
Directive Based Parallel programming on GPU

Orian Louant
orian.louant@uliege.be

November 10, 2020

CPU vs GPU

CPU

Optimized for low-latency access to cached data

Control logic for out-of-order and speculative execution

GPU

Optimized for data-parallel, high-throughput calculation

Tolerance for memory latency

Large part of the die dedicated to the computation

2/74

CPU vs GPU

CPU cores are optimized to minimize latency between operations

GPU minimize latency between operations by scheduling multiple threads bundle: Wraps
(NVIDIA) or Wavefronts (AMD)

3/74

Programming Models for GPU

While CPU requires coarse-grained parallelism, GPU requires fine grained one. You have to divide
your calculation in small computational kernels working on small pieces of data. To expose this
fine-grained parallelism, new programming models have been created:

Vendor specific: NVIDIA CUDA and AMD HIP

Cross-platform: OpenCL, SYCL

High-level frameworks: Thrust, Kokkos, ...

With these models, existing codes need to be rewritten or refactored.

4/74

Directive Based Models for GPU

Instead of writing new code, why not use the existing code and add compiler directives to
offload execution to the GPU.

OpenACC: specifically designed to target accelerator device

OpenMP: designed for multicore CPUs but since version 4.0, can also target accelerator
device

In these models, most of the work to port the code to the GPU is done by the compiler. The
developer only manage the high-level representation.

5/74

Directive Based Models for GPU

Directives are special compiler instruction which constitutes hints to the compiler on how to
process the source. In our case, how to transform the code so that it can run on a GPU.

#pragma acc directive-name [clause-list]
structured-block

!$acc directive-name
[clause-list]

block-of-code
!$acc end directive-name

OpenACC

#pragma omp directive-name [clause-list]
structured-block

!$omp directive-name
[clause-list]

block-of-code
!$omp end directive-name

OpenMP

6/74

Directive Based Models for GPU

Programming GPU using directives will not guarantee you the same performance as using the
native solution of the hardware vendor. However, you might have good reason to use the
directive model.

You have a large code base and translating the entire code to CUDA/HIP will take too much
time

You want a quick away use GPU with part of your code that is not yet translated to
CUDA/HIP

Your plan is to use LUMI and your code is in Fortran

7/74

OpenMP Offload Execution Model

SAXPY with OpenMP Directives

As an illustration, we will use the saxpy example: yi = αxi + yi

void saxpy(int n,
float a,
float* x,
float* restrict y) {

#pragma omp target teams distribute \
parallel for

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

// [...]

saxpy(1<<20, 2.0, x, y);

subroutine saxpy(n, a, x, y)
real :: x(n), y(n), a
integer :: n, i

!$omp target teams distribute &
!$omp& parallel do
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$omp end target teams distribute &
!$omp& parallel do

end subroutine

! [...]

call saxpy(2**20, 2.0, x, y)

9/74

Offloading with Directives

The first part of the directives used in the saxpy example instruct the compiler that the next
block of code should be offloaded to the GPU.

#pragma omp target

10/74

Execution Model: Teaming

When using the teams directive, a league of teams is created. The master threads of each team
execute redundantly all the iterations of the loop.

11/74

Execution Model: Distributing to the Teams

When using the teams distribute directive, the iterations of the loop are distributed to
the master threads of the teams.

12/74

Teams and Distribute Constructs

The teams construct creates a league of thread teams where the master thread of each team
executes the block of code that follows the directive.

#pragma omp teams
structured-block

!$omp teams
block

!$omp end teams

The distribute construct specifies that the iterations of one loop should be distributed
across the master threads of all teams.

#pragma omp distribute
for-loop

!$omp distribute
do-loop

!$omp end distribute

13/74

Teams and Distribute Constructs

The number of teams created is implementation dependant but, you can specify it using the
num_teams clause.

#pragma omp teams num_teams(int-expr)
structured-block

!$omp teams num_teams(int-expr)
block

!$omp end teams

The number of teams created will then be less than or equal to the int-expression given as
argument of the clause. Another option is to specify the maximun number of threads
participating in the teams with the thread_limit clause.

#pragma omp teams
thread_limit(int-expr)

structured-block

!$omp teams thread_limit(int-expr)
block

!$omp end teams

14/74

Teams and Distribute Constructs

In order to retrieve the number of teams, you can use the omp_get_num_teams function that
returns the number of teams in the current teams region, or 1 if called from outside of a teams
region.

int omp_get_num_teams(); integer function omp_get_num_teams()

To get the team number of a thread, use the omp_get_team_num function. The team number
is an integer between 0 and the value returned by omp_get_num_teams - 1.

int omp_get_team_num(); integer function omp_get_team_num()

15/74

Execution Model: Distributing to the Threads

When adding the parallel for directive, the iterations of the loop assigned to the teams
are then distributed to the threads in these teams.

16/74

Distribute Parallel Loop Constructs

The distribute parallel for construct specifies a loop that can be executed in parallel
by multiple threads that are members of multiple teams.

#pragma omp distribute parallel for
for-loop

!$omp distribute parallel do
do-loop

!$omp end distribute parallel do

As we have seen in the saxpy example, this construct can be used as a combined construct with
teams to create the teams of threads and the share the work among the teams and as well as
the threads in the teams.

#pragma omp teams distribute parallel for
for-loop

!$omp teams distribute parallel do
do-loop

!$omp end teams distribute parallel do

17/74

Distribute Parallel Loop Constructs

Distribution of the loop iterations using the teams distribute and parallel for can
used to parallelize two levels of a loop nest.

#pragma omp teams distribute
for (int i = 0; i < M; ++i) {
#pragma omp parallel for
for (int j = 0; j < N; ++j)
// do something

}

!$omp teams distribute
do i = 1,M
!$omp parallel for
do j = 1,N
! do something
end do

!$omp end parallel for
end do

!$omp end teams distribute

Here, the iterations of the i-loop are distributed to the gangs. Then, the iterations of the j-loop
are distributed to the threads in the gangs.

18/74

Execution Model: Hardware

19/74

OpenACC Execution Model

SAXPY with OpenACC Directive

If we go back to our saxpy example, using OpenACC, the code will become:

void saxpy(int n,
float a,
float* x,
float* restrict y) {

#pragma acc parallel loop
for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

// [...]

saxpy(1<<20, 2.0, x, y);

subroutine saxpy(n, a, x, y)
real :: x(n), y(n), a
integer :: n, i

!$acc parallel loop
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$acc end parallel loop

end subroutine

! [...]

call saxpy(2**20, 2.0, x, y)

21/74

Offloading with OpenACC Directives

In addition to the parallel construct, OpenACC also include the kernels contruct.

#pragma acc kernels

With the kernels construct, the programmer identifies a region of code that may
contain parallelism. It gives the compiler more freedom to find and map parallelism
according to the requirements of the target accelerator. Similar to an automatic
parallelization.

The parallel construct is more explicit. It identifies a region of code that will be
parallelized across gangs. Needs to be paired with a loop directive for work-sharing.

22/74

SAXPY with OpenACC Directives

So we have the choice to use either the parallel construct and specify by ourself the
parallelism, or let the compiler do the work with the kernels construct.

void saxpy(int n,
float a,
float* x,
float* restrict y) {

#pragma acc kernels
for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

// [...]

saxpy(1<<20, 2.0, x, y);

subroutine saxpy(n, a, x, y)
real :: x(n), y(n), a
integer :: n, i

!$acc kernels
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$acc kernels

end subroutine

! [...]

call saxpy(2**20, 2.0, x, y)

23/74

Execution Model: Gang Redundant Mode

When using the parallel directive, one or more gangs of workers are created to execute the
region on the GPU. Each gang begins executing the code in the structured block in
gang-redundant mode. This means that code within the parallel region will be executed
redundantly by all gangs.

24/74

Execution Model: Loop Construct

When using the loop directive, we instruct the compiler that the iterations of the loop that
follows the directive should be distributed among the gangs and the workers of the gangs.

25/74

Execution Model: The Parallel and Loop Constructs

In summary, to create a kernel and the gangs we use the parallel construct.

#pragma acc parallel
structured-block

!$acc parallel
block

!$acc end parallel

Then to share the iterations of a loop between the gangs and the workers in the gangs, we use
the loop construct

#pragma acc loop
for-loop

!$acc loop
do-loop

!$acc end loop

This can be done in one step using the combined parallel loop construct

#pragma acc parallel loop
for-loop

!$acc parallel loop
do-loop

!$acc end loop

26/74

Execution Model: The Three Levels of Parallelism

OpenACC exposes three levels of parallelism gang, worker and vector. A gang is a group of
workers which execute vector operations of a certain length.

NVIDIA AMD

gang Thread Block Workgroup

worker Warp Wavefront

vector Thread Work item/Thread

So that, the number of threads in a gang can be computed as

Nthreads = Lvector · Nworkers
27/74

Execution Model: The Three Levels of Parallelism

The number of gangs, worker and vector length can be specified using optional clauses to the
parallel construct.

#pragma acc parallel num_gangs(int-expr) \
num_workers(int-expr) \
vector_length(int-expr)

!$acc parallel num_gangs(int-expr) &
!$acc& num_workers(int-expr) &
!$acc& vector_length(int-expr)

num_gangs defines the number of parallel gangs that will execute the parallel region.

num_workers fefines the number of workers within each gang that will be active after
a gang transitions from worker-single mode to worker-partitioned mode

vector_length defines the number of vector lanes that will be active after a worker
transitions from vector-single mode to vector-partitioned mode.

28/74

Execution Model: The Three Levels of Parallelism

In our saxpy example, we let the compiler choose the level of parallelism automatically, but the
programmer can choose to specify the level of parallelism using optional clauses to the loop
construct.

#pragma acc loop gang
for (int i = 0; i < M; ++i) {
#pragma acc loop vector
for (int j = 0; j < N; ++j)
// do something

}

!$acc loop gang
do j = 1,N
!$acc loop vector
do i = 1,M
! do something
end do

!$acc end loop
end do

!$acc end loop

A gang loop may not appear inside worker loop, which may not appear within a vector loop
29/74

Compilers Support

Compilers Support

We are still at an early stage of the development of directive based GPU programming. Compiler
support and quality of the implementation for OpenACC and OpenMP offloading may vary.

GCC: NVIDIA and AMD hardware. Poor performance in some cases, but
improving.

NVC/PGI: Only for NVIDIA hardware. Best implementation.

OpenACC

Clang: Support for NVIDIA and AMD hardware. Best implementation.

GCC: Support for NVIDIA and AMD hardware. Same comments that for
OpenACC

OpenMP

31/74

Compilers Support

NVIDIA: NVC/PGI is your best option for OpenACC. You can install this compiler throught
the NVIDIA HPC SDK. Also available on dragon2 (module pgi/19.10). Use Clang for OpenMP.

AMD: You are targeting LUMI? Then go for OpenMP.

On LUMI, you will have access the AMD version of the Clang and Flang compilers to target GPU
with OpenMP. In addition, the Cray Compiling Environment (CCE) which also support offloading to
the GPU through OpenMP use will be available.

32/74

Compiling an OpenMP Application

An OpenMP application with offloading targeting GPU can be compiled using GCC or Clang. These
two compilers have support for AMD and NVIDIA hardware.

Compiling with Clang/Flang

clang -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda -o <exe_out> <source.c>
clang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -o <exe_out> <source.c>

flang -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda -o <exe_out> <source.f90>
flang -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -o <exe_out> <source.f90>

Compiling with GCC/GFortran

gcc -fopenmp -foffload=nvptx-none -o <exe_out> <source.c>
gcc -fopenmp -foffload=amdgcn-amdhsa -o <exe_out> <source.c>

gfortran -fopenmp -foffload=nvptx-none -o <exe_out> <source.f90>
gfortran -fopenmp -foffload=amdgcn-amdhsa -o <exe_out> <source.f90>

33/74

Compiling an OpenACC Application

An OpenACC application targeting GPU can be compiled using GCC or the NVIDIA compiler. GCC has
support for AMD and NVIDIA hardware while NVC target only NVIDIA hardware.

Compiling with GCC/GFortran

gcc -fopenacc -foffload=nvptx-none -o <exe_out> <source.c>
gcc -fopenacc -foffload=amdgcn-amdhsa -o <exe_out> <source.c>

gfortran -fopenacc -foffload=nvptx-none -o <exe_out> <source.f90>
gfortran -fopenacc -foffload=amdgcn-amdhsa -o <exe_out> <source.f90>

Compiling with NVC/NVFortran

nvc -acc -Minfo=accel -o <exe_out> <source.c>
pgcc -acc -Minfo=accel -o <exe_out> <source.c>

nvfortran -acc -Minfo=accel -o <exe_out> <source.f90>
pgf90 -acc -Minfo=accel -o <exe_out> <source.f90>

34/74

Data Management

Data Management

In the saxpy example, we have left aside the very important topic of data management. This
management of the data between the host and the device is the programmer’s responsibility.

You must make sure that all the necessary data for a computation is available on the GPU
before entering the compute region

You must make sure to transfer the processed data back to the CPU memory if needed

36/74

Data Management

The following code compiled with clang will crash because the x and y arrays are not present in
the GPU memory

#pragma omp target teams distribute \
parallel for

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

!$omp target teams distribute &
!$omp& parallel do
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$omp end target teams distribute &
!$omp& parallel do

The OpenACC version may be fine with the NVIDIA compiler as it may do automatic data
management but it will crash with GCC.

37/74

Data Management

In order for the code to run on the GPU, we need to copy the x and y arrays in the GPU memory.
With OpenMP this is done using the target data construct and the map clause.

#pragma omp target data map(to: a, n, x[0:n]) \
map(tofrom: y[0:n])

{
#pragma omp target teams distribute parallel for
for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}
}

!$omp target data map(to: a, n, x) map(tofrom: y)
!$omp target teams distribute parallel do
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$omp end target teams distribute parallel do

!$omp end target data

Similarly, OpenACC offers the data construct to copy data to and from the GPU memory.

#pragma acc data copy(y[0:n]) copyin(x[0:n])
{
#pragma acc parallel loop
for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}
}

!$acc data copy(y) copyin(x)
!$acc parallel loop
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$acc end parallel loop

!$acc end data

38/74

Data Management

OpenMP copy of data in and from the GPU memory this is done using the target data
construct and the map clause.

#pragma omp target data [map-clauses]
structured-block

!$omp target data [map-clauses]
block

!$omp end target data

Similarly, OpenACC offers the data construct to copy data to and from the GPU memory.

#pragma acc data [clauses]
structured-block

!$acc data [clauses]
block

!$acc end data

39/74

Data Management

We can describe the data management using 4 categories:

used on the GPU but not modified

modified on the GPU

used and modified on the GPU

created and only used on GPU

In addition, we can also consider the lifetime of the data:

span only scope

span multiple scopes or source files

40/74

Data Management

In OpenACC data operation are described by clauses while in OpenMP this is described by a type
to the map clauses.

OpenACC OpenMP Description

copyin to: copy data to the GPU

copyout from: copy data from the GPU

copy tofrom: copy datato and from the GPU

create alloc: allocate data on the GPU

41/74

Data Management

The map clause can also be used with the target construct. This is useful when the data
lifetime match the compute region.

#pragma omp target teams distribute parallel for \
map(to: a, n, x[0:n]) map(tofrom: y[0:n])

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

!$omp target teams distribute parallel do
!$omp& map(to: a, n, x) map(tofrom: y)
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$omp end target teams distribute parallel do

Similarly, with OpenACC, you can use the data clauses with the parallel construct.

#pragma acc parallel loop copy(y[0:n]) \
copyin(x[0:n])

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}

!$acc parallel loop copy(y) copyin(x)
do i = 1,n
y(i) = a*x(i) + y(i)

end do
!$acc end parallel loop

42/74

Data Management

In C/C++, for dynamically allocated arrays, you have to specified the lower bound and number of
elements of the array.

#pragma omp target data map(tofrom: x[0:n]) #pragma acc data copy(x[0:n])

In Fortran, array shape information is already embedded in the data type. But indexing may be
required in order to map an array subrange. In C/C++ subranges are defined as
start_idx:len while in Fotran it’s defined as start_idx:end_idx .

#pragma omp target data map(tofrom: x[2:n-2])

#pragma acc data copy(x[2:n-2])

!$omp target data map(tofrom: x[3:n])

!$acc data copy(x[3:n])

43/74

Data Management

So far we have discussed what is called structured data region, this means that the data will be:

copied in (or created) at entry of the region

copied out (or deallocated) at the exit.

Another option is to use unstructured data region where data might span multiple scopes
(including multiple source files). This type data region is created with:

#pragma omp target enter data [map-clauses]

#pragma acc enter data [clauses]

!$omp target enter data [map-clauses]

!$acc enter data [clauses]

and the end of the region is defined as follows

#pragma omp target exit data [map-clauses]

#pragma acc exit data [clauses]

!$omp target exit data [map-clauses]

!$acc exit data [clauses]

44/74

Case Study: Laplace Heat Equation

Jacobi Iteration

Iteratively converge to the solution by computing new values at each point from the
average of the neighbouring points.

In our example we will solve the Laplace equation in 2D:∇2f(x, y) = 0

Ak+1
i,j =

Aki−1,j + Aki+1,j + Aki,j−1 + Aki,j+1

4

46/74

Jacobi Iterations: Serial Code

We start from the serial code for the Laplace steady state heat equation, and we will focus our
attention on the main computational part:

while (error > tol && niter < niter_max) {
error = 0.0;

for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; i++) {
A[i+j*m] = Anew[i+j*m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);

niter++;
}

47/74

Jacobi Iteration

We will consider a 2D grid of size 4096x4096. The execution times have been measured on a
GPU node of the Dragon2 CÉCI cluster: Xeon Gold 6126 12-core CPU and NVIDIA Tesla V100 GPU.

OpenMP: Clang version 10 compiler

OpenACC: PGI version 19.10 compiler

48/74

Jacobi Iterations: CPU Threaded Version

The first step is to consider parallelization of the CPU using OpenMP in order to compare the CPU
parallel version with the GPU version.

while (error > tol && niter < niter_max) {
error = 0.0;

#pragma omp parallel for reduction(max:error)
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

#pragma omp parallel for
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; i++) {
A[i+j*m] = Anew[i+j*m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);

niter++;
}

49/74

The Reduction Clause

Data reduction is reducing a set of numbers into a smaller set of numbers. For example,
summing elements of an array or find the min/max value in an array. The reduction clause
avoid data races when summing or combining values. It can be used with the parallel ,
teams and work-sharing contructs.

reduction(op:list)

op is an operator:

Arithmetic reductions: + ∗ − max min

Logical operator reductions: & && | ||

50/74

Laplace Heat: CPU Using Threads

1 t
hre
ads

4 t
hre
ads

8 t
hre
ads

12
thr
ead
s

20

40

60

80

100 1x

3.69x 4.44x 5.94x

Tim
e(
s)

We get a reasonable speedup
using 4 threads

For more that 4 threads, we
get a speedup but, not as
good as previously

We are limited by memory
bandwidth

51/74

Laplace Heat: Outer Loop on GPU

For the GPU version, we will explore two solutions: the first is to distribute the iterations of the
outer loop and let the inner loop untouched.

#pragma omp target data map(to: Anew[0:n*m]) map(A[0:n*m])
while (error > tol && niter < niter_max) {
error = 0.0;

#pragma omp target teams distribute parallel for reduction(max:error)
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

#pragma omp target teams distribute parallel for
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; i++) {
A[i + j * m] = Anew[i + j * m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);
niter++;

}

52/74

Laplace Heat: Split the Loops on GPU

For the GPU version, we will explore two solutions: the second is to distribute the iterations of
the outer to the teams and inner loop to the threads in the teams.

#pragma omp target data map(to: Anew[0:n*m]) map(A[0:n*m])
while (error > tol && niter < niter_max) {
error = 0.0;

#pragma omp target teams distribute reduction(max:error)
for (int j = 1; j < n-1; ++j) {
#pragma omp parallel for reduction(max:error)
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

#pragma omp target teams distribute
for (int j = 1; j < n-1; ++j) {
#pragma omp parallel for
for (int i = 1; i < m-1; i++) {
A[i + j * m] = Anew[i + j * m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);
niter++;

}
53/74

Laplace Heat: CPU vs GPU (OpenMP)

1 t
hre
ads

12
thr
ead
s

GPU
out
er

GPU
spl
it

0

20

40

60

80

100 1x

5.94x
19.14x 36.65x

Tim
e(
s)

Parallelizing the outer loop
leads to a 3.2x speedup with
respect to the CPU with 12
threads

Worksharing the two loops
leads to a 6.1x speedup with
respect to the CPU with 12
threads

54/74

Laplace Heat: OpenACC

Using OpenACC, we will test the two solutions previously tested with OpenMP: the first is to
distribute the iterations of the outer loop.

#pragma acc data copyin(Anew[0:n*m]) copy(A[0:n*m])
while (error > tol && niter < niter_max) {
error = 0.0;

#pragma acc parallel loop reduction(max:error)
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

#pragma acc parallel loop
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; i++) {
A[i + j * m] = Anew[i + j * m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);
niter++;

}

55/74

Laplace Heat: OpenACC

Using OpenACC, we will test the two solutions previously tested with OpenMP: the second is to
distribute the iterations of the two loops.

#pragma acc data copyin(Anew[0:n*m]) copy(A[0:n*m])
while (error > tol && niter < niter_max) {
error = 0.0;

#pragma acc parallel loop reduction(max:error)
for (int j = 1; j < n-1; ++j) {
#pragma acc loop reduction(max:error)
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

#pragma acc parallel loop
for (int j = 1; j < n-1; ++j) {
#pragma acc loop
for (int i = 1; i < m-1; i++) {
A[i + j * m] = Anew[i + j * m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);
niter++;

}
56/74

Laplace Heat: CPU vs GPU (OpenACC)

1 t
hre
ads

12
thr
ead
s

GPU
out
er

GPU
spl
it

0

20

40

60

80

100 1x

5.94x
24.33x 61.40x

Tim
e(
s)

Parallelizing the outer loop
leads to a 4.1x speedup with
respect to the CPU with 12
threads

Worksharing the two loops
leads to a 10.3x speedup with
respect to the CPU with 12
threads

57/74

Loop collapsing

Another idea we can explore is to collapse the loop nest into one big loop in order to increase
parallelism. This can be done using the collapse clause in both OpenACC and OpenMP.

The collapse clause, collapse the iterations of the n-associated loops to which the clause
applies into one larger iteration space. This clause can only apply on tightly nested loops,
meaning that there is no code between the loops.

#pragma omp for collapse(n)
nested-for-loops

#pragma omp loop collapse(n)
nested-for-loops

!$omp do collapse(n)
nested-do-loops

!$acc loop collapse(n)
nested-do-loops

58/74

Laplace Heat: Loop collapse

#pragma acc data copyin(Anew[0:n*m]) copy(A[0:n*m])
while (error > tol && niter < niter_max) {
error = 0.0;

#pragma acc parallel loop collapse(2) reduction(max:error)
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

#pragma acc parallel loop collapse(2)
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; i++) {
A[i + j * m] = Anew[i + j * m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);
niter++;

}

59/74

Laplace Heat: Loop collapse

#pragma omp target data map(to: Anew[0:n*m]) map(A[0:n*m])
while (error > tol && niter < niter_max) {
error = 0.0;

#pragma omp target teams distribute parallel for reduction(max:error) collapse(2)
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; ++i) {
unsigned int idx = i + j * m;
Anew[idx] = 0.25 * (A[idx+1] + A[idx-1] + A[idx-m] + A[idx+m]);
error = fmax(error, fabs(Anew[idx] - A[idx]));

}
}

#pragma omp target teams distribute parallel for collapse(2)
for (int j = 1; j < n-1; ++j) {
for (int i = 1; i < m-1; i++) {
A[i + j * m] = Anew[i + j * m];

}
}

if(niter % 100 == 0) printf("%5d, %0.6f\n", niter, error);
niter++;

}

60/74

Laplace Heat: CPU vs GPU (Loop Collapse)

1 t
hre
ads

12
thr
ead
s

Op
enM

P

Op
enA
CC

0

20

40

60

80

100 1x

5.94x
30.58x 80.56x

Tim
e(
s)

Loop collapsing with OpenMP
improves the performance
compared to parallelization of
the outer loop but is slower
than distributing the loops
between teams and threads.

Loop collapsing with OpenACC
improves the performance
with a 13.6x speedup with
respect to the CPU with 12
threads

61/74

Laplace Heat: The Final Word

The result for the Laplace heat code can be summarized as follows:

OpenACC OpenMP

Speedup vs. serial 80.7x 36.7x

Speedup Socket (CPU) to socket (GPU) 13.6x 6.1x

OpenACC with the PGI compiler display the best performance

Targeting GPU with OpenMP is still only at the beginning, implementations may lack
optimization

After some more investigation, it turns out that it is the reduction that is the main
bottleneck of the OpenMP code

62/74

Asynchronous Execution

Asynchronous vs. Synchronous Execution

Without additional clauses, OpenMP and OpenACC directives are blocking: the CPU
triggers the kernel launch or data transfer and wait until completion.

Operations are inserted into the default execution queue. Items in this queue are
executed in the order in which they have been inserted.

However, some algorithms have independent pieces of work which can be executed in any order
and/or simultaneously.

Thinks does not always require to execute in the order they appear in the source code.

Data movement and computation can be overlapped

64/74

Mandelbrot Set

As an illustration, let’s consider the Mandelbrot set. As we will call the mandelbrot function
from the GPU, we need to declare it to be offloaded so that the compiler generates code that can
be run on the GPU.
#pragma omp declare target
unsigned char mandelbrot(int px, int py) {
const double x0 = XMIN + px * DX;
const double y0 = YMIN + py * DY;

double x = 0.0;
double y = 0.0;

int i;
for(i = 0; (x * x + y * y) < 4.0
&& i < MAX_ITERS; i++) {
double xtemp = x * x - y * y + x0;

y = 2 * x * y + y0;
x = xtemp;

}

return (double)MAX_COLOR*i/MAX_ITERS;
}
#pragma omp end declare target

#pragma acc routine seq
unsigned char mandelbrot(int px, int py) {
const double x0 = XMIN + px * DX;
const double y0 = YMIN + py * DY;

double x = 0.0;
double y = 0.0;

int i;
for(i = 0; (x * x + y * y) < 4.0
&& i < MAX_ITERS; i++) {
double xtemp = x * x - y * y + x0;

y = 2 * x * y + y0;
x = xtemp;

}

return (double)MAX_COLOR*i/MAX_ITERS;
}

65/74

The Declare and Routine Directives

The OpenMP declare target directive specifies that variables and functions are mapped to
a device so that these variables and functions can be accessed or executed on the device.

#pragma omp declare target
var-or-function-declaration

#pragma omp end declare target

subroutine foo()
!$omp declare target

end subroutine

!$omp declare target (list)

Concerning OpenACC, mapping a function to a device is done using the routine directive.

#pragma acc routine
function-declaration

subroutine foo()
!$acc routine

end subroutine

An optional clause that specifies that the function may contain a certain level (gang , worker ,
vector or seq) of parallelism may be added to this directive.

66/74

Mandelbrot Set

We can divide the computation in blocks along the y-axis and launched it as num_blocks
kernels. The copy of the result from the GPU to the CPU memory is also done by blocks using the
update (OpenACC) construct and target update (OpenMP).

#pragma omp target data \
map(alloc: image[0:WIDTH*HEIGHT])}
for(int block = 0; block < num_blocks; ++block) {
int start = block * (HEIGHT/num_blocks);
int end = start + (HEIGHT/num_blocks);

#pragma omp target teams distribute parallel for \
collapse(2)
for (int y = start; y < end; y++) {
for (int x = 0; x < WIDTH; x++) {
image[x + y * WIDTH] = mandelbrot(x, y);

}
}

#pragma omp target update \
from(image[block*block_size:block_size])

}

#pragma acc data create(image[WIDTH*HEIGHT])
for(int block = 0; block < num_blocks; ++block) {
int start = block * (HEIGHT/num_blocks);
int end = start + (HEIGHT/num_blocks);

#pragma acc parallel loop collapse(2)
for (int y = start; y < end; y++) {
for (int x = 0; x < WIDTH; x++) {
image[x + y * WIDTH] = mandelbrot(x, y);

}
}

#pragma acc update \
self(image[block*block_size:block_size])

}

67/74

The Update Directive

The OpenMP target update directive makes the list items in the device data environment
consistent with the original list items by copying data between the CPU and the GPU. The from
clause allows copy from the GPU to the CPU and the to clause copy from the CPU to the GPU.

#pragma omp target update from|to(list) !$omp target update from|to(list)

The same operation can be performed with OpenACC using the update directive. The host
clause allows copy from the GPU to the CPU and the device clause copy from the CPU to the GPU.

#pragma acc update host|device(list) !$acc update host|device(list)

68/74

Serialized vs. Pipelined Execution

By breaking the computation of the Mandelbrot set in chunks, we do something called pipelining:
breaking a large operation into smaller parts so that independent operations can overlap. By
default OpenMP and OpenACC serialize the operations.

but we if want to overlap compution and memory copy operation.

69/74

Asynchronous Execution

In order to have a pipelined execution with OpenMP, we use a combination of the nowait and
depend clauses. For the OpenACC version, we put the work in two asynchronous queues with
the async clause.

#pragma omp target data \
map(alloc: image[0:WIDTH*HEIGHT])}
for(int block = 0; block < num_blocks; ++block) {
int start = block * (HEIGHT/num_blocks);
int end = start + (HEIGHT/num_blocks);

#pragma omp target teams distribute parallel for \
collapse(2) depend(inout:image[block*block_size]) \
nowait
for (int y = start; y < end; y++) {
for (int x = 0; x < WIDTH; x++) {
image[x + y * WIDTH] = mandelbrot(x, y);

}
}

#pragma omp target update \
from(image[block*block_size:block_size]) \
depend(inout:image[block*block_size]) nowait

}

#pragma omp taskwait

#pragma acc data create(image[WIDTH*HEIGHT])
for(int block = 0; block < num_blocks; ++block) {
int start = block * (HEIGHT/num_blocks);
int end = start + (HEIGHT/num_blocks);

#pragma acc parallel loop collapse(2) \
async(block%2)
for (int y = start; y < end; y++) {
for (int x = 0; x < WIDTH; x++) {
image[x + y * WIDTH] = mandelbrot(x, y);

}
}

#pragma acc update \
self(image[block*block_size:block_size]) \
async(block%2)

}

#pragma acc wait

70/74

Asynchronous Execution (OpenMP)

With OpenMP the nowait clause create a task detached to the main execution thread.
Dependence between the different task is defined with the depend clause.

#pragma omp target enter data map(alloc:A[:N], B[:N], C[:N])

#pragma omp target teams distribute nowait depend(out:A)
for (int i = 0; i < N; ++i) A[i] = i*4;

#pragma omp target teams distribute nowait depend(out:B)
for (int i = 0; i < N; ++i) B[i] = i*2;

#pragma omp target teams distribute nowait depend(in:A, B) depend(out:C)
for (int i = 0; i < N; ++i) C[i] = A[i] + B[i];

#pragma omp target exit data depend(in:C) map(from:C[:N]) map(delete:A[:N], B[:N])

71/74

Asynchronous Execution (OpenACC)

With OpenACC the async clause create a task detached to the main execution thread. You can
specify the queue in which the task should be placed using an integer expression as argument
to the clause. If no argument is specified, the task will be placed in the default execution queue.

#pragma acc enter data create(A[:N], B[:N], C[:N])

#pragma acc parallel loop async(1)
for (int i = 0; i < N; ++i) A[i] = i*4;

#pragma acc parallel loop async(2)
for (int i = 0; i < N; ++i) B[i] = i*2;

#pragma acc wait(1) async(2)

#pragma acc parallel loop async(2)
for (int i = 0; i < N; ++i) C[i] = A[i] + B[i];

#pragma acc exit data copyout(C[:N]) delete(A[:N], B[:N]) wait(2)

72/74

Asynchronous Execution

Asynchronous execution can also be used in order to overlap the computation on the CPU and the
GPU:

to improve the throughput of your calculation

to let the CPU a part of the calculation that might not be efficiently parallelized on a GPU

#pragma omp target teams distribute
parallel for nowait

for (int i = 0; i < N; ++i)
doSomethingGPU(i);

doSomethingCPU();

#pragma omp taskwait

#pragma acc parallel loop async
for (int i = 0; i < N; ++i)
doSomethingGPU(i);

doSomethingCPU();

#pragma acc wait

73/74

Question?

	Introduction
	OpenMP Offload Execution Model
	OpenACC Execution Model
	Compilers Support
	Data Management
	Case Study: Laplace Heat Equation
	Asynchronous Execution
	Question?

