 

  

:q

Launch the coordinator and the program with
automatic checkpointing every 30 seconds

Lemaitre3 specific!



  

Launch coordinator and restart program

1) Coordinator

2) restart program



  

Summary,
Wrap-up and
Conclusions.

damien.francois@uclouvain.be
UCL/CISM

October 2014
CISM/CÉCI training session



  

Never click 'Discard' again...



  

The submission script(s)

●  Either one big one or two small ones
●  Checkpoint periodically or --signal
●  Requeue automatically
●  Open-mode=append


