
Introduction to Cuda

Olivier Mattelaer
UCLouvain
CP3 & CISM



CECI training: Cuda 2020

Program of this lecture

• Difference between CPU and GPU
➡ Why and when to use a GPU?

• What is CUDA?
➡ When can I use cuda?

• Structure of a GPU program
➡ Nomenclature

• First example of CUDA programming

• First step in optimisation of a CUDA program
➡ Managing memory transfer

2



CECI training: Cuda 2020

CPU versus GPU

3



CECI training: Cuda 2020

Speed versus Latency

• Speed: number of operation per second

• Latency: delay in the first operation
➡  T = L + vD

4

• How amazon transfer data from one cluster to 
another

• Speed: Large bandwidth

• Fiber connection: Gb

• Latency: time of the 
travel between the two 
cluster.

• Latency is “reactivity”



CECI training: Cuda 2020

GPU versus CPU
• CPU minimizes latency

• GPU hides latency by overlapping computation

5

• Transit

• Moving data • Moving data



CECI training: Cuda 2020

GPU versus CPU
• CPU minimizes latency

• GPU hides latency by overlapping computation

5

• Transit

• Moving data • Moving data



CECI training: Cuda 2020

Amdahl’s law

6

• A cpu has 8 core a GPU 2056 core
➡ Should my code should be 200 faster?

• It depends which 
fraction of your code 
can use parallelism

• This is Amdahl’s law 
given theoretical 
speed-up of your code



CECI training: Cuda 2020

Speed-up in practise

• Comparing speed of code between cpu and gpu 
are not really fair
➡ Cost of the GPU/CPU
➡ Huge speed-up typically means “bad” denominator

• A “normal” is around 5-20
➡ Much higher number reported in some cases. 

• GPU clock is slower than CPU clock
➡ GPU ~ mhz
➡ CPU ~ Ghz

7



CECI training: Cuda 2020

Stream computing

• The idea of GPU are 
➡ “multiple data”
➡ SAME operation

• Same as vectorisation on CPU (but different scale)

8

• You can have synchronisation between threads



CECI training: Cuda 20209

• As for CPU, you do not want to code at assembler 
level

• First released in 2006
➡ Restricted to nvidia GPU
➡ Expose the raw computation power

✦ No need of graphical knowledge



CECI training: Cuda 2020

GPU availability

• Dragon 2:
➡ Two machines with two  Nvidia V100

• Manneback (UCL only)
➡ Two machines with two  Nvidia V100
➡ One M10
➡ One K80

• (Future) Lumi European computer (EUROHPC)
➡ Not Nvidia GPU machine
➡ Cuda code need to be converted to HEAP

✦ Alternative: OpenACC, OneAPI, Sycl, kokos,…

10



CECI training: Cuda 2020

SLURM FOR GPU

• Check ressource
➡ sinfo --format="%N %.6D %P %G"

• First run iteratively
➡ srun -p gpu --gres=gpu:TeslaV100:1 --pty bash

• Check module on the machine
➡ module av

• Check that you have access to the GPU
➡ nvidia-smi

11



CECI training: Cuda 2020

SLURM FOR GPU

• Check ressource
➡ sinfo --format="%N %.6D %P %G"

• First run iteratively
➡ srun -p gpu --gres=gpu:TeslaV100:1 --pty bash

• Check module on the machine
➡ module av

• Check that you have access to the GPU
➡ nvidia-smi

11

➡ srun -p gpu --gres=gpu:1 --pty bash



CECI training: Cuda 2020

Cuda Programming model

• A GPU needs to be controlled by a CPU.
➡ All programs start by the CPU
➡ Data are prepared on the CPU and moved to the GPU
➡ GPU is crunching data
➡ Data moved back to the cpu
➡ Programs end

12



CECI training: Cuda 2020

Cuda Programming model

• The cpu is called the “host”

• The gpu is called the “device”
➡ Viewed as a co-processor

• Function executed on gpu are called kernel
➡ Executed in parallel on different data element

• Both the host/device have their own memory
➡ Memory management is handle by the host
➡ Automatic management is possible

13



CECI training: Cuda 2020

Multi-processor/block/thread

• Main component
➡ Memory
➡ Streaming Multiprocessor (84 of them here)

14



CECI training: Cuda 2020

Multi-processor/block/thread

• Main component
➡ Memory
➡ Streaming Multiprocessor (84 of them here)

14



CECI training: Cuda 2020

Multi-processor/block/thread

• Main component
➡ Memory
➡ Streaming Multiprocessor (84 of them here)

14



CECI training: Cuda 2020

Block

15

• Thread are grouped by block
➡ Collaboration of thread (syncronization, shared 

memory)

• Up to 2048 thread per block

• Block are fully independent 
➡ Can be executed in any order
➡ Can be executed on different GPU



CECI training: Cuda 2020

• Separation into block allow you to adapt to various 
GPU in an easy way.

16



CECI training: Cuda 2020

Wrap

• block are organised in wrap of 32 thread
➡ Correspond to an hardware configuration

• Those 32 threads are working in lock step
➡ Run the same command at the same time
➡ If statement slows down the code

17



CECI training: Cuda 2020

Let’s port this function to GPU

18



CECI training: Cuda 2020

Let’s port this function to GPU

18

• ⃗y = a ⃗x + ⃗y



CECI training: Cuda 2020

Let’s port this function to GPU

18

• ⃗y = a ⃗x + ⃗y

• float* is used here for 
passing an array



CECI training: Cuda 2020

Let’s port this function to GPU

18

• ⃗y = a ⃗x + ⃗y

• float* is used here for 
passing an array

• that array is assigned 
dynamically (malloc)



CECI training: Cuda 2020

Let’s port this function to GPU

18

• ⃗y = a ⃗x + ⃗y

• float* is used here for 
passing an array

• that array is assigned 
dynamically (malloc)

• We explicitly loop over 
the data element



CECI training: Cuda 2020

Cuda version: kernel

• No loop anymore !!
➡ Each thread will take care of one data
➡ Need to compute which element each thread has to handle.
➡ Various variable defined for that

✦ blockIdx.x (.y/ .z if 2D and 3D): id of the current block

✦ blockDim.x: number thread in Block (for that dimension)

✦ threadIdx.x: id of the current thread inside the block

19

CPU GPU 



CECI training: Cuda 2020

Index

• Let’s give an example:

20

• Super Important - coalesced memory:

• Reading (global) memory should be from 
adjacent memory address for the threads



CECI training: Cuda 2020

Index

• Let’s give an example:

20

• Super Important - coalesced memory:

• Reading (global) memory should be from 
adjacent memory address for the threads

6



CECI training: Cuda 2020

Kernel call

• How do you call a kernel?
➡ saxpy<<<numblock,  blocksize>>>(d_x, d_y, a, n)

21

Blocksize

#Numblock

• blocksize: number of thread in a block

• Should be multiple of 32 (due to wrap)

• Maximum of 2048 

• depends of the GPU capabilities



CECI training: Cuda 2020

A complete GPU code

1. Initialise GPU

2. Initialise variable on the host (cpu)

3. Allocate memory on the device (gpu)

4. Move data from host to device

5. Execute kernel on device

6. Move back results

7. Clean up (deallocation)

22

• Code steps in more details:



CECI training: Cuda 2020

A complete GPU code
1. Initialise GPU

2. Initialise variable on the host (cpu)

23

• cuInit(0) is NOT required for the code to work

• Will be called automatically at first cuda function call

• Nice to use for profiling 

• Otherwise first call much slower than expected



CECI training: Cuda 2020

A complete GPU code

3. Allocate memory on the device (gpu)

24

• cudaMalloc does NOT follow the exact same syntax as a 
malloc:

• The cuda rule for any function is to return an error 
code

• So the cuda malloc does not return a pointer but has 
one more argument (pointer of pointer) 

• Here we use “d_” prefix to indicated device pointer.

• Useful convention for code clarity



CECI training: Cuda 2020

A complete GPU code
4. Move data from host to device

25



CECI training: Cuda 2020

A complete GPU code
4. Move data from host to device

25

Device pointer



CECI training: Cuda 2020

A complete GPU code
4. Move data from host to device

25

Device pointer Host pointer



CECI training: Cuda 2020

A complete GPU code
4. Move data from host to device

25

Device pointer Host pointer Transfer direction



CECI training: Cuda 2020

A complete GPU code
4. Move data from host to device

25

• Quite slow transfer but 2 tricks:

1. For simple initialisation/value

➡ cudaMemSet(d_x, 0, N*sizeof(xxxxx))

2. Used hosted pinned memory for host

➡ cudaMallocHost(&&x_host, size)

➡ Slower allocation on host

Device pointer Host pointer Transfer direction



CECI training: Cuda 2020

A complete GPU code
5. Execute kernel on device

26



CECI training: Cuda 2020

A complete GPU code
5. Execute kernel on device

26

• Computing the number of block needed

• Special <<<A, B, C, D >>> syntax

• A: number of block

• B: number of thread per block

• C: dynamically allocated shared memory

• D: which stream to use



CECI training: Cuda 2020

A complete GPU code
5. Execute kernel on device

26

• Computing the number of block needed

• Special <<<A, B, C, D >>> syntax

• A: number of block

• B: number of thread per block

• C: dynamically allocated shared memory

• D: which stream to use

• __global__ to use for kernel called from the host

• __device__ for GPU function call from a kernel



CECI training: Cuda 2020

A complete GPU code

6. Move back results

7. Clean up (deallocation)

27



CECI training: Cuda 2020

Full code

• How to compile it?

28



CECI training: Cuda 2020

Compilation of cuda code

• Module load CUDA

• nvcc -arch=sm_70 saxpy.cu -o saxpy
➡ You can have additional flags for  C++ par of the code 

(library linking, -O3,…)
➡ Arch allows to have a minimum target gpu
➡ No dedicated flag for additional GPU optimisation
➡ GPU does support multiple file source code

✦ But seriously limit optimisation 

• Cuda11 starts supports for that but still limited.

29



CECI training: Cuda 2020

Is GPU always faster?

• GPU

30

• CPU

• You need to have a lot of work to do on the GPU 
to hide the latency, the initialisation, …



CECI training: Cuda 2020

Type of Memory available
• You have to manage memory: Plenty of type of 

memory on the GPU

31

• Inside each SM:



CECI training: Cuda 2020

Type of Memory available
• You have to manage memory: Plenty of type of 

memory on the GPU

31

• Register

• Fastest memory

• Thread specific

• Very limited amount

• Overflow goes to L1/RAM

• Inside each SM:



CECI training: Cuda 2020

Type of Memory available
• You have to manage memory: Plenty of type of 

memory on the GPU

31

• Register

• Fastest memory

• Thread specific

• Very limited amount

• Overflow goes to L1/RAM

• Shared memory

• Limited amount 

• Block wide memory

• __shared__

• Inside each SM:



CECI training: Cuda 2020

Type of Memory available
• You have to manage memory: Plenty of type of 

memory on the GPU

32

• Global memory

• High bandwidth (900Gb/s) but High latency

• High number of thread need to hide this latency

• Default memory for cpu/gpu pointer

• Outside the SM



CECI training: Cuda 2020

Index

• This is how the memory should be read/write by 
the various thread

33

• You need to be careful with 2D array to be sure 
that you follow that pattern



CECI training: Cuda 2020

Index

• This is how the memory should be read/write by 
the various thread

33

6

• You need to be careful with 2D array to be sure 
that you follow that pattern



CECI training: Cuda 2020

Coalesced memory

34



CECI training: Cuda 2020

Uncoalesced Memory

35



CECI training: Cuda 2020

Structure of array

36

Better for GPU/ vectorised CPU

Better for non-vectorised operation for CPU



CECI training: Cuda 2020

Coalesced access
• Coalesced access not possible?

➡ Use shared memory as a cache

37

Global Memory

Shared Memory

Thread



CECI training: Cuda 2020

Type of Memory available

• Constant memory
➡ Will be put in cache (same speed as shared memory)

• Texture memory
➡ Related to graphics

• Unified Memory
➡ Special type of global memory

✦ Accessible both on cpu and gpu

➡ cudaMallocManaged(&&x, size)
➡ Pointer available both on device and on cpu

38



CECI training: Cuda 2020

CUDA profiler

• nv-nsight-cu-cli -o profile --target-processes all  ./
saxpy
➡ Executable is also sometimes “ncu”
➡ The more convenient is to download back that profile 

on your laptop and use “nsight compute” to visualise 
the data (do not need a GPU on that machine) 

• On cluster mode, you need to be sudo to run 
those command. Contact us if needed.

39



CECI training: Cuda 2020

What is the limitation of your kernel?

• Here two metric
➡ How much the code compute (here more than 90%)
➡ How much memory you use (here 5%)

• This indicates what limit your computation
➡ Here we are Compute bound

✦ But many memory available 

• We can try to cache computation

40



CECI training: Cuda 2020

What is the limitation of your kernel?

• Ideal case: compute AND memory bound

• If you are latency bound you need to allow more 
parallelism

41

COMPUTE

MEMORY

COMPUTE BOUND MEMORY BOUND LATENCY BOUND



CECI training: Cuda 2020

Effect of occupancy

42

• Hide latency with other wrap



CECI training: Cuda 2020

Occupancy
• Occupancy is limited

➡ Each SM has limited ressources
✦ Maximum number of wrap (64)

✦ Maximum number of block (32)

✦ Register usage (256Kb)

✦ Shared memory usage (64Kb)

43



CECI training: Cuda 2020

Checking memory
• You should also check where your memory 

bottleneck are 

44



CECI training: Cuda 2020

Memory bank

• Shared memory use a 
“Bank” system
➡ Each wrap has 32 bank 

that can provide one data 
element per cycle

➡ The shared memory is 
dispatched between all 
those bank
✦ A given data can only be 

given by ONE bank

✦ (&x) % 32 

➡ So better to use 
coalesced memory as 
well

45

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8Bank



CECI training: Cuda 2020

Memory bank

• If you do some striding
➡ Bank conflict
➡ Increase latency

✦ A bank can provide only 
one value per cycle

46

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8Bank



CECI training: Cuda 2020

Optimization Wrap

• If statement

• Coalesced memory

• Shared memory 
➡ Memory bank 

• Ressource limitation

• Single file

47



CECI training: Cuda 2020

Nice series of tutorial:

• https://developer.nvidia.com/blog/even-easier-
introduction-cuda/
➡ At the bottom of the page you have a list of quite 

progressive tutorial

• Nice video on Cuda 5: https://www.youtube.com/watch?
v=irvhW7oSNeQ&list=PLGvfHSgImk4aAt3R3XKvUMIv_RFOzSnWz&index=2

• Nice presentation: https://cac-staff.github.io/
summer-school-2018/files/
cuda_day1_summer_school_2018.pdf

48

https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/


CECI training: Cuda 2020

Conclusion

• GPU is a high throughput 
➡ High latency 

• Various level of parralelism
➡ thread/wrap/block

• Various type of memory
➡ register/shared memory/global memory

• Optimization for the hardware is key
➡ Coalesced memory ->Array of structure
➡ Shared memory

49


